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ABSTRACT
Rationale  Spirometry and plethysmography are the gold 
standard pulmonary function tests (PFT) for diagnosis and 
management of lung disease. Due to the inaccessibility of 
plethysmography, spirometry is often used alone but this 
leads to missed or misdiagnoses as spirometry cannot 
identify restrictive disease without plethysmography. 
We aimed to develop a deep learning model to improve 
interpretation of spirometry alone.
Methods  We built a multilayer perceptron model using 
full PFTs from 748 patients, interpreted according to 
international guidelines. Inputs included spirometry (forced 
vital capacity, forced expiratory volume in 1 s, forced mid-
expiratory flow25–75), plethysmography (total lung capacity, 
residual volume) and biometrics (sex, age, height). The 
model was developed with 2582 PFTs from 477 patients, 
randomly divided into training (80%), validation (10%) and 
test (10%) sets, and refined using 1245 previously unseen 
PFTs from 271 patients, split 50/50 as validation (136 
patients) and test (135 patients) sets. Only one test per 
patient was used for each of 10 experiments conducted 
for each input combination. The final model was compared 
with interpretation of 82 spirometry tests by 6 trained 
pulmonologists and a decision tree.
Results  Accuracies from the first 477 
patients were similar when inputs included 
biometrics+spirometry+plethysmography (95%±3%) 
vs biometrics+spirometry (90%±2%). Model refinement 
with the next 271 patients improved accuracies with 
biometrics+pirometry (95%±2%) but no change for 
biometrics+spirometry+plethysmography (95%±2%). The 
final model significantly outperformed (94.67%±2.63%, 
p<0.01 for both) interpretation of 82 spirometry tests by 
the decision tree (75.61%±0.00%) and pulmonologists 
(66.67%±14.63%).
Conclusions  Deep learning improves the diagnostic 
acumen of spirometry and classifies lung physiology better 
than pulmonologists with accuracies comparable to full 
PFTs.

INTRODUCTION
The current gold standard pulmonary func-
tion test (PFT) consists of both spirometry 

and plethysmography,1 2 which have well-
established guidelines for conduct and inter-
pretation.3 However, patient access to plethys-
mography is often limited due to the need for 
expensive infrastructure and technical exper-
tise. Furthermore, the plethysmograph does 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Spirometry is the most commonly used pulmonary 
function test for screening and management of lung 
disease. Without assessment of lung volumes using 
plethysmography, spirometry misses restrictive de-
fects and can lead to misdiagnoses. Computer-aided 
tools have been developed to improve classification 
of lung physiology patterns. However, these tools 
require the inclusion of plethysmography measure-
ments and/or clinical symptoms. No study has de-
veloped machine learning algorithms for classifying 
the major lung conditions using spirometry only.

WHAT THIS STUDY ADDS
	⇒ Deep learning using a multilayer perceptron model 
with spirometry data provides classification accura-
cies of lung physiology patterns that are comparable 
to full pulmonary function testing, which includes 
both spirometry and plethysmography, and better 
than trained pulmonologists.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Implementation of the deep learning model (code 
appended in this paper) in spirometers will facilitate 
accurate identification of pulmonary physiology pat-
terns to appropriately triage patients for subsequent 
investigations and/or therapy. This will improve eq-
uity in healthcare access; patients who live in re-
gions of the world where spirometry is available, but 
access to diagnostic laboratories for full pulmonary 
testing is limited, will receive equitable care when 
machine learning is applied. The machine learning 
model will also increase healthcare delivery effi-
ciency and improve patient outcomes by facilitating 
earlier diagnosis of lung diseases.
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not readily accommodate patients with physical disabili-
ties and/or claustrophobia. Spirometry alone is the most 
common PFT modality; it is portable and easily deployed 
in multiple settings including the bedside, clinic, home 
or workplace.4 However, spirometry can miss or misdiag-
nose lung disease as it has limited ability to identify early 
obstructive lung disease and restrictive defects in the 
absence of plethysmography.5 6

