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Abstract

As a field we have made tremendous strides in treating breast cancer, with a decline in the past 30 

years of overall breast cancer mortality. However, this progress is met with little affect once the 

disease spreads beyond the primary site. With a 5-year survival rate of 22%, 10-year of 13%, for 

those patients with metastatic breast cancer (mBC), our ability to effectively treat wide spread 

disease is minimal. A major contributing factor to this ineffectiveness is the complex make-up, or 

heterogeneity, of the primary site. Within a primary tumor, secreted factors, malignant and pre-

malignant epithelial cells, immune cells, stromal fibroblasts and many others all reside alongside 

each other creating a dynamic environment contributing to metastasis. Furthermore, heterogeneity 

contributes to our lack of understanding regarding the cells’ remarkable ability to undergo 

epithelial/non-cancer stem cell (CSC) to mesenchymal/CSC (E-M/CSC) plasticity. The enhanced 

invasion & motility, tumor-initiating potential, and acquired therapeutic resistance which 

accompanies E-M/CSC plasticity implicates a significant role in metastasis. While most work 

trying to understand E-M/CSC plasticity has been done on malignant cells, recent evidence is 

emerging concerning the ability for pre-malignant cells to undergo E-M/CSC plasticity and 
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contribute to the metastatic process. Here we will discuss the importance of E-M/CSC plasticity 

within malignant and pre-malignant populations of the tumor. Moreover, we will discuss how one 

may potentially target these populations, ultimately disrupting the metastatic cascade and 

increasing patient survival for those with mBC.
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INTRODUCTION: THE MORTALITY OF METASTATIC BREAST CANCER

Breast cancer (BC) is the most commonly diagnosed cancer among women, and the second 

leading cause of cancer related deaths in women[1]. The statistics highlight the importance of 

metastasis in BC mortality: in patients with distant metastasis, 5-year survival rates are only 

22% (13% at 10 years), compared to 90% for patients with local disease[2]. Furthermore, for 

those patients with metastatic BC (mBC), there are currently no effective treatment options. 

Understanding how BC cells escape the primary tumor, spread to distant organs, initiate 

outgrowth at a distant site, and then developing therapies to target those metastatic processes 

remains a significant clinical challenge. Our understanding of the metastatic cascade has 

increased in recent years: cells must degrade the extracellular matrix (ECM) surrounding 

them, extravasate into the circulatory or lymphatic system and circulate throughout the body, 

intravasate into the new organ tissue, and regain their proliferative capacity[3–5]. Yet, the 

molecular mechanisms driving each of these processes, all of which are important for a 

successful metastatic event, remain unresolved.

A complicating factor to our understanding of BC metastasis is the heterogeneous milieu of 

the primary tumor site, or tumor micro-environment (TME), which is comprised of 

epithelial, endothelial, immune, and stromal cells. It is important to note that the epithelial 

populations can be subdivided into two distinct groups, malignant and pre-malignant. The 

malignant population has completed the transformation process through loss of tumor 

suppressive mechanisms and a gain of oncogenic signaling, via genetic mutation or 

sustained growth factor or cytokine signaling. Conversely, pre-malignant refers to a 

spectrum of points on the path towards transformation. Pre-malignant cells drift further from 

normalcy as they acquire mutations and engage aberrant signaling. If intact, a tumor 

suppressive response may be engaged to halt the transformation process, however if lost, the 

cell may progress to a fully transformed endpoint. The complex cellular composition within 

the TME results in a network of secreted factors and ECM proteins, which also profoundly 

influence metastatic potential[6–9]. Numerous TME factors can drive epithelial cells to 

undergo epithelial-mesenchymal transition (EMT) and acquire cancer stem cell (CSC) 

properties, which we refer to as epithelial-mesenchymal (E-M)/CSC plasticity[10–14]. 

Seminal work has defined E-M/CSC plasticity as an important step in metastasis and is often 

investigated from the perspective of a malignant population. However, malignant cells are 

not the only populations capable of undergoing E-M/CSC reprogramming. Recent evidence 

has demonstrated a remarkable ability of pre-malignant epithelial cells to take on a more 

Smigiel et al. Page 2

J Cancer Metastasis Treat. Author manuscript; available in PMC 2020 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



invasive phenotype able to intravasate and disseminate to secondary sites following signaling 

cues from the TME[15,16]. Here, we discuss the challenges of targeting various cell 

populations and the signaling pathways that contribute to the cellular plasticity driving mBC. 

Importantly, we will explore the impact of pre-malignant cells escaping senescence by 

undergoing E-M/CSC reprogramming to gain invasive, metastatic, and tumor-initiating 

properties. Identifying determinants of metastasis, such as E-M/CSC plasticity, and 

advancing our ability to target the drivers of plasticity will have a significant impact on 

survival for those with mBC.

SETTING THE STAGE: HETEROGENEITY WITHIN THE PRIMARY SITE

A major challenge in dealing with BC is the heterogeneity that accompanies it. With three 

distinct clinical subtypes, estrogen and progesterone receptor positive (ER+/PR+), human 

epidermal growth factor receptor 2 positive (HER2+), and triple negative breast cancer 

(TNBC; negative for ER, PR, HER2 expression), finding the proper treatment options can be 

difficult[17–19]. Therapies targeting ER/PR hormone signaling via selective estrogen receptor 

modulators (SERMs) or aromatase inhibitors (i.e., Tamoxafin and Arimidex) have 

significantly improved patient survival and have made this subtype more manageable. 

