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The immunologic constant of rejection classification refines the
prognostic value of conventional prognostic signatures in
breast cancer
François Bertucci1,2,3, Pascal Finetti1, Ines Simeone4, Wouter Hendrickx5, Ena Wang5, Francesco M. Marincola5,8, Patrice Viens,
Emilie Mamessier, Michele Ceccarelli6,7, Daniel Birnbaum and Davide Bedognetti

BACKGROUND: The immunologic constant of rejection (ICR) is a broad phenomenon of Th-1 immunity-mediated, tissue-specific
destruction.
METHODS: We tested the prognostic value of a 20-gene ICR expression signature in 8766 early breast cancers.
RESULTS: Thirty-three percent of tumours were ICR1, 29% ICR2, 23% ICR3, and 15% ICR4. In univariate analysis, ICR4 was associated
with a 36% reduction in risk of metastatic relapse when compared with ICR1-3 (p= 2.30E–03). In multivariate analysis including
notably the three major prognostic signatures (Recurrence score, 70-gene signature, ROR-P), ICR was the strongest predictive
variable (p= 9.80E–04). ICR showed no prognostic value in the HR+/HER2− subtype, but prognostic value in the HER2+ and TN
subtypes. Furthermore, in each molecular subtype and among the tumours defined as high risk by the three prognostic signatures,
ICR4 patients had a 41–75% reduction in risk of relapse as compared with ICR1-3 patients. ICR added significant prognostic
information to that provided by the clinico-genomic models in the overall population and in each molecular subtype. ICR4 was
independently associated with achievement of pathological complete response to neoadjuvant chemotherapy (p= 2.97E–04).
CONCLUSION: ICR signature adds prognostic information to that of current proliferation-based signatures, with which it could be
integrated to improve patients’ stratification and guide adjuvant treatment.
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BACKGROUND
Despite recent progresses, ~15% of patients with breast cancer still
develop metastases and die. During the last decades, genomic
analysis revealed the extent of the molecular heterogeneity of
disease.1 Based on gene expression profiling, a new molecular
classification was defined, confirming that breast cancer is a group
of molecularly distinct subtypes associated with different clinical
outcome and prognostic features. In parallel, multigene signatures
prognostic and/or predictive for response to chemotherapy were
developed.2,3 Several commercially available prognostic classifiers
have been cleared by the Food and Drug Administration for clinical
use or endorsed by American Society of Clinical Oncology (ASCO),
National Comprehensive Cancer Network (NCCN), and Saint-Gallen
guidelines to assist clinicians in making decisions about adjuvant
chemotherapy, in particular for patients with HR+/HER2− tumour.
Indeed, those signatures, mainly based on genes involved in cell
proliferation, provide modest prognostic information for patients
with classically proliferative HER2+ or triple-negative (TN) tumours.
The role of immunity in counteracting tumour progression is

clearly recognised.4,5 Classically, breast cancer is considered less
immunogenic than melanoma or renal cell carcinoma.

Nonetheless, the role of immunity has emerged with the
demonstration of a favourable predictive impact of the presence
of tumour-infiltrating lymphocytes (TILs)6 and of gene expression
signatures of immune response (IR), notably for TN and HER2+
tumours.7,8 Given the recent therapeutic success of immune
checkpoint inhibitors in several types of cancers,9,10 these drugs
were tested in breast cancer:11 no or very low activity was
observed in HR+ tumours, whereas higher activity was reported in
small subsets of heavily pre-treated TN tumours preselected with
an increased PD-L1 expression with respective 18.5 and 24%
objective response rates with pembrolizumab (n= 27)12 and
atezolizumab (n= 21),13 and remarkably durable responses.
Recent data suggest that not only the composition of tumour-

infiltrating immune cells, but also their functional orientation
might serve as a prognostic/predictive marker to select systemic
therapies.5 The functional orientation towards cytotoxic response
is observed in tumours undergoing regression following immu-
notherapy and, in melanoma, has been associated with respon-
siveness to interleukin-2, adoptive therapy, vaccines, and
checkpoint inhibitors.14–19 Although prognostic immune signa-
tures defined in breast cancer differ in term of gene composition,
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most of them include transcripts underlying a cytotoxic
response.20–22 The corresponding pathways are also activated
during other forms of immunity-mediated tissue-specific destruc-
tion, such as allograft rejection,23 graft-versus-host disease,24 and
flares of autoimmunity.25 We defined them as the immunologic
constant of rejection (ICR).5,18 More specifically, the ICR consists in
a signature including genes involved in Th-1 signalling interferon
(IFNG, TBX21, CD8A/B, IL12B, STAT1, and IRF1), Th-1 chemoattrac-
tion (such as the CXCR3 and CCR5 ligands, respectively, CXCL9 and
CXCL10, and CCL5), and cytotoxic functions (GNLY, PRF, GZMA,
GZMB, and GZMH). Interestingly, the expression of these pro-
cytotoxic transcripts in tumours is associated with the counter
activation of suppressive mechanisms, such as the expression of
IDO1, CTLA4, CD274 (PD-L1), PDCD1 (PD-1), and FOXP3.26 In a
study27 centred on the TCGA data set, we found that breast
cancers can be classified in four classes according to the ICR
signature. In such classification, the level of immune antitumour
response progressively decreased from ICR4 to ICR1. The ICR4
tumours, characterised by the coordinate activation of the ICR
pathways, displayed a prolonged survival as compared with ICR1-3
tumours in univariate analysis.
Here, to further asses its clinico-biological value, we expanded