Many physicians use computer-aided tools to facilitate 
PFT interpretations, such as the decision-tree algorithm 
developed in our laboratory (online supplemental file 
1). However, few studies have applied machine learning 
for de novo interpretation of PFTs. One group devel-
oped a multiclass support vector machine algorithm to 
classify normal, obstructive and restrictive patterns based 
on forced expiratory volume in 1 s (FEV1), forced vital 
capacity (FVC) and FEV1/FVC.7 While they reported 
high validation accuracies, determination of the true 
labels of PFTs did not adhere to international guidelines; 
obstruction was defined by FEV1/FVC <75%, rather than 
the lower limit of normal and restriction by FVC <80% 
with normal FEV1/FVC but without plethysmography.7 
Biometrics, key for the derivation of normal reference 
values,8 were not included in their model.7 Topalovic 
et al hypothesised that machine learning could reduce 
the inter-rater variability commonly observed in PFT 
interpretation by pulmonologists9 and compared their 
interpretations to a decision tree model built with data 
from 1430 subjects.10 The gold standard label used for 
comparison was based on consensus diagnosis made by 
three clinicians following review of the clinical history, 
complete PFTs (prebronchodilator and postbronchodi-
lator spirometry, lung volumes, airways resistance and 
diffusing capacity) and all tests deemed necessary by the 
responsible physician. Pulmonologists and the machine 
learning model were given the same data: full PFTs and 
clinical information (smoking history, cough, sputum 
and dyspnoea). Physicians correctly classified the respira-
tory patterns with 74% accuracy (ranging 56%–88%) in 
contrast to 100% by the machine learning model.9

Multilayer perceptron (MLP) is a type of artificial neural 
network (ANN) that models non-linear input and output 
relationships by learning the statistics of large general 
datasets.11 MLP consists of neurons arranged in an input 
layer, one or more hidden layers and an output layer.12 
MLP containing more than one hidden layer is called 
deep MLP (DMLP). The input layer includes multiple 
attributes and input variables, which the model uses to 
classify the data into different categories. The hidden 
layers between the input and output layers include inter-
mediate neurons. Each intermediate neuron performs a 
weighted summation of its inputs and passes the sum to an 
activation function to produce a value that represents the 
neuron’s firing intensity.12 Each layer of neurons activates 
the sequential layer, eventually generating the output 
variables in the output layer.12 The output variables are 
digital series representing the defined categories that 
the model aims to classify. DMLP has no restriction on 

the type or number of input variables; it considers every 
possible interaction between input variables, enhancing 
complexity and classification capability.13

In developing a DMLP, the model is first given a 
training dataset of prelabelled samples to learn the classi-
fication rules. Learning is achieved by adjusting network 
hyperparameters to generate the best fit for the dataset 
without explicit instructions. A subsequent validation 
dataset is used to estimate how well the model learnt 
the classification rules and tune the hyperparameter 
values to optimise classification accuracies. Finally, a 
test dataset containing unseen samples is applied to the 
refined model to assess its classification performance. 
During training, weights are updated layer-by-layer based 
on discrepancies between the actual and output label of 
each sample. Since ANNs with more than one hidden 
layer and non-linear activation functions cannot be 
expressed using linear equations, trained models provide 
limited information on the decision-making processes.13 
We can evaluate whether the ANN has been appropri-
ately trained by assessing its performance or classification 
accuracy, but we cannot identify how the model learnt 
to make classifications.13 14 MLP has been shown to yield 
better classification outcomes compared with statistical 
methods in practice.11 12

We hypothesise that a DMLP model can accurately 
distinguish normal, obstructive, restrictive and mixed 
obstructive-restrictive physiology patterns based on spiro-
metric and biometric measurements.

METHODS
Data collection and labelling
We used 3827 full PFTs from 748 adult patients collected 
as routine care between June 2018 and October 2021. 
Spirometry and plethysmography were performed in 
the sitting position using BodyBox (Medisoft, Sorinnes, 
Belgium), following American Thoracic Society/Euro-
pean Respiratory Society (ATS/ERS) guidelines.4 15 
Tests were labelled with their ‘true’ physiological pattern 
(normal, obstructive, restrictive or mixed obstructive-
restrictive) based on biometrics (sex, age, height), spirom-
etry and lung volume measurements, in accordance with 
ATS/ERS guidelines,4 16 facilitated by a computer-aided 
algorithm (online supplemental file 1) and confirmed by 
one of six pulmonologists.