Likewise, HER2+ tumors can be treated with antibodies or kinase inhibitors targeting HER2 

signaling (i.e., Trastuzamab and Lapatinib) and are often met with success provided the 

disease is caught early; the efficacy of these therapies drastically decreases with late stage, 

metastatic HER2+ BC[20–23]. Conversely, TNBC currently lacks a targeted therapy tailored 

to a specific driver oncogene and is most often treated with cytotoxic chemotherapies. 

Patients with TNBC exhibit an increased risk of metastatic dissemination resulting in higher 

clinical stage at diagnosis and lower disease-free survival compared to patients with non-

TNBC cancers[24]. Much like metastatic HER2+ BC, metastatic TNBC is not effectively 

treated, highlighting the need for better therapies targeting those cells which progress 

beyond the primary site and are ultimately responsible for patient mortality and morbidity. 

Further challenges in treating BC involve the heterogeneous nature of the tumor cells 

themselves, a phenomenon often referred to as intra-tumoral heterogeneity (ITH)[25]. 

Evidence suggests that across a panel of human cancers, including breast, increased ITH 

correlates with decreased overall survival, and therapy resistance[26,27]. Furthermore, high 

ITH inversely correlates with low tumor infiltrating lymphocytes, which are often associated 

with increased patient survival[28–36].

The path to ITH is complex and involves a series of genetic and epigenetic events 

throughout the transformation process which permit normal human mammary epithelial 

cells (HMEC) to develop into fully malignant cancer cells[37–44]. Progress in RNA and DNA 

sequencing technologies have helped shape the evolutionary picture of HMEC; losing tumor 

suppressor function (TP53 mutations or RB loss) and acquiring oncogenic drivers (MYC, 

HER2, or CCND1 amplification or PIK3CA mutations)[45–49]. Genetic alterations lead to 

the expansion of a pre-malignant population which progressively acquires additional genetic 

and epigenetic changes until one or more cells become fully transformed[50,51]. These 

additional mutations are numerous, and genomic profiling has found a wide variety of 

changes in copy number, chromatin alterations, chromosomal rearrangements, and point 

mutations throughout the genome from single cell sequencing of bulk tumor tissue in 
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TNBC[36,52,53]. Not only does this dynamic process of transformation alter the cancer cell 

itself, but transforming cells have a substantial impact on the surrounding environment. 

Evidence suggests that the accumulation of mutations within epithelial cells can lead to a 

dysregulated secretory network, including a number of inflammatory cytokines linked to 

poor prognosis, therapy failure, and disease recurrence (IL-6, IL-8, TGF-β, CCL2, TNF-α, 

IL-17 and others)[54–59]. This dysregulated secretory network in turn, changes the cellular 

composition of the TME, leading to a reciprocal cross-talk between non-cancerous stromal 

cells and the transforming epithelial cells. Overall, this demonstrates the immense 

complexity of the tumor, as the heterogeneity described above culminates in a highly diverse 

TME, with an array of cell types, secreted factors, and structural make up.

Importantly, not all epithelial cells that begin the transformation process reach full 

malignancy. As a cell senses aberrant activation of signaling pathways/gene induction, it 

may enact intact tumor suppressive mechanisms, resulting in senescence[60–66]. Senescence 

is a major growth-inhibiting and tumor-suppressive barrier that must be bypassed in vivo 
during transformation en-route to tumor development[63,67–73]. Large senescent cell 

populations can be found at various stages of tumor development, further contributing to 

tumor heterogeneity. Remarkably, an investigation by Cotarelo et al.[74] was able to identify 

the presence of senescent cells in approximately 83.7% of the human invasive breast 

carcinomas examined, suggesting their involvement throughout the transformation process 

and as tumors evolve and progress. Since the 129 tumors surveyed in this study were from 

untreated patients, the origin of senescence within these invasive BC is an in vivo 
physiological response.

Long thought inert, bystanders within the tumor, senescent cells have gained considerable 

interest for their potential impact on the tumor as a whole. Despite being growth-arrested, 

senescent cells remain viable, metabolically active, and play an important role in the 

developing TME[75–77]. A hallmark of senescent cells is the secretion of a wide variety of 

growth factors, pro-inflammatory cytokines, chemokines, and proteinases, a characteristic 

termed the senescence-associated secretory phenotype (SASP) [Figure 1][78,79]. Under 

normal conditions, the SASP-factors act in an autocrine manner to maintain the senescence 

program and recruit immune cells into the local environment[80–83]. However, paracrine 

signaling by SASP components can also influence the behavior of adjacent cells, engaging 

signaling programs that contribute to tumor progression and therapy failure[64,84–89]. A 

collection of recent studies has demonstrated the ability of senescent cells and SASP 

components in the TME to drive cellular E-M plasticity and the expansion of a CSC-like cell 

population[90,91]. In fact, the SASP program can promote stemness within both senescent 

cells and neighboring cells, both in vitro and in vivo, through secretion of potent 

inflammatory cytokines associated with disease recurrence, and overall poor 

prognosis[92,93]. More specifically, less aggressive luminal MCF-7 cells were treated with 

conditioned medium harvested from senescent populations experiencing SASP. Exposure to 

conditioned media led to a more CD24LO/CD44HI invasive/stem like population similar to 

already aggressive MDA-MB-231 cells, which was dependent upon IL6 and IL8, two well 

defined SASP-factors, secretion[94]. Furthermore, sustained hyper-activation of signal 

transducer and activator of transcription 3 (STAT3) by SASP components plays a critical 

role in induction of an invasive and stem-like program[95]. Taken together, the presence of 
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malignant, pre-malignant, and senescent epithelial cells creates a diverse TME suitable to 

drive E-M/CSC plasticity within the tumor and contribute to metastatic, therapy-resistant, 

and tumor-initiating phenotypes. Below we will discuss how E-M/CSC plasticity contributes 

to these deadly phenotypes responsible for patient mortality.