the ICR classification to a set of 8766 non-metastatic, invasive
primary breast cancers. We searched for correlations with clinico-
biological data, including metastasis-free survival (MFS) and
pathological complete response (pCR) to neoadjuvant
chemotherapy.

MATERIALS AND METHODS
Breast cancer samples and gene expression profiling
Our institutional series included 352 tumour samples from pre-
treatment invasive primary mammary carcinomas either surgically
removed or biopsied.28 The study was approved by our
institutional review board. Each patient had given a written
informed consent for research use. Samples had been profiled
using Affymetrix U133 Plus 2.0 human microarrays (Santa Clara,
CA, USA). We pooled them with 34 public breast cancer data sets
comprising both gene expression profiles generated using
DNA microarrays and RNA-Seq and clinicopathological annota-
tions. These sets were collected from the National Center
for Biotechnology Information (NCBI)/Genbank GEO and
ArrayExpress databases, and authors’ website (Supplementary
Table 1). The final pooled data set included 8766 non-redundant
non-metastatic, non-inflammatory, primary, invasive breast
cancers.

Gene expression data analysis
Before analysis, several steps of data processing were applied. The
first step was the normalisation of each set separately. It was done
in R using Bioconductor and associated packages; we used
quantile normalisation for the available processed data from non-
Affymetrix-based sets (Agilent, SweGene, and Illumina), and
Robust Multichip Average (RMA) with the non-parametric quantile
algorithm for the raw data from the Affymetrix-based sets. In the
second step, we mapped the hybridisation probes across the
different technological platforms represented as previously
reported.29 When multiple probes mapped to the same GeneID,
we retained the most variant probe in a particular data set. We
log2 transformed the available TCGA RNA-Seq data that were
already normalised.
In order to avoid biases related to trans-institutional immunohis-

tochemistry analyses and thanks to the bimodal distribution of
respective mRNA expression levels, the Estrogen Receptor (ER),
progesterone receptor (PR), and HER2 statutes (negative/positive)
were defined on transcriptional data of ESR1, PGR, and HER2,
respectively, as previously described.30 The molecular subtypes of
tumours were defined as HR+/HER2− for ER+ and/or PR+ and HER2

− tumours, HER2+ for HER2+ tumours, and TN for ER−, PR−, and
HER2− tumours.
We applied in each data set separately several multigene

signatures. First, the ICR classifier based on consensus clustering
(CC) analysis of the expression levels of 20 representative immune
genes (namely, CCL5, CD274, CD8A, CD8B, CTLA4, CXCL9, CXCL10,
FOXP3, GNLY, GZMA, GZMB, GZMH, IDO1, IFNG, IL12B, IRF1, PDCD1,
PRF1, STAT1, and TBX21) as previously described.27 Briefly, the CC
analysis was performed in R using the Bioconductor package
“ConsensusClusterPlus”31 setting as input parameters 5000
repetitions, 80% item resampling (pItem), a number of groups
(k) fixed to 4 (in order to have all data sets stratified with the same
number of classes, 4 being the optimal number of groups for the
TCGA cohort,27) and the use of an agglomerative hierarchical
clustering with ward criterion (Ward.D2) inner and complete outer
linkage. We also applied the three major prognostic multigene
classifiers of breast cancer: Recurrence score,32 70-gene signa-
ture,33 and Risk of Relapse score based on PAM50 subtype and
proliferation Risk of Relapse (ROR-P).2 Other signatures included
the metagenes associated with immune cell populations such as
T cells, CD8+ T cells and B cells defined by Palmer et al.,34 the
transcriptional signatures of 24 different innate and adaptative
immune cell subpopulations defined by Bindea et al.,35 the
cytolytic activity score,36 the activation score of IFNα, IFNγ, and
tumor necrosis factor (TNFα) immune-related and TP53 biological
pathways,37 and a chromosomal instability signature.38 We also
applied to each data set separately three immune gene signatures
reported as prognostic in specific molecular subtypes of breast
cancer: the IR signature22 and the lymphocyte-specific kinase
(LCK) signature20 in ER− breast cancers, the Immune 28-kinase
signature21 in basal/TN breast cancers, and the LCK signature20 in
HER2+ breast cancers. Finally, we calculated the mitogen-
activated protein kinase (MAPK)-mut score using MAPK genes
upregulated in MAPK2K4 /MAP3K1 mutated vs. wild-type tumours,
as listed elsewhere.27