Patient and public involvement
Patients and/or the public were not involved in the 
design, conduct, reporting or dissemination plans of this 
study.

Data processing
Sex was binarily converted into 0 (female) and 1 (male). 
Age, height, spirometric and plethysmographic absolute 
values were scaled from 0 to 1, using MinMax Scaling 

equation, 
‍
y =

x−min
(
X
)

max
(
X
)
−min

(
X
)
‍
, where y is the scaled value, 
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x is the original value and X is the collection of values 
for a specific input variable. True labels of each test were 
digitalised: output classes were converted to 3 for normal, 
4 for obstructive, 5 for mixed obstructive-restrictive and 6 
for restrictive pattern.

DMLP model development
The DMLP model was developed using 2582 tests 
(collected June 2018 to March 2020) from 477 patients. A 
Random Search was performed to identify optimal DMLP 
hyperparameters and regularisation values to be used in 
the model.17 The model was built with two hidden layers 
of 180 and 30 neurons each, with drop-out rates of 0.2 and 
0.1, respectively. Weights were initialised to a random set 
of small values from a normal distribution with mean of 
0.005 and SD of 0.001667. Adaptive moment estimation 
optimiser (β1=0.9, β2=0.900, ε=10−8) was used to regu-
larise the learning rate. Learning rates from 0.0001 to 0.1 
were tested with logarithmic increments. The model was 
trained in batches of 32 samples for a maximum of 900 
epochs. Early stopping was set such that model training 
would stop if the validation loss had not improved for 100 
epochs (online supplemental file 2).

The DMLP model was given four input variable combi-
nations: (1) biometrics with spirometry and plethysmog-
raphy; (2) biometrics with spirometry; (3) spirometry 
and plethysmography and (4) spirometry alone. The 
included values for spirometry were FVC, FEV1 and 
forced mid-expiratory flow (FEF25-75); plethysmography 
were total lung capacity (TLC) and residual volume 
(RV), and biometrics were sex, age and height. Ten 
experimental runs were completed for each input combi-
nation. For each run, the model randomly selected one 
test per patient so that each run used 477 tests from 477 
unique patients to reduce redundancy in the dataset. The 
inputted data were randomly partitioned into training 
(80%), validation (10%) and test (10%) sets of unique 
patients.18 19

The mean accuracy, precision and recall values of each 
experimental run were calculated as follows: accuracy by 
dividing the number of correct predictions by the total 
number of samples in the test set; precision by dividing 
the number of true positives by the sum of true positives 
and false positives for each lung pattern predicted by the 
model on the test set; recall by dividing the number of 
true positives by the sum of true positives and false nega-
tives for each lung condition predicted by the model on 
the test set. The F1 score, a machine learning metric of 
model performance, for each lung pattern was calculated 

using the formula, ‍
2
(
Precision

)(
Recall

)
Precision+Recall ‍.

20

Model refinement and application to unseen data
The DMLP model was refined using 1245 previously 
unseen PFTs (collected July 2020–October 2021) from 
271 new patients. Here, the data from the first 477 
patients used in model development were placed into 

the training set and those from the 271 new patients were 
split evenly and randomly into validation (136 patients) 
and test (135 patients) sets. Performance of the refined 
model using the four input combinations were repeated, 
as described above. DMLP design and data partitioning 
for model development, refinement and application is 
outlined in online supplemental file 3.

Comparing DMLP to pulmonologists and ATS/ERS decision 
tree
We evaluated the performances of the DMLP model, 
ATS/ERS decision tree (online supplemental file 4) 
and six pulmonologists who were given standard reports 
(online supplemental file 5) in classifying 82 spirometry 
tests. Accuracies for the DMLP model, ATS/ERS decision 
tree and pulmonologists were calculated by comparing 
their classifications to the ‘true’ interpretation which 
were determined based on full PFTs (described above). 
We used two-sample t-tests to compare the model to the 
decision tree and pulmonologists.