AN IDENTITY CRISIS: MESENCHYMAL VS. EPITHELIAL

Each step along the metastatic cascade presents a new environmental context and challenge 

that a potentially metastatic cell must adapt to in order to thrive. This adaptation involves 

changes in a cell’s state. Cellular plasticity is defined as the ability of a cell to acquire new 

biological properties due to intrinsic and extrinsic cues. It is important to recognize that 

plasticity is most often a highly dynamic and reversible process that can be used to describe 

multiple cellular changes (i.e., differentiation, metabolism, response to immune cells, 

motility, and cell fate). Throughout this review, we will refer to cellular plasticity as the 

ability for cells to undergo E-M/CSC plasticity, that is, cells shifting between epithelial/non-

CSC and mesenchymal/CSC states. E-M/CSC plasticity is important in imparting invasive 

and motile phenotypes as well as cells acquiring tumor-initiating potential and reduced 

sensitivities to therapy.

The switch from epithelial to mesenchymal state facilitates dissolution of cell-cell junctions 

(due to the repression of cell adhesion proteins E-Cadherin, EPCAM, and CD24) and 

increased ability to remodel the surrounding ECM [due to matrix-metalloprotease proteins 

(MMP), adamalysins (ADAMs), and differential integrin expression][3,96–101]. The 

corresponding cytoskeletal and ECM remodeling imparts a migratory and invasive 

phenotype important for metastasis. Lineage tracing experiments confirm that epithelial-to-

mesenchymal transition (EMT) occurs in vivo, and that it precedes metastasis in murine BC 

models[102–104]. Through intravital imaging, Beerling and colleagues showed that 

mesenchymal tumor cells have a unique and specific migratory behavior that results in 

greater circulating tumor cells (CTC), increased tumor cells within the lungs, and metastasis; 

in contrast, the more abundant epithelial cell population remained non-motile and less 

metastatic[104]. It should be noted that others, Zheng et al.[105] and Fischer et al.[106] have 

employed in vivo lineage tracing models and reported that EMT is not required for 

metastasis. As Beerling and colleagues discuss, many of these reports rely on fixed gene 

manipulation (for example, gene silencing or protein overexpression) to experimentally test 

an EMT-underlies-metastasis hypothesis. It is possible that such artificial manipulation is not 

able to recapitulate physiologic events and, in this way, contributes to discrepancies in 

findings. Other small, but crucial, details could play a further role in some discrepancies: (1) 

EMT may be indispensable to metastasis for select cancer subtypes, but dispensable for 

others; (2) reliance on activation of a single gene reporter (e.g., Fsp1) to capture and “tag” an 

EMT event restricts the sensitivity of the model system; (3) criteria for how the EMT 

program is identified, such as the panoply of specific “epithelial” or “mesenchymal” proteins 

that are induced or suppressed, may also lead to false-negatives if these identifying protein 

sets are incongruent across cancers and cancer subtypes. Regarding the latter point, Zheng et 
al.[105] and Fischer et al.[106] reported on Vimentin and E-cadherin status, but each 

represents just one exemplar for mesenchymal or epithelial cell state and ultimately, these 
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may not be the most relevant. Finally, evidence that metastases occur in the absence of EMT 

does not preclude a potential for EMT to enhance cancer cell metastasis.

The gain of migratory and invasive properties which accompany E-M plasticity occurs 

concomitantly with changes in global signaling programs and gene expression. Several key 

transcription factors (TF) have been identified as master regulators of EMT: SNAI1 (Snail), 

SNAI2 (Slug), ZEB1, ZEB2, TWIST1, and TWIST2[107–112]. These TF are typically kept 

silenced in adult cells when plasticity is unnecessary but become aberrantly activated by 

TME factors to induce EMT[113,114]. EMT-TF expression strongly correlates to regions of 

the tumor with mesenchymal marker positivity, notably, the invasive front of the tumor 

where mesenchymal cells act as ‘trailblazers’ that initiate and guide local 

metastasis[108,115–118].

Tissue-invasive cells that encounter vessels may intravasate into vascular or lymph networks 

and be disseminated throughout the body as CTC. CTC are not only present in measurable 

quantities in patients with BC, but their abundance is predictive of overall survival and 

directly correlates with the likelihood of relapse following treatment[119–123]. Moreover, 

CTC display a wide range of markers associated with cells that have or are undergoing E-

M/CSC reprogramming. CTC often exhibit a decrease in epithelial markers CD24, E-

Cadherin (CDH1), EPCAM and an increase in well-known mesenchymal and CSC markers 

(ZEB1, Snail, CD44, Vimentin)[116,124–127]. Critically, CTC are capable of tumor initiation 

at a secondary site, and more importantly demonstrate remarkable plasticity by engaging 

specific molecular programs that dictate the organ-specificity of metastases[128–133]. Overall, 

mesenchymal cells are simply more well-suited to the task of escaping the primary site and 

reaching distant organs.