Statistical analysis
Correlations between tumour classes and clinicopathological
variables were analysed using the one-way analysis of variance
(ANOVA) or the Fisher’s exact test when appropriate. MFS was
calculated from the date of diagnosis until the date of distant
relapse. Follow-up was measured from the date of diagnosis to the
date of last news for event-free patients. Survivals were calculated
using the Kaplan–Meier method and curves were compared with
the log-rank test. Uni- and multivariate prognostic analyses for
MFS were done using Cox regression analysis (Wald test). The
variables submitted to univariate analyses included patients’ age
at diagnosis ( ≤ 50 years vs. > 50), pathological type (lobular vs.
ductal vs. other), pathological axillary lymph node status (pN:
negative vs. positive), pathological tumour size (pT1 vs. pT2 vs.
pT3), pathological grade (1 vs. 2 vs. 3), molecular subtypes (HR
+/HER2− vs. HER2+ vs. TN), and classifications based on ICR and
prognostic multigene signatures. The likelihood ratio (LR) tests
were used to assess the prognostic information provided beyond
that of a clinical model and other signatures, assuming a χ2

distribution. Changes in the LR values (LR-ΔX2) measured
quantitatively the relative amount of information of one model
compared with another. We also analysed the pCR after
neoadjuvant chemotherapy, defined as absence of invasive cancer
in both breast and axillary lymph nodes. Uni- and multivariate
analyses for pCR were done using logistic regression. Variables
with a p-value < 0.05 in univariate analyses were tested in
multivariate analyses. All statistical tests were two sided at the
5% level of significance. Statistical analysis was done using the
survival package (version 2.30) in the R software (version 2.9.1;
http://www.cran.r-project.org/). We followed the reporting REcom-
mendations for tumour MARKer prognostic studies (REMARK
criteria).39
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RESULTS
Breast cancer population and ICR classification
We applied the ICR classification to a series of 8766 pre-treatment
cancer samples. Most of the patients were >50 years old and most
of the tumours were ductal type, pT1–pT2, pN−, grade 2–3, ER+,
HER2− (Supplementary Table 2). Sixty-six percent were HR+/HER2
−, 12% were HER2+, and 22% were TN. ICR classification defined
2874 tumours (33%) as ICR1, 2516 (29%) as ICR2, 2061 (23%) as
ICR3, and 1315 (15%) as ICR4, with progressive decrease of the
enrichment of the ICR signature from ICR4 to ICR1. The box plot of
expression of each ICR gene according to the ICR classes is shown
in Supplementary Figure 1.

ICR classification and clinicopathological and biological features
We found correlations between the ICR classes and all tested
clinicopathological features (Supplementary Table 3). ICR4 class
was associated with age ≤ 50 years, ductal type, less pT1, less pN0,
high grade, ER− status, PR− status, and TN subtypes. Interestingly,
for all those correlations, a continuum existed from ICR1 to ICR4.
The TN subtype was more enriched in ICR4 (28%) than the HER2+
subtype (19%), which was also more enriched than the HR+/
HER2− subtype (10%; p < 1.00E–06).
Correlations also existed with immunity-related factors and

prognostic signatures of breast cancer (Supplementary Table 4).
We found a positive correlation with the lymphocyte infiltrate
scored binary (low vs. high), the percentage of high-score samples
increasing with the ICR class (p= 2.09E–04). We found strong
positive correlation (p < 1.00E–06) with immune gene expression
signatures defined in breast cancer: the metagene scores of
T cells, CD8+ T cells, and B cells34 increased from ICR1 to ICR4, as

did the activation score of IFNα, IFNγ, and TNFα pathways37

(Fig. 1), and the cytolytic activity score.36 This immune pattern was
confirmed and refined using the 24 Bindea signatures for immune
cell subsets,35 showing a strong enrichment from ICR1 to ICR4 for
T cells, cytotoxic T cells, CD8+ T cells, T-helper cells, and Tγδ cells,
activated NK CD56dim cells and neutrophils (p < 1.00E–100;
Supplementary Figure 2). Among T-helper cells, the Th-1/Th-2
ratio increased from ICR1 to ICR4, whereas Th-17 enrichment,
often associated with unfavourable prognosis,35,40 decreased. This
antitumour activation was also correlated to subsets involved in
antigen presentation, such as activated dendritic cells (aDCs), DC,
B cells, and macrophages. Mast cells and eosinophils decreased
from ICR1 to ICR4. Finally, the percentage of high-risk samples
increased from ICR1 to ICR4 (p < 1.00E–06) for the 70-gene
signature,33 the Recurrence score,32 and the ROR-P score2 (Fig. 1).
The activation score of TP53 pathway37 decreased from ICR1 to

ICR4, whereas the percentage of samples with chromosomal
instability, as defined by the Carter signature,38 increased (Fig. 1).
The MAPK-mut score, reflection of the degree of MAPK deregula-
tion, decreased from ICR1 to ICR4 in the whole series and in each
molecular subtype separately (Supplementary Figure 3), as
previously reported.27 Here too, for all tested signatures, a
continuum was present between the four classes. Of note, all
correlations with the ICR classes remained significant after
adjustment on the molecular subtype (Supplementary Table 5).