RESULTS
The PFTs were concordant with their ‘true’ lung pattern 
labels (table  1). Normal PFTs had values greater than 
80% predicted. Obstructive patterns had FEV1/FVC 
ratios below 80%, and FVC and TLC were greater than 
80% predicted. Restrictive patterns had FEV1/FVC ratios 
greater than 80%, with both FVC and TLC below 70% 
predicted. Mixed obstructive-restrictive patterns exhib-
ited FEV1/FVC ratios below 82%, with both FVC and TLC 
below 70% predicted.

Using data from the first 477 patients to build the 
DMLP model, we found comparable accuracies when 
the inputs included biometrics with spirometry and 
plethysmography versus biometrics with spirometry only 
(table 2). Next, we validated the DMLP model with previ-
ously unseen data. Here, data from the initial 477 patients 
were placed into the training set; data from the 271 new 
patients were equally divided into the validation (136 
patients, to further refine the hyperparameters) and test 
(135 patients) sets. Again, we observed high test set classi-
fication accuracies when inputs included biometrics with 
full PFTs versus biometrics with spirometry only (table 2). 
Biometrics are important as their absence reduced tests 
accuracies for spirometry and plethysmography, and 
spirometry only (table 2).

The test set precision improved from 74%–100% for 
the input combination of biometrics, spirometry and 
plethysmography to 88%–100% for the combination 
of biometrics and spirometry (tables  3 and 4). Test set 
recall values were similarly high between the input 
combinations of biometric, spirometry and plethysmog-
raphy (88%–100%) and biometrics with spirometry 
(86%–100%) (tables  3 and 4). Both the precision and 
recall values drastically decreased when biometrics were 
omitted (tables  3 and 4). Larger datasets improve the 
accuracy of machine learning as illustrated by higher F1, 
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precision and recall values in the larger (table 4) versus 
the smaller datasets (table 3).

Lastly, we compared the DMLP classification with 
ATS/ERS decision tree3 and interpretations by six 
board-certified pulmonologists using 82 spirometry tests 
(table  5). The DMLP significantly outperformed the 
decision tree and pulmonologists (p<0.0001 and 0.0051, 
respectively) with no significant difference between 
pulmonologists and the decision tree (p=0.5958). The 
confusion matrix (online supplemental file 6) indicated 
that the mixed obstructive-restrictive pattern was the 
most difficult to classify, correlating with the lower F1 
score for this category when the DMLP was inputted with 
biometrics and spirometry (table 4).

DISCUSSION
We specifically focused on improving the diagnostic 
accuracies of spirometry as it is the most common PFT 
modality used for initial assessment of patients with 
suspected lung disease. Many patients, particularly those 
in underserviced, rural and remote areas, have limited 
access to the gold standard full PFT. While diagnosis and 
management of patients with lung diseases, particularly 
restrictive lung disease, require clinical evaluation and 
full PFT that includes spirometry, plethysmography and 
diffusion capacity, maximising the utility of readily avail-
able diagnostic modalities to improve diagnostic acumen 
will alleviate some of the inequities of healthcare access. 
Thus, development of machine learning that improves 
the diagnostic yield of spirometry will improve equity and 
healthcare delivery for everyone regardless of access to 
plethysmography.

Our DMLP model was developed with readily available, 
clinically relevant spirometry variables (FVC, FEV1 and 
FEF25-75). We compared its classification accuracies to true 
labels determined by full PFTs following international 
interpretation standards.4 The model using biometrics 
and spirometry classified the major physiological patterns 
with 95% accuracy and was comparable to the model with 
full PFTs and biometrics. In other words, interpretation 
of spirometry inclusive of biometrics using DMLP classi-
fies respiratory patterns accurately without the need for 
plethysmography. The DMLP model also out-performed 
the ATS/ERS decision tree and trained pulmonologists. 
For both the DMLP model and physicians, the mixed 
obstructive-restrictive defect was the most difficult to clas-
sify as indicated by the low F1 score (91.53%±11.83%) 
and confusion matrix (online supplemental file 6). This 
pattern also had the highest interphysician discrepancies 
(online supplemental file 7) and suggests these patients 
should be triaged early for further investigations (full 
PFT, imaging) to better characterise the disorder.