However, escaping the primary site and circulating throughout the lymph or cardiovascular 

system is not sufficient for metastases to develop. Once a mesenchymal cell has reached a 

secondary organ, it must embed itself in the new tissue and flourish in order to establish a 

metastatic outgrowth; not all cells have this capability[3,134]. CSC have been deemed the 

“roots” of primary and secondary site outgrowth due to their tumor-initiating capacity and 

their ability to differentiate into multiple lineages, recreating the heterogeneity seen in the 

primary site[135–137]. Since Al-Hajj et al.[138]’s initial isolation of CSC from BC models, 

marked by CD44HI/CD24LO cell surface expression profile, the field has made significant 

insight into the CSC paradigm[138]. Shortly after, Ginestier et al.[139] demonstrated an 

increase in aldehyde dehydrogenase 1 (ALDH1) activity strongly correlated with both 

normal and malignant stem/progenitor cells within BC. CSC have been isolated from nearly 

every human cancer through identification of surface marker expression of nearly 40 

different markers which vary from cancer to cancer (CD133, CD44, CXCR4, CD90, etc.)
[140]. Further complicating matters, our understanding of the dynamics of breast cancer stem 

cell (BCSC) populations is poorly understood. For instance, Liu et al.[141] identified ALDH1 

activity to inversely correlate with CD44 expression in BC models, suggesting a complex 

make up of phenotypes contributing to tumor initiation, which further work is required to 

better understand. Regardless of differences in marker expression, isolated CSC populations 

all exhibit similar characteristics in terms of their ability to initiate tumor formation in 

limiting dilution, produce multiple cell lineages, maintain tumor-initiating potential through 
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periods of metastatic latency, and survive cytotoxic therapies due to a wide range of 

resistance mechanisms[142,143]. Seminal papers from the Weinberg and Puisieux groups 

provided the first evidence of a link between shifting from epithelial to mesenchymal 

identity and the acquisition of CSC properties in BC[144,145]. Prior to this, the existence of 

CSC and the occurrence of EMT in malignant neoplasms had each been garnering 

significant attention, but an association between the two phenotypes had yet to be 

demonstrated. Specifically, induction of EMT led to a shift in surface marker profiles from 

CD24HI/CD44LO to CD24LO/CD44HI, resulting in (1) the ability to generate tumorspheres 

and tumors (self-renewal potential); and (2) the ability to give rise to differentiated daughter 

cells[144–148].

One implication of this finding is that breast CSC may not solely arise through malignant 

transformation of a pre-existing ‘normal’ mammary stem cell. More recent work, including 

ours, has described the ability for transformed epithelial/non-CSC populations to acquire 

mesenchymal/CSC properties in response to autocrine or paracrine signaling initiated from 

secreted factors within the TME. Importantly, the ability to fluidly move between epithelial/

non-CSC and mesenchymal/CSC states has been shown to facilitate metastatic outgrowth 

[Figure 2A], as cells are believed to reactivate a proliferative program and reacquire 

epithelial cell phenotypes at the site of metastasis[12–14,137,141,149–163].

THE QUIET NEIGHBOR: PRE-MALIGNANT CELLS AND PLASTICITY

E-M/CSC plasticity is a major contributor to tumor heterogeneity, progression towards 

metastasis, and therapy failure. Yet, cellular plasticity also plays a crucial role in normal 

physiology, such as embryonic development, wound healing, and tissue remodeling[164,165]. 

For instance, differentiated epithelial cells can dedifferentiate or trans-differentiate, wherein 

a differentiated cell may change state into an alternate lineage. These forms of plasticity are 

seen routinely in skin cells, hepatocytes, colon epithelium, pancreatic acinar cells, and others 

as they undergo a phenotypic transition in order to repair and sustain the homeostatic nature 

of the tissue[166–170]. In fact, cellular plasticity of mammary epithelial cells has been 

suggested to be a driver of the heterogeneity seen in BC[171–173].

Similarly, normal mammary gland organogenesis and homeostasis requires the presence of 

mammary stem cells (MaSCs) in the mammary gland epithelium that differentiate into both 

progenitor cells and differentiated cells[174]. Remarkably, many of the markers used to 

distinguish normal MaSCs overlap with those used to identify breast CSC including mRNA 

expression profiles[174]. Interestingly E-M plasticity is also essential for normal mammary 

gland development and maintenance. For example, E-M plasticity is crucial for MaSC 

migration as well as the expansion and invasion of terminal end buds (TEB) during 

mammary gland development[174]. Much like the mechanisms that guide stemness in MaSC, 

the upregulation of multiple EMT-TFs, such as Snail and Twist, was uncovered in the 

microenvironment of the TEB by genomic transcriptional analysis[175]. E-M plasticity in 

non-MaSC cells that comprise the normal mammary gland guides cell polarity and the 

organization of mammary cells into their well-defined glandular structures[176]. Given its 

importance in tissue remodeling and homeostasis, the normal processes governing cellular 

plasticity are strictly regulated[177–179].
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As discussed above, senescence serves as an important tumor suppressive barrier to prevent 

transformation and the outgrowth of a dysregulated and uncontrolled population. 