ICR classification and MFS in the whole population
We assessed the prognostic value of the ICR classification in term of
MFS in the 3046 informative patients non-metastatic at diagnosis,
operated and without neoadjuvant systemic therapy: 2415
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remained metastasis-free during a median follow-up of 72 months
(range, 1–299) and 631 displayed metastatic relapse. The 5-year
MFS rate was 79% (95% CI, 77–81). As shown in Fig. 2a, the MFS
was different among the four classes: 79% (95% CI, 77–82) in ICR1,
78% (95% CI, 75–81) in ICR2, 76% (95% CI, 73–80) in ICR3, and 84%
(95% CI, 80–89) in ICR4 (p= 9.56E–03, log-rank test). Based on
the absence of difference in MFS between the ICR1, 2, and 3 classes
(p= 0.39, log-rank test), we pooled them into the ICR1-3 class.
In univariate analysis (Table 1), the ICR classification was

associated with MFS: patients in the ICR4 class showed longer 5-
year MFS (84% [95% CI, 80–89]) than patients in the ICR1-3 class
(78%; [95% CI, 76–80]; p= 2.12E–03, log-rank test; Fig. 2b),
representing a 36% reduction in the risk of relapse (hazard ratio
(HR)= 0.64, 95% CI, 0.47–0.85, p= 2.30E–03, Wald test). Variables
associated with shorter MFS included higher pathological size,
higher grade, and TN and HER2+ subtypes. In multivariate
analysis, all these variables remained significant, including the
ICR classification (p= 4.76E–03, Wald test). Importantly, the
prognostic value of the ICR score also persisted in the multivariate
analysis (HR= 0.53, 95% CI, 0.36–0.77, p= 9.80E–04, Wald test;
Table 1), which included the three major prognostic signatures of
breast cancer (70-gene signature, Recurrence score, ROR-P),
suggesting independent prognostic value of ICR classification
compared with these signatures. Of note (data not shown), the ICR
classification was associated with both early (0–5 years) metastatic
relapses (HR= 0.67, 95% CI, 0.49–0.91, p= 1.16E–02, Wald test)
and late ( > 5 years) metastatic relapses (HR= 0.43, 95% CI,
0.20–0.91, p= 2.85E–02, Wald test).

ICR classification and MFS in each molecular subtype
In order to further assess the complementarity of ICR classification
with other signatures, we repeated the same analysis in each

molecular subtype separately (Supplementary Table 6, Figs. 2c-e).
In the HER2+ subtype (n= 352), the ICR classification and the LCK
signature were associated with MFS in univariate analysis, with a
HR for MFS event equal to 0.31 (95% CI, 0.15–0.68; p= 3.14E–03,
Wald test) in ICR4 when compared with ICR1-3. In multivariate
analysis, only the ICR classification remained significant. In the TN
subtype (n= 563), ICR classification displayed strong prognostic
value with a HR for MFS event equal to 0.44 (95% CI, 0.28–0.69; p
= 3.42E–04, Wald test) in ICR4 when compared with ICR1-3. The
other immune signatures (IR, LCK, and 28-kinase) were also
significant in univariate analysis, but in multivariate analysis, only
the ICR signature kept its prognostic value (p= 1.57E–02, Wald
test). Finally, in the HR+/HER2− subtype (n= 2131), the ICR
classification was not associated with MFS, whereas most of the
clinicopathological variables and all classical prognostic signatures
were.
These three commercial gene signatures are mainly used to