A key strength of our study is the adherence to inter-
national guidelines for conduct and interpretation 
of PFTs. The ‘true’ labels of PFTs used to evaluate the 
performance of the DMLP model were determined using 
spirometry, plethysmography and calculated lower and Ta

b
le

 1
 

M
ea

n 
sp

iro
m

et
ry

 a
nd

 p
le

th
ys

m
og

ra
p

hy
 m

ea
su

re
m

en
ts

 fo
r 

th
e 

lu
ng

 p
at

te
rn

 la
b

el
s

Lu
ng

 c
o

nd
it

io
ns

Fi
rs

t 
47

7 
p

at
ie

nt
s 

(2
58

2 
te

st
s)

 c
o

lle
ct

ed
 J

un
e 

20
18

–M
ar

ch
 2

02
0

La
te

r 
27

1 
p

at
ie

nt
s 

(1
24

5 
te

st
s)

 c
o

lle
ct

ed
 J

ul
y 

20
20

–O
ct

o
b

er
 2

02
1

N
o

rm
al

O
b

st
ru

ct
iv

e
R

es
tr

ic
ti

ve
O

b
st

ru
ct

iv
e 

an
d

 
re

st
ri

ct
iv

e
N

o
rm

al
O

b
st

ru
ct

iv
e

R
es

tr
ic

ti
ve

O
b

st
ru

ct
iv

e 
an

d
 

re
st

ri
ct

iv
e

N
o 

of
 t

es
ts

 (%
)

78
0 

(3
0)

33
5 

(1
3)

11
30

 (4
4)

33
7 

(1
3)

27
6 

(2
2)

14
7 

(1
2)

64
3 

(5
2)

17
9 

(1
4)

FE
V

1 
(L

) (
%

FE
V

1)
3.

06
 (9

2.
79

)
1.

95
 (6

3.
51

)
2.

24
 (6

8.
77

)
1.

56
 (4

8.
12

)
2.

97
 (1

00
.7

6)
1.

90
 (5

8.
69

)
2.

20
 (6

8.
88

)
1.

50
 (4

3.
59

)

FV
C

 (L
)

(%
FV

C
)

3.
66

 (8
6.

90
)

3.
27

 (8
0.

63
)

2.
58

 (6
3.

77
)

2.
51

 (5
9.

73
)

3.
55

 (9
3.

93
)

3.
39

 (8
0.

29
)

2.
58

 (6
2.

21
)

2.
66

 (5
9.

02
)

FE
V

1/
FV

C
 (%

FE
V

1/
FV

C
)

84
.6

1 
(1

07
.7

6)
59

.1
6 

(7
8.

59
)

86
.7

9 
(1

07
.7

3)
61

.9
6 

(8
0.

93
)

84
.4

5 
(1

08
.0

2)
55

.9
4 

(7
1.

52
)

86
.1

8 
(1

10
.1

6)
56

.1
9 

(7
2.

32
)

FE
F 25

-7
5 

(L
/s

)(%
FE

F 25
-7

5)
3.

85
 (1

42
.2

2)
1.

24
 (5

2.
53

)
3.

39
 (1

21
.0

2)
1.

00
 (3

9.
90

)
3.

45
 (1

44
.2

3)
1.

03
 (3

8.
82

)
2.

96
 (1

13
.1

7)
0.

72
 (2

5.
67

)

TL
C

 (L
)

(%
TL

C
)

5.
79

 (9
2.

05
)

5.
56

 (8
9.

99
)

4.
26

 (6
9.

48
)

4.
30

 (6
9.

22
)

5.
43

 (9
1.

82
)

5.
85

 (9
1.

60
)

4.
11

(6
5.

19
)

4.
67

 (6
8.

76
)

R
V

 (L
)

(%
R

V
)

2.
08

 (1
05

.2
5)

2.
22

 (1
11

.7
6)

1.
66

 (8
5.

33
)

1.
75

 (9
2.

03
)

1.
85

(9
1.

78
)

2.
31

 (1
12

.4
3)

1.
52

 (7
5.

93
)

1.
96

 (8
9.