Interestingly, the induction of senescence in normal cells often results in the simultaneous 

emergence of mesenchymal/stem-cell markers in conjunction with senescence markers, and 

loss of proliferative capacity. For example, senescence leads to the induction of CD44 

expression, a cell surface marker regularly used to distinguish breast CSC from non-CSC, 

and often expressed as malignant cells acquire MES/CSC properties and undergo 

plasticity[138,180–183]. As small subsets of senescent cells dismantle the senescence program, 

the emergent population of proliferating cells can harbor a mesenchymal/stem-cell 

phenotype that can persist throughout the remainder of the transformation process, 

ultimately yielding a more invasive and aggressive cancer cell[184–187]. Li et al.[15] 

demonstrated that many of the transcriptional changes observed in BC are also initiated in 

normal HMEC as they escape senescence. In their study, HMEC were shown to have a “pre-

transformation” transcriptome and exhibited a partial EMT following their senescence 

escape[15]. Similarly, normal HMEC that have spontaneously escaped replicative senescence 

exhibit a greater mesenchymal and CD24LO/CD44HI CSC-phenotype[16,188]. Further 

studies have suggested cell cycle regulator Cyclin A1 and tumor suppressors p53 and p16 

can act as “gatekeepers” to maintain cells in an epithelial state. Dysregulation of these 

proteins in epithelial cells can result in the initiation of the mesenchymal/stem-cell program, 

which interestingly corresponds with the escape from senescence[189,190]. Moreover, 

induction of EMT (via Snail, Twist, and ZEB1 expression) prior to a cell’s engagement of 

oncogene-induced senescence, prevents senescence altogether and results in the induction of 

a CSC program and tumor initiation[191–196].

In addition to pre-malignant cells, cytotoxic therapies can drive cancer cells into a therapy-

induced senescence (TIS). Again, cells that escape TIS have acquired a senescence-

associated stemness[197–199]. Milanovic et al.[200] have shown that cells undergoing TIS 

express a variety of stem-cell associated markers, and that TIS in B-cell lymphomas exhibit 

a gene signature which mirrors that of adult tissue stem cells, conferring a highly aggressive 

phenotype responsible for tumor relapse. The emergence of a stem-like population following 

the engagement of senescence may be an inherent phenomenon that also occurs during other 

stress-induced senescence responses (i.e., oncogenes, replication stress, γ-irradiation) 

among different cell types[200–202]. Altogether, these findings suggest that, the 

mesenchymal/stem-cell program engaged during senescence may have significant negative 

consequences if those cells can overcome the signals maintaining senescence, resulting in 

cells with greater ability metastasize and survive therapy [Figure 2B]. Thus, we suggest that 

therapies that target senescent cells would limit the reservoir of aggressive cells harboring a 

senescence-associated stemness responsible for therapy failure and relapse. In the following 

section we will discuss the potential of targeting E-M/CSC plasticity within malignant, pre-

malignant, and senescent populations.

Smigiel et al. Page 8

J Cancer Metastasis Treat. Author manuscript; available in PMC 2020 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HALTING METASTASIS: TARGETING PRE- AND POST-MALIGNANT CELL 

PLASTICITY

Liquid biopsies from patients with early-stage BC receiving neoadjuvant therapy can be 

used to identify subjects at high risk of recurrence by quantifying the number of CTC. 

Furthermore, expression of mesenchymal markers in the CTC correlates with poor prognosis 

and response to therapy[138,203–206]. With the advent of single cell analysis techniques, our 

understanding of the evolution and diversity of tumor cells that are responsible for invasion, 

metastasis, and therapy failure is expanding. For example, single-cell qPCR has identified 

mesenchymal/CSC gene expression patterns in early-stage breast cancer micro-

metastases[137]. In contrast, later-stage metastases (from the same PDX tissue) are more 

heterogeneous, more proliferative, express differentiation markers, and display greater 

similarity to the primary tumors. The findings are consistent with the idea that 

mesenchymal/CSC initiate metastatic outgrowth at a secondary site, followed later by 

increased proliferation and differentiation. More recent single cell RNA-sequencing 

(scRNA-seq) studies have confirmed that EMT in primary tumors proceeds through distinct, 

hybrid states, ranging from completely epithelial to completely mesenchymal[207]. These E-

M hybrids, which harbor the greatest level of plasticity, are more efficient at intravasating, 

extravasating to the lungs, and forming metastases[208]. Underlying this biology, E-M 

hybrids have distinct chromatin landscapes and transcriptional profiles. In situ analysis 

identified increasing vascularization and immune cell infiltration (particularly macrophages) 

nearest the E-M hybrids and fully mesenchymal cells[208]. A separate scRNA-seq study 

determined that, in response to chemotherapy, emerging chemo-resistant cells undergo 

transcriptional changes consistent with EMT. In most patients, this chemo-resistant 

transcriptional program was not evident before treatment but acquired via transcriptional 

reprogramming following treatment[209]. These studies and others make a strong case that 

epithelial tumor cells can be induced into a drug-tolerant, E-M hybrid cell state by 

chemotherapy[141,209–214].