decide whether HR+/HER2− patients need adjuvant chemother-
apy (high risk) or not (low risk). We investigated whether the ICR
signature could identify prognostic classes within the different risk
groups defined by those signatures in the 2131 HR+/HER2−
patients. A prognostic value existed in the high-risk groups, but
not in the intermediate-risk groups, and even less in the low-risk
groups (Fig. 3). In the high-risk group defined by the 70-gene
signature (n= 1414), the HR for MFS event was 0.56 (95% CI,
0.35–0.90; p= 1.76E–02, Wald test) in ICR4 (9% of samples) when
compared with ICR1-3. In the Recurrence score-defined high-risk
group (n= 585), the corresponding HR was 0.59 (95% CI,
0.33–1.05; p= 7.47E–02, Wald test) with 13.5% of samples in
ICR4, and in the ROR-P score-defined high-risk group (n= 871), it
was 0.50 (95% CI, 0.30–0.84; p= 8.33E–03, Wald test) with 10.5% of
samples in ICR4. Interestingly, for each signature, the MFS curves
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were not significantly different between the high-risk/ICR4 class
and the low-risk or low/intermediate-risk group, but significantly
differed from those of the high-risk/ICR1-3 class. For example
regarding the Recurrence score, the 10-year MFS were 76% (95%
CI, 73–79) in the low/intermediate-risk group, 77% (95% CI, 65–72)
in the high-risk/ICR4 class, and 66% (95% CI, 60–72) in the high-
risk/ICR1-3 class. For the ROR-P score, the corresponding 10-year
MFS were 79% (95% CI, 76–82), 79% (95% CI, 70–90), and 62%
(95% CI, 58–67).
The same analysis gave similar results in the HER2+ and TN

subtypes. In these subtypes, the low-risk and intermediate-risk
groups were the minority and were pooled for analysis. A
prognostic value existed in the high-risk groups, but not in the
low or low/intermediate-risk groups. In the 352 HER2+ patients,
for the 70-gene signature, the 10-year MFS were 85% (95% CI,
75–96) in the high-risk/ICR4 class, and 61% (95% CI, 54–68) in the
high-risk/ICR1-3 class. For the Recurrence score, the 10-year MFS
were 87% (95% CI, 77–98) in the high-risk/ICR4 class, and 58%
(95% CI, 51–66) in the high-risk/ICR1-3 class. For the ROR-P score,
the corresponding 10-year MFS were 86% (95% CI, 76–98) and
59% (95% CI, 51–67; Supplementary Figure 4). Regarding the 563
TN patients, for the 70-gene signature, the 10-year MFS were 77%
(95% CI, 68–87) in the high-risk/ICR4 class, and 59% (95% CI,
53–66) in the high-risk/ICR1-3 class. For the Recurrence score, the
10-year MFS were 77% (95% CI, 68–87) in the high-risk/ICR4 class,
and 59% (95% CI, 53–66) in the high-risk/ICR1-3 class. For the ROR-
P score, the corresponding 10-year MFS were 78% (95% CI, 69–88),
and 65% (95% CI, 53–80).

Comparison of ICR classification with other prognostic signatures
Such prognostic complementarity between the proliferation-
based signatures and our ICR signature was tested using the LR
tests (Table 2). In the overall population and in each molecular
subtype, significant additional prognostic information was pro-
vided by our signature beyond that provided by the clinical model
combined to each other signature (70-gene, Recurrence score, and
ROR-P score). For example, ICR signature added information to
that provided by the combination of clinical model and
Recurrence score in the overall population (LR-ΔX2= 10.39, p=
1.27E–03), in the TN (LR-ΔX2= 15.68, p= 7.52E–05), HER2+ (LR-

ΔX2= 12.72, p= 3.63E–04), and HR+/HER2− subtypes (LR-ΔX2=
4.46, p= 3.46E–02). Based on the LR-ΔX2 values, the added
prognostic information was larger in the TN and HER2+ subtypes
and the overall population than in the HR+/HER2− subtype
where, however, it was significant.

ICR classification and pathological response to chemotherapy
A total of 1229 breast cancer samples were informative regarding
the pathological response to anthracycline-based neoadjuvant
chemotherapy. Among them, 283 (23%) displayed pCR, whereas
946 did not. In univariate analysis (Table 3), ICR classification was
associated with pCR (43% pCR in ICR4 class vs 20% in the ICR1-3
class, p= 2.88E–10), with an odds ratio (OR) for pCR equal to 2.99
(85%CI 2.24–3.97). The other significant variables were high grade,
and HER2+ and TN subtypes. In multivariate analysis, all variables
remained significant, including the ICR classification (p= 2.97E–04,
logit function). Here too, a continuum existed in term of pCR rate
between the four ICR classes, from 14% (ICR1) to 20% (ICR2), 28%
(ICR3), and 43% (ICR4). Such correlation between ICR classes and
pCR rate was maintained in each molecular subtype separately
(Supplementary Table 7).
Based on these results and the MFS results, we postulated that

the prognostic value of ICR classification could be mediated, at
least in part, by its association with response to chemotherapy.
Thus, we analysed its prognostic value in our MFS data set
according to the delivery or not of adjuvant chemotherapy, which
was informed for 2355 patients, including 1653 HR+/HER2−, 265
HER2+, and 437 TN. As shown in Supplementary Figure 5, in the
whole population the prognostic value was present in the
chemotherapy-treated group (p= 1.40E–02, log-rank test), but
not in the chemotherapy-naive group (p= 0.18); however, inter-
action was not significant (p= 0.14). Analysis per molecular
subtype revealed no prognostic value for ICR classification in both
groups in the HR+/HER2− patients and no interaction; by contrast,
interaction was significant (p= 4.71E–02) in the TN patients, with
strong prognostic value in the chemotherapy-treated group
(p= 1.80E–03, log-rank test) and no prognostic value in the
chemotherapy-naive group (p= 0.47); in HER2+ patients, there
was no significant interaction, with strong prognostic value in
the chemotherapy-naive group (p= 2.84E–02, log-rank test) and