73
)

R
V

/T
LC

 (%
R

V
/T

LC
)

36
.3

3 
(1

02
.1

2)
40

.5
0 

(1
12

.3
0)

39
.5

0 
(1

09
.5

6)
41

.1
1 

(1
18

.0
8)

34
.4

5 
(8

9.
61

)
39

.9
2 

(1
08

.5
)

37
.5

0 
(1

03
.7

9)
42

.2
3 

(1
13

.9
9)

FE
V

1,
 F

V
C

, T
LC

 a
nd

 R
V

 a
re

 in
 li

tr
es

, F
E

F 25
-7

5 
in

 li
tr

es
 p

er
 s

ec
on

d
.

FE
F,

 fo
rc

ed
 m

id
-e

xp
ira

to
ry

 fl
ow

; F
E

V
1,

 fo
rc

ed
 e

xp
ira

to
ry

 v
ol

um
e 

in
 1

 s
; F

V
C

, f
or

ce
d

 v
ita

l c
ap

ac
ity

; R
V,

 r
es

id
ua

l v
ol

um
e;

 T
LC

, t
ot

al
 lu

ng
 c

ap
ac

ity
.

https://dx.doi.org/10.1136/bmjresp-2022-001396
https://dx.doi.org/10.1136/bmjresp-2022-001396
https://dx.doi.org/10.1136/bmjresp-2022-001396


Mac A, et al. BMJ Open Resp Res 2022;9:e001396. doi:10.1136/bmjresp-2022-001396 5

Open access

Table 2  Classification accuracies for each combination of input variables

DMLP development using 477 patients divided into training (80%), validation (10%) and test (10%) sets

Combination of input variables Training set (%) Validation set (%) Test set (%)

Biometrics with spirometry and 
plethysmography

97.38±1.03 95.53±2.55 94.79±2.56

Biometrics with spirometry 89.58±1.14 87.87±2.47 89.81±2.06

Spirometry and plethysmography 62.50±7.58 57.41±7.43 59.87±9.17

Spirometry 61.28±4.19 57.42±8.76 59.39±7.30

DMLP refinement and application to unseen data: first 477 patients used for training, later 271 patients for validation 
(136) and test (135) sets

Combination of input variables Training set (%) Validation set (%) Test set (%)

Biometrics with spirometry and 
plethysmography

98.24±0.85 95.42±1.88 95.04±1.71

Biometrics with spirometry 98.39±1.07 94.83±2.7 95.19±2.35

Spirometry and plethysmography 67.51±7.29 65.00±5.71 63.33±6.64

Spirometry 58.01±7.41 56.69±8.24 56.37±8.91

Accuracies (mean±SD) for each combination of input variables after 10 experimental runs are shown. For each experimental run, the 
model randomly selected one test per patient. Biometric variables are sex, age, height. Spirometry included FVC, FEV1, FEF25-75 and 
plethysmography metrics are RV and TLC.
DMLP, deep multilayer perceptron; FEF, forced mid-expiratory flow; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; RV, 
residual volume; TLC, total lung capacity.

Table 3  Test set precision, recall and F1 scores for each input variable combination when using data from the first 477 
patients

Combination of input 
variables Lung pattern

Precision for test 
set (%)

Recall for test set 
(%) F1 score for test set (%)