Identifying and targeting the pathways responsible for this chemo-resistant reprogramming 

would help improve the efficacy of chemotherapy. In a recent example, SRC kinase 

inhibition prevented the de novo generation of chemo-resistant cells[209]. Importantly, this 

chemo-sensitization was temporally dependent, and only effective if SRC inhibition 

occurred after chemotherapy, when the signaling responsible for generating the chemo-

resistance phenotype had become activated. More recently, Cazet et al.[215] identified 

crosstalk between TNBC models and cancer-associated fibroblasts (CAF), which promoted 

stemness and drug resistance in the cancer cells via paracrine Hedgehog (Hh) signaling. A 

key developmental pathway, Hh signaling requires receptor mediated binding of Hh to 

Patched (PTCH), resulting in Smoothened (SMO)-mediated nuclear translocation of Gli1. 

Gli1 then acts as a transcription factor, mediating Hh pathway transcriptional changes[216]. 

Hh signaling is often reactivated in a subset of BC, and specifically in the context of TNBC, 

a paracrine manner[217]. After targeting paracrine Hh signaling in vivo, via two clinically 

available smoothened inhibitors (SMOi) Vismodegib and Sonidegib, Cazet et al.[215] 

observed a suppression of cancer cell plasticity and increased sensitivity to docetaxel. Most 

importantly, in a phase I clinical trial, 3 of 12 patients with metastatic TNBC observed 
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clinical benefit from combinatorial therapy of SMOi and docetaxel (one with complete 

response), similar to treatment paradigms we suggest above. SMOi have been beneficial for 

basal cell carcinomas and medulloblastomas where tumors rely on cell-autonomous 

hedgehog signaling, however the work here suggests the ability to target the TME in order to 

dampen cancer cell plasticity, and achieve a greater therapeutic response[216,218,219]. Below 

we will address additional potential therapeutic avenues one may use to dismantle E-M/CSC 

plasticity in order to prevent metastatic dissemination, secondary site outgrowth, or re-

sensitize cancer cells to standard of care therapies.

TARGETING MALIGNANT POPULATIONS

STAT3

STAT3 is persistently activated in cancer cells, as it is a downstream effector of several 

receptor tyrosine kinases (RTKs) commonly activated by growth factors and 

cytokines[220–222]. We, as well as others have demonstrated that, persistent STAT3 activation 

in cancer cells induces mesenchymal and CSC properties, inhibits apoptosis, and maintains a 

more un-differentiated phenotype[12,14]. Therefore, STAT3 is a promising therapeutic target. 

A number of small-molecule inhibitors of STAT3 (KI16; BP-5–087; WP1066) are currently 

in development and combination therapies, with BCR-ABL1 or BRAF inhibitors, have 

shown positive results in the treatment of several cancer types[223–225]. In the context of 

TNBC, a recent phase Ib/II study combining the cancer stemness inhibitor Napubacasin 

(BB608), which prevents STAT3 activation, with weekly administrations of paclitaxel 

showed improvement in metastatic patients whose cancer had progressed while on a taxane-

based regimen (NCT01325441).

PI3K, Akt and mTOR

The PI3K/Akt/mTOR pathway is involved in several cell processes, including proliferation, 

metabolism and motility, therefore it is not surprising that its dysregulation corresponds to 

uncontrolled proliferation and propagation in a wide spectrum of cancers. The role of the 

PI3K/Akt/mTOR pathway in maintaining cell plasticity in cancer has been documented in 

several publications[226–228]. In the context of breast cancer, PIK3CA mutations have been 

observed in each of the different subtypes, but mostly in hormone receptor-positive tumors 

where it’s associated with disease progression and resistance to endocrine therapy. Each 

PIK3CA mutation results in an abnormal activation of the alpha subunit of PI3K, that with 

the beta subunit is the most common in breast tissue[229]. PIK3CA mutations appear to hold 

prognostic and predictive value in hormone receptor-positive, HER2-negative advanced or 

metastatic breast cancer. Several studies show how targeting tumors carrying a PIK3CA 
mutation with PIK3CA inhibitors increased the PFS of patients[230]. In January 2019, results 

from the phase III SANDPIPER clinical trial (NCT02340221) were posted. This 

international, multicenter, randomized, double-blinded, placebo-controlled study was 

designed to test the efficacy of a combo of the PIK3CA SMI taselisib and the synthetic 

estrogen receptor antagonist fulvestran versus placebo and fulvestran in the treatment of ER-

positive, HER-2-negative locally advanced or metastatic breast cancer harboring a PIK3CA 
mutation in patients with disease recurrence after or during treatment with aromatase 

inhibitor (AI). SANDIPIPER is the first placebo-controlled trial testing the efficacy of a 
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mutant-specific PI3K inhibitor[231]. Taselisib is specifically directed against the alpha 

isoform of PIK3CA, however it can inhibit the gamma and delta isoforms as well, thus 

causing an increase in toxicity mostly involving the gastro-intestinal tract. Another phase III 

clinical trial, BELLE-2 (NCT01610284) is analyzing the effects of the pan-PI3K inhibitor 

buparlisib in combination with fulvestran compared to fulvestran and placebo combo. 

Unfortunately, also buparlisib showed important side effects, particularly 

hyperglycemia[229]. Several other PI3K inhibitors are currently under investigation in 

clinical trials, including apelisib (NCT02437318 - SOLAR-1), which showed encouraging 

clinical benefits in the majority of patients enrolled[232]. In the future, research efforts 

should be more focused at inhibiting exclusively the alpha subunit of PIK3CA, thus reducing 

the risk of toxicity and side effects. Interestingly, GDC-0077 from Genentech appears to be 

extremely more specific towards the alpha subunit of PIK3A over other subunits, thus 

representing a potentially less toxic alternative to other inhibitors and is currently 

investigated in a phase I clinical trial alone or in combination with other agents, such as 

palbociclib, letrozole and fulvestran (NCT03006172).