Table 1. Univariate and multivariate Cox regression analyses for MFS in breast cancer

Univariate Multivariate

Characteristics N Hazard ratio [95% CI] p-Value N Hazard ratio [95% CI] p-Value

Age (years) >50 vs. ≤50 2265 0.89 [0.74–1.08] 0.250

Pathological type Lobular vs. ductal 1530 0.83 [0.52–1.33] 0.892

Mixed vs. ductal 0.97 [0.48–1.97]

Other vs. ductal 0.93 [0.54–1.61]

Pathological tumour size (pT) pT2 vs. pT1 2262 1.47 [1.19–1.81] 0.001 1228 1.29 [1.02–1.63] 0.030

pT3 vs. pT1 1.57 [1.07–2.31] 1228 1.74 [1.05–2.86] 0.030

Pathological axillary node status (pN) Positive vs. negative 2765 1.18 [1–1.4] 0.053

Pathological grade 2 vs. 1 1566 2.04 [1.43–2.91] < 1.00E–06 1228 1.42 [0.96–2.11] 0.081

3 vs. 1 3.98 [2.83–5.60] 1228 1.97 [1.31–2.97] 0.001

Molecular subtype HER2+ vs. HR+/HER2− 3046 1.64 [1.32–2.05] 0.000 1228 1.07 [0.75–1.52] 0.717

TN vs. HR+/HER2− 1.74 [1.43–2.10] 1228 0.92 [0.66–1.28] 0.607

70-gene signature, risk Poor vs. good 3046 2.45 [1.95–3.08] 0.000 1228 1.06 [0.72–1.55] 0.778

Recurrence score, risk Poor vs. good 3046 2.21 [1.83–2.67] 0.000 1228 1.68 [1.15–2.46] 0.007

Intermediate vs. good 1.78 [1.41–2.25] 1228 1.79 [1.27–2.54] 0.001

Risk of relapse, ROR-P Poor vs. good 3046 2.58 [2.12–3.14] < 1.00E–06 1228 1.69 [1.15–2.48] 0.007

Intermediate vs. good 1.94 [1.50–2.52] 1228 1.44 [0.96–2.15] 0.075

ICR classification ICR4 vs. ICR1-3 3046 0.64 [0.47–0.85] 0.002 1228 0.53 [0.36–0.77] 0.001
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no prognostic value in the chemotherapy-treated group despite
strong difference in MFS between the two ICR classes (p= 0.21).
Thus, these data confirm that, in breast cancer, the ICR4 class is
associated with higher response to chemotherapy, particularly in
the TN subtype.

DISCUSSION
Here, we show that the transcriptional ICR signature, reflecting an
immune antitumour response, defines a continuum of clinically
and biologically relevant classes of breast cancers. The signature is
associated with classical prognostic features and immunity-related
parameters, and with MFS, where it refines the prognostic value of
classical prognostic signatures, and with pathological response to
chemotherapy.
Our approach tested the prognostic and predictive value for our

signature in an independent series of samples, thus avoiding the
problem of overfitting. We analysed a retrospective pooled set of
8766 pre-therapeutic samples of non-metastatic and invasive
primary breast cancers, including 3046 cases informative for MFS
and 1229 for pathological response to chemotherapy. Such figures
allowed testing our hypothesis in uni- and multivariate analyses in
the whole population, but also in each molecular subtype
separately. Moreover, the whole-genome transcriptional data
allowed testing several other gene signatures and modules
relevant to breast cancer.
An immunological continuum was observed with increasing

enrichment, from ICR1 to ICR4, of scores reflecting the presence of
an antitumour IR, such as lymphocyte infiltrate, expression
signatures of immune cell types including T cells, cytotoxic
T cells, Th-1 cells, CD8+ T cells, T-helper cells, Tγδ cells, and

antigen-presenting cells, and scores of IFNγ pathway activation
and of cytolytic activity. Although the molecular subtype is
classically associated with immunologic infiltrate, such correlations
persisted in multivariate analysis including the molecular sub-
types. The level of immune activation captured by the ICR
classification positively correlated with classical negative prog-
nostic features of breast cancer, as the scores of standard
prognostic signatures (70-gene signature, Recurrence score, and
ROR-P score). Here too, a continuum was observed from ICR1 to
ICR4, the latter being associated with the poorer-prognosis
features. The activation score of TP53 pathway37 decreased from
ICR1 to ICR4, in agreement with the higher rate of inactivating
TP53 mutations reported in ICR4,27 whereas chromosomal
instability38 increased.
Importantly, although associated with poor-prognosis features