Biometrics with 
spirometry and 
plethysmography

Normal 91.60±2.99 88.30±4.35 89.87±3.10

Obstructive 73.50±6.85 100.00 84.56±4.56

Restrictive 100.00 91.90±2.85 95.76±1.49

Obstructive and restrictive 100.00 96.00±8.43 97.78±4.68

Biometrics with 
spirometry

Normal 90.70±6.34 92.60±4.90 91.36±2.22

Obstructive 89.60±11.67 85.90±17.21 86.28±10.87

Restrictive 89.90±6.37 88.00±7.39 88.67±4.51

Obstructive and restrictive 88.00±17.76 88.20±15.92 87.42±14.86

Spirometry and 
plethysmography

Normal 59.10±10.73 65.00±11.45 61.63±10.30

Obstructive 50.80±42.04 35.70±29.29 Undefined

Restrictive 62.50±11.03 59.20±12.21 60.45±10.64

Obstructive and restrictive 38.20±29.72 59.60±44.28 Undefined

Spirometry Normal 60.70±10.13 70.30±10.99 64.59±7.92

Obstructive 51.50±34.16 49.00±36.74 Undefined

Restrictive 59.80±11.67 49.50±17.89 53.03±14.47

Obstructive and restrictive 44.00±24.76 59.00±41.55 Undefined

Mean±SD for the test sets of 10 experimental runs are shown. In these experiments, data from the initial 477 patients were used for training 
(80%), validation (10%) and test (10%) sets. For each run, the model randomly selected one test per patient. Biometric- variables are 
sex, age, height. Spirometry metrics included are FVC, FEV1, FEF25–75 and plethysmography metrics are RV and TLC. Undefined F1 score 
indicates that either precision, recall or both for that particular class was equal to zero for at least 1 of the 10 experimental runs.
FEF, forced mid-expiratory flow; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; RV, residual volume; TLC, total lung 
capacity.



6 Mac A, et al. BMJ Open Resp Res 2022;9:e001396. doi:10.1136/bmjresp-2022-001396

Open access

upper limits of normal.4 21 To our knowledge, no study 
has investigated DMLP with this approach to interpret 
spirometry. With a few exceptions,9 22 23 previous studies 
did not use clear criteria for PFT collection and interpre-
tations nor articulate the criteria used to diagnose the 
underlying lung disease.24 25

Ioachimescu and Stoller developed ANNs with two 
hidden layers and 15,308 PFTs to classify the four respi-
ratory patterns.22 PFTs were labelled following ATS/ERS 
guidelines, with 43% being obstructive, 16.5% restrictive 
and 4.5% mixed physiological patterns. ANNs using four 
input parameters (area under the expiratory flow-volume 
curve and z-scores for FEV1, FVC, FEV1/FVC) yielded 
the highest accuracies (91% and 92% in the validations 
and test sets, respectively). The area under the expira-
tory flow-volume curves contributed significantly to the 
accuracies, when compared with ANN models that only 
included the FEV1, FVC, FEV1/FVC z-scores.22 This was 
particularly true for classifying mixed defects.22 This non-
traditional metric is retrievable but not readily available. 
Unlike our study, biometrics were not included in the 
ANN but were implied in the z-scores.

Table 4  Test set precision, recall and F1 scores for each input variable combination when using previously unseen data 
obtained from the next 271 patients

Combination of input 
variable Lung pattern

Precision for test set 
(%)

Recall for test set 
(%)

F1 score for test set 
(%)

Biometrics with 
spirometry and 
plethysmography

Normal 99.20±1.69 90.40±8.98 94.37±5.32

Obstructive 96.60±7.17 88.20±9.39 91.94±7.11

Restrictive 94.60±1.43 100.00 97.22±0.76

Obstructive and 
restrictive

90.40±6.13 88.00±6.53 88.94±4.02

Biometrics with 
spirometry

Normal 99.50±1.58 92.10±8.31 95.51±5.29

Obstructive 96.20±8.07 92.20±5.98 94.15±6.99

Restrictive 94.60±0.97 100.00 97.22±0.52

Obstructive and 
restrictive

91.80±5.43 94.60±31.45 91.53±11.83

Spirometry and 
plethysmography

Normal 62.90±21.53 44.00±11.73 48.99±10.32

Obstructive 28.30±21.18 13.80±13.48 Undefined

Restrictive 79.50±6.57 79.40±14.09 78.80±8.22

Obstructive and 
restrictive

48.40±8.57 94.70±5.08 63.63±7.34

Spirometry Normal 44.00±11.12 67.10±13.53 51.76±8.17

Obstructive 42.10±14.43 53.40±34.77 43.90±20.78

Restrictive 75.20±8.20 56.50±20.12 62.87±17.40

Obstructive and 
restrictive

39.40±27.83 42.70±36.57 Undefined

Mean±SD for the test sets of 10 experimental runs are shown. Data from the initial 477 patients were used for training and data from the 
next 271 patients were randomly assigned to the validation (136 patients) and test (135 patients) sets. For each experimental run, the model 
randomly selected one test per patient. Biometric variables are sex, age, height. Spirometry metrics included are FVC, FEV1, FEF25–75 and 
plethysmography metrics are RV and TLC. Undefined F1 score indicates that either precision, recall or both for that particular class was 
equal to zero for at least 1 of the 10 experimental runs.
FEF, forced mid-expiratory flow; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; RV, residual volume; TLC, total lung 
capacity.