While the role of mTOR signaling in promoting a CSC phenotype is still controversial, its 

activation in BC appears to be essential for colony formation in vitro and 

tumorigenicity[233]. Furthermore, mTOR signaling increases aldehyde dehydrogenase 1 

(ALDH1) activity[234,235]. IGF-1R activation signaling through PI3K/Akt/mTOR represents 

a promising target in BC as an abnormal activation of PI3K can also lead to an increased 

activation of STAT3 through enhanced expression of the chemokine (C-X-C motif) receptor 

4 (CXCR4)[236,237]. IGF-1R is activated in the 50% of breast cancer patients. Several phase 

III clinical trials targeting IGF-1R with small molecule inhibitors have so far failed due to 

side effects such as hyperglycemia and metabolic syndrome caused by the homology of 

IGF-1R and insulin receptor (IR) and IGF elevation in response to disruption of glucose 

homeostasis. On the other hand, monoclonal antibodies specifically targeting IGF-1R or its 

ligand have shown a higher specificity by sparing the insulin metabolism from any 

inhibitory effect in preclinical models[238]. Early phase trials have been setup to determine 

the efficacy of an antibody-based inhibition of IGF-1R signaling by targeting either the 

receptor or the ligand in combination with aromatase inhibitors or mTOR inhibitors but with 

small success[239]. A more complex therapeutic protocol combining inhibitors of PI3K or 

other downstream effectors of IGF-1R would probably be more beneficial.

Several drugs targeting the PI3K/mTOR pathway have shown a selective effect on CSCs, 

inhibiting their growth and sensitizing them to traditional chemotherapy. Since 2007, when 

the Food and Drug Administration (FDA) approved the mTOR inhibitor temsirolimus for the 

treatment of advanced renal carcinoma, new generations of compounds have been 

developed. Everolimus, is a dual PI3K/mTOR inhibitor, which blocks all PI3K class I 

isoforms as well as mTORC1 and 2, thus preventing the development of CSCs when 

combined with letrozole[240,241]. Interestingly, mTOR is also inhibited by metformin (1,1-

dimethylbiguanide hydrochloride), usually prescribed for the treatment of type 2 diabetes. 

Metformin preferentially kills CSCs over non-CSCs and reduces tumorsphere formation and 

CSC marker expression (CD133, CD44 and ALDH1)[242]. Similar effects have been 

achieved with the antibiotic salinomycin, which selectively kills breast CSC[243]. The plant-

derived chemotherapeutic molecule rottlerin induces apoptosis in breast CSC by inhibiting 
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PI3K/Akt/mTOR pathway[244]. More recently, the PI3K/mTOR dual inhibitor VS5584 has 

shown promising results by delaying tumor recurrence through selective killing of CSC after 

chemotherapy[245].

Notch

Notch signaling is known to be involved in different cellular processes, including 

differentiation and proliferation. Perturbation in these processes can be caused by mutations 

in Notch or one of its effectors. Mutations of the Notch pathway are the hallmark of many 

subtypes of cancer, including BC, where cells overexpressing Notch have increased CSC 

markers (SOX2 and OCT4) and phenotypes (tumorsphere formation)[246–248]. Moreover, 

Notch promotes EMT and metastasis in TNBC cells and Notch inhibition can prevent EMT 

both in vitro and in vivo[249]. For example, 3,6-dihydroxiflavone (3,6-DHF) causes a 

significant reduction of CSCs in vitro and blocks lung metastasis by specifically down 

regulating Notch, Hes-1 and c-Myc[250]. 3,6 DHF shows potent chemo-preventive properties 

against breast carcinogenesis both in vitro and in vivo, although a mechanism has not been 

identified yet, besides an epigenetic increase in the synthesis of miR-34a, a potent down-

regulator of Notch and thus of EMT in breast cancer[251]. Furthermore, 3,6-DHF down-

regulates the expression of Notch’s target genes Hes1, c-Myc and the EMT mediators 

SNAIL, Twist and Slug by compromising the formation of the transcriptional complex 

NICD-CSL-MAML[252,253]. More recently, it has been shown that Notch3 inhibition by 

siRNA silencing increases TNBC sensitivity to gefitinib in EGFR-Tyrosine kinase inhibitors 

(TKI)-resistant cells by blocking the nuclear translocation of activated EGFR[254].

Wnt and β-catenin

The Wnt pathway is involved in the maintenance of breast CSCs by promoting self-renewal 

and plasticity through PAF (proliferating cell nuclear antigen-associated factor)[255]. The 

Wnt ligand, Frizzled, is upregulated in high-grade tumors, including more aggressive forms 

of BC, and can cause EMT and metastasis through non-canonical STAT3 activation[256]. 

Inhibitors targeting the Wnt pathway have been developed and are showing promise in BC 

models. In particular, the Wnt/beta-catenin inhibitor CWP232228, which blocks beta-catenin 

binding to T-cell factor (TCF) in the nucleus, prevents the proliferation of breast CSC, 

selectively depleting CD133-positive and ALDH1-high cells both in vitro and in 
vivo[257,258].