(including the TN subtype and high-risk defined by classical
prognostic signatures), the ICR4 class displayed longer MFS than
the three other classes, which showed similar MFS and were
pooled. In the whole population, the 5-year MFS was 84% in ICR4
and 78% in pooled ICR1-3, with a HR for relapse equal to 0.64.
Multivariate analysis showed that such prognostic value was
independent from that of classical prognostic variables and of the
three major prognostic signatures of breast cancer, clearly
suggesting that IR (reflected by our classification) and tumour
cell proliferation (reflected by the three other signatures) provide
complementary prognostic information. Of note, the lymphocyte
infiltration, relatively simple measure of IR, which was available
only for the 999 TCGA samples, including 929 with available
follow-up (88 HER2+, 180 TN, and 661 HR+/HER2−), was not
associated with MFS in univariate analysis, whereas our ICR
classification was (data not shown). In fact, the prognostic value of
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our ICR classification was dependent upon the molecular subtype
of samples and complementary to that of other signatures: it was
present in the TN and HER2+ subtypes, classically highly
proliferative, but absent in the HR+/HER2− subtype, classically
less proliferative. The opposite was observed for the three
proliferation-based signatures currently used in clinical practice
in patients with HR+/HER2− disease. Nevertheless, in HR+/HER2−
patients, ICR stratified into prognostic classes the high-risk
patients defined by these three signatures. Between 9 and 14%
of high-risk patients (according to the signatures tested) were
classified ICR4, and such patients had a 41–50% reduction of risk

of distant relapse as compared with ICR1-3 high-risk patients.
Interestingly, high-risk ICR4 patients exhibited high 10-year MFS
(between 77 and 81%), similar to the 10-year MFS of low-risk or
low/intermediate-risk patients. Regarding the TN and HER2+
subtypes, no prognostic signature is marketed to date. However,
we included in our prognostic analysis three immune signatures
centred on the antitumour response and previously reported as
prognostic (IR, LCK, 28-kinase): we confirmed their prognostic
value in univariate analysis, which was, however, lost in multi-
variate analysis when confronted to our ICR classification.
Interestingly, in these subtypes also, ICR stratified into prognostic

Table 3. Univariate and multivariate analyses for pathological complete response to neoadjuvant chemotherapy in breast cancer

Characteristics Univariate Multivariate

N Odds ratio [95% CI] p-Value N Odds ratio [95% CI] p-Value

Age (years) >50 vs. ≤50 1227 0.84 [0.67–1.05] 0.210

Pathological type Lobular vs. ductal 526 1.69 [0.62–4.31] 0.368

Mixed vs. ductal 526 0.74 [0.36–1.42] 0.476

Other vs. ductal 526 0.82 [0.44–1.46] 0.593

Pathological grade 2 vs. 1 1118 3.27 [1.15–14.3] 0.108 1118 2.42 [0.84–10.6] 0.235

3 vs. 1 1118 11.5 [4.16–49.5] 7.58E–04 1118 5.86 [2.07–25.5] 1.61E–02

Molecular subtype HER2+ vs. HR+/HER2− 1229 3.98 [2.83–5.60] 2.46E–11 1118 3.12 [2.14–4.54] 6.09E–07

TN vs. HR+/HER2− 1229 3.50 [2.70–4.57] 5.76E–15 1118 2.56 [1.90–3.47] 2.99E–07

ICR classification ICR4 vs. ICR1-3 1229 2.99 [2.24–3.97] 2.88E–10 1118 1.99 [1.45–2.72] 2.97E–04