Table 5  Performance comparisons of the DMLP model, 
pulmonologists and ATS/ERS decision tree

Accuracy (%)

P value 
(compared with 
DMLP model)

DMLP model 94.67±2.63 –

Pulmonologists 66.67±14.63 0.0051

ATS/ERS decision tree 75.61 <0.0001

Accuracies (mean±SD) of the DMLP model (n=10), pulmonologists 
(n=6) and the ATS/ERS decision tree for classifying 82 spirometry 
tests as normal, obstructive, restrictive and mixed obstructive-
restrictive disease tests when compared with the ‘true’ labels 
based on the ATS/ERS interpretations using full PFTs with 
spirometry and plethysmography. Comparison of the groups were 
conducted using two-sample t-tests. The lowest accuracy was 
found in the pulmonologists and the highest in the DMLP. No 
differences were observed in the accuracies of the pulmonologists 
and the ATS/ERS decision trees (p=0.5958).
ATS/ERS, American Thoracic Society/European Respiratory 
Society; DMLP, deep multilayer perceptron; PFTs, pulmonary 
function tests.
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Others have compared physicians’ interpretation of 
PFTs and clinical diagnoses to a decision tree model built 
using data from 1420 patients, MATLAB 8.3, Statistics 
and Machine Learning Toolbox, with 10-fold internal 
cross-validation.9 Inputs included full PFTs (absolute, 
percent predicted and z-scores for prebronchodilator 
and postbronchodilator spirometry, plethysmography for 
lung volumes and airway resistance, diffusing capacity), 
age, sex, body mass index, smoking pack-years, pres-
ence of cough, sputum and dyspnoea.9 10 Given 50 cases, 
pulmonologists interpreted lung function patterns with 
74.4%±5.9% accuracy, with lower rates for restrictive 
patterns. Conversely, the machine learning model had 
100% classification accuracy. When asked to categorise 
the cases into specific diagnostic categories (eg, asthma, 
chronic obstructive pulmonary disease (COPD), neuro-
muscular, interstitial lung disease), machine learning 
achieved accuracies of only 82%, but still higher than the 
clinicians at 44.6%.9

A recent study compared a fully convoluted neural 
network (CNN), random forest model and traditional 
spirometry for classifying the COPD phenotypes of 
predominant airway versus predominant emphysema. 
Data came from the COPDGene study: 3926 participants 
had no airflow obstruction, 3901 had Global Initiative 
for Lung Diseases stages 1–4 and 1066 had preserved 
ratio impaired spirometry.23 The COPD phenotypes were 
labelled according to computer aided quantitative anal-
ysis of CT chest imaging. The CNN and random forest 
model were trained using all the datapoints in the expi-
ratory flow-volume curve. Participants were split 80% for 
training and 20% for validation. The CNN significantly 
outperformed the random forest classifier and tradi-
tional spirometry (FEV1/FVC and %predicted FEV1).23 A 
strength of this study, like the study by Ioachimescu,22 is 
that the models learnt from all the datapoints in the expi-
ratory flow-volume curve.

Limitations
While our dataset included PFTs from the full spectrum of 
respiratory defects and a wide range of abnormal findings, 
it is a limitation as the data came from a single centre. As a 
tertiary referral centre and the major lung transplant centre 
in Canada, our data were collected mostly from lung trans-
plant recipients who had higher tests-to-patient ratios and a 
higher prevalence of restrictive defects compared with other 
patient cohorts. The imbalance between the number of tests 
among the four lung physiology patterns may have skewed 
the variability of our dataset.

While our samples were labelled using the current clin-
ical gold standard (spirometry and plethysmography), this 
method is imperfect. The FEV1 is limited in detecting small 
airway function and early airflow obstruction.26 The contri-
bution from the small airways to total airway resistance is 
low unless advanced or severe small airway obstruction is 
present.27 Conversely, flow-volume loops demonstrate a 
complete representation of