TARGETING SENESCENT POPULATIONS

As described in the previous section, cells escaping senescence exhibit increased invasive 

and tumor-initiating properties. On top of that, senescent cells secrete a variety of cytokines 

and growth factors as part of the SASP. The production of these factors into the TME has 

been shown to drive E-M/CSC plasticity in neighboring cells, as well as the senescent cells 

themselves, expanding the population that can facilitate metastasis and drug resistance. 

Moreover, the chronic presence of senescent cells can impair local tissue function, create a 

highly inflammatory environment, and in some instances exacerbate the side effects of 

chemotherapies[259,260]. Considering conventional treatments such as chemo- and radio-

therapy often induce senescence in both cancer and normal cells, it seems pertinent to target 
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senescent cells and clear them from the local tissue. The concept for targeting senescent 

cells was brought to light by Lee et al.[261] by exploiting the high lysosomal β-galactosidase 

activity in senescent cells, cytotoxic drugs encapsulated in galacto-oligosaccharides particles 

(galNP beads) can target chemotherapy-induced senescent cells in mice[262]. Preclinical 

results showed a significant regression of tumor xenografts after treatment with galNP beads 

loaded with doxorubicin in combination with palbociclib[263]. Moreover, senescent-cell 

accumulation in mice can be reduced by treatment with potential senolytic agent, Navitoclax 

(ABT-263), a small molecule inhibitor of the anti-apoptotic proteins BCL-2 and 

BCLxL[264,265]. However, targeting senescent cells is a relatively new concept, and further 

insights into the signaling mechanisms which senescent cells rely on is needed.

CONCLUSION

To date our ability to target BC metastases have been largely unsuccessful. With patient 

survival falling to 22% for those that reach distant and wide-spread disease, the ability to 

target cells at various stages of the metastatic cascade is greatly needed. Here, we have 

focused on an epithelial cancer cell’s ability to out-maneuver cytotoxic agents by changing 

cell state; E-M/CSC plasticity. This induced reprogramming often reduces sensitivity to 

therapy by a number of mechanisms, creating an immense problem with effectively 

removing the disease. We propose to remove the molecular “escape hatch” which provides 

cells that have undergone E-M/CSC reprogramming a sustained advantage in survival and 

resurgence. An approach that combines readily available small molecule inhibitors of 

plasticity-inducing pathways in conjunction with commonly used front-line therapies should 

increase therapeutic sensitivities. Often, pathway-selective small molecule inhibitors that 

make it to the clinic are used with the objective of inducing growth inhibition or cell death. 

However, many of these inhibitors may present a wide range of side effects by acting on 

nontumor cells or show little efficacy as a single agent[266–268]. Instead, a low dosage may 

prevent toxicity or off-target effects while reducing a tumor cells ability to undergo 

reprograming to a more MES/CSC-like state. In doing so, these combination therapies may 

overcome the MES/CSC-like programs which promote therapy failure and metastatic 

disease progression, ultimately rendering populations sensitive to currently used 

chemotherapies and increasing overall patient survival.

Cell plasticity is garnering significant interest in the field of cancer biology, as we attempt to 

better understand the metastatic process, and those drivers behind it. However, we do not yet 

fully understand what allows an epithelial cell to undergo MES/CSC reprograming or what 

pathways maintain this newly attained phenotype. While most of the work understanding 

plasticity has been done on malignant populations, recent studies have hinted at the ability of 

pre-malignant populations to undergo MES/stem-cell reprograming, albeit often halted by 

intact tumor suppressive mechanisms, leading to senescence. Here, we discussed the ability 

of pre-malignant epithelial cells to undergo a MES/stem-cell reprogramming that is 

comparable to that observed with malignant cells. However, much remains to be discovered 

about the importance of these pre-malignant populations. We still do not yet know which 

cells within a pre-malignant population have escaped the senescence “barrier”, which in turn 

generate more aggressive sub-populations capable of driving metastasis. Identifying, or 

molecularly defining, which cells possess the capability to escape senescence may allow us 
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to predict the aggressiveness of a patient’s metastatic burden and open potential avenues for 

targeting cells with the potential to escape senescence. Ultimately, targeting the signaling 

responsible for plasticity, both in pre-malignant and fully transformed cells, will enhance the 

efficacy of chemotherapies and suppress a key driving force responsible for patient death.
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Figure 1. 
The Heterogeneity of Breast Cancer. Breast cancer is a heterogeneous disease with a highly 

dynamic tumor micro-environment (TME). Within the primary site, one can observe the 

presence of epithelial cells that have undergone E-M/CSC plasticity, malignant epithelial 

cells, pre-malignant cells, senescent epithelial cells, stromal fibroblasts, infiltrating immune 

cells, and endothelial cells. The presence of all of these diverse cell types results in a distinct 

and complex milieu of secreted factors within the TME that influence, tumor progression, 

disease recurrence, and cell plasticity
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Figure 2. 
Malignant and Senescent Epithelial Cells Contribute to Metastasis. A: malignant cells 

respond to TME cytokines or intrinsic genetic alterations in order to drive E-M/CSC 

plasticity, resulting in greater metastasis, enhanced disease recurrence, and therapeutic 

resistance; B: pre-malignant cells undergo senescence in response to aberrant oncogene or 

cytokine signaling. However, in some instances a small population of senescent cells may 

undergo E-M/CSC plasticity, and thus escape the tumor suppressive barrier of senescence 

and further contribute to the metastatic phenotype
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