Table 2. Comparison of prognostic information for MFS

Patient group All TN HER2+ HR+/HER2−

N° patients 3046 563 352 2131

N° distant Evt 631 143 97 391

Clinical model LR-X² 75.00 --- --- 45.45

p-Value 3.84E–14 --- --- 3.21E–09

ICR classification LR-X² 10.57 15.38 12.19 1.66

p-Value 1.15E–03 8.79E–05 4.81E–04 0.198

70-gene signature LR-X² 72.09 0.11 1.08 55.09

p-Value < 2.00E–16 0.735 0.298 1.15E–13

Clinical+ 70-gene+ ICR4 LR-X² 90.2 15.41 12.66 61.01

p-Value < 2.00E–16 4.51E–04 1.78E-03 2.81E–11

Clinical + 70-gene + ICR4 vs. Clinical+ 70-gene LR-ΔX² 10.31 15.30 11.57 3.78

p-Value 1.33E–03 9.19E–05 6.69E–04 0.052

Recurrence score (RS) LR-X² 73.76 0.53 2.35 38.44

p-Value 1.11E–16 0.769 0.309 4.49E–09

Clinical+ RS+ ICR4 LR-X² 110.90 16.20 15.06 75.67

p-Value < 2.00E–16 1.03E–03 1.76E–03 1.05E–13

Clinical + RS + ICR4 vs. Clinical+ RS LR-ΔX² 10.39 15.68 12.72 4.46

p-Value 1.27E–03 7.52E–05 3.63E–04 3.46E–02

Risk of relapse (ROR-P) LR-X² 103.20 0.65 3.02 77.38

p-Value < 2.00E–16 0.723 0.221 < 2.00E–16

Clinical+ ROR-P+ ICR4 LR-X² 106.5 16.12 16.11 74.18

p-Value < 2.00E–16 1.07E–03 1.08E–03 2.10E–13

Clinical + ROR-P + ICR4 vs. Clinical+ ROR-P LR-ΔX² 12.41 15.47 13.09 5.77

p-Value 4.27E–04 8.38E–05 2.97E–04 1.63E–02

* Clinical model variables pT, grade & HR mRNA none none pT & grade

*the clinical variables mentioned correspond to the variables significant in multivariate analysis and integrated in the Clinical model.
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classes the high-risk patients defined by the three proliferation-
based commercial signatures. In the HER2+ subtype, 17–18% of
high-risk patients (according to the signatures tested) were
classified ICR4, and such patients had a 68–75% reduction of risk
of distant relapse as compared with ICR1-3 high-risk patients.
Similarly in the TN subtype, 27–30% of high-risk patients
(according to the signatures tested) were classified ICR4, with a
56–60% reduction of risk of distant relapse as compared with
ICR1-3 high-risk patients. Clearly, our ICR signature added
substantial prognostic information beyond that provided by the
combination of clinical model and each major prognostic multi-
gene signature.
Finally, the ICR classification was also independently associated

with pathological response to anthracycline-based chemotherapy,
with 43% pCR rate in ICR4 vs. 20% in ICR1-3, and an OR close to 3.
Here too, there was a continuum between ICR1 and ICR4 in term
of pCR rate, further linking the degree of antitumour response to
the degree of chemosensitivity of breast cancer.41,42 Such
correlation was observed in each molecular subtype. Unfortu-
nately, no expression data are currently available in the literature
for testing the eventual value of our signature as predictor for
response to checkpoint inhibitors.
In conclusion, our 20-gene ICR signature displays robust

predictive values for MFS and for pathological response to
anthracycline-based chemotherapy in breast cancer. Among
aggressive tumours, those with a coordinated antitumour
response (ICR4) display better prognosis and better respond to
chemotherapy than those without, further reinforcing the fact that
immune reaction is an important component of breast cancer and
complementary to cell proliferation in prognostic term. Our study
displays several strengths: (i) the large size of the series, which
represents to our knowledge one of the largest series reported so
far analysing the prognostic/predictive value of gene signatures in
breast cancer; (ii) the analysis per molecular subtype, demonstrat-
ing that the prognostic value is absent in the whole population of
HR+/HER2− tumours, but major in the TN tumours; (iii) the
persistence of prognostic and predictive values in multivariate
analysis including classical prognostic signatures; (iv) the analysis
per relapse risk in each molecular subtype, demonstrating that the
prognostic value is present in high-risk tumours only; (v) the
added prognostic value beyond that provided by the clinical
model and each major prognostic signature; (vi) the biological
relevance of the signature, which reveals a gradient of antitumour
IR in breast cancer and suggests the potential therapeutic interest
of stimulating a pro-Th-1 response; (vii) the small number of genes
in the signature, which should facilitate its clinical application by
using other tests applicable to formaldehyde-fixed paraffin-
embedded samples such as quantitative reverse transcriptase-
PCR. The main limitation is the retrospective nature of our series
and associated biases.
The perspectives are therapeutic. Indirectly, the integration of

ICR classification with classical prognostic signatures can improve
prognostication of breast cancer. For example, identification of
poor or good-prognosis cases within operated TN breast cancers
should help tailor the systemic treatment: although the 5-year
MFS of ICR4 class remains insufficient (83%) and cannot preclude
the use of adjuvant chemotherapy, the strong MFS difference
suggests that the ICR1-3 patients should need a more aggressive
treatment than ICR4 patients. The same is true in HR+/HER2−
patients defined as high risk according to the classical prognostic
signatures. Such hypothesis should be tested prospectively to
identify additional women that might be spared from unnecessary
chemotherapy, or perhaps, which can be treated with adjuvant
immune-modulatory approaches. More directly, since the anti-
tumour IR seems to play a pivotal role regarding the clinical
outcome, the manipulation of genes and/or pathways11,43

interfering with its development should provide new therapeutic
weapons for treating these poor-prognosis tumours.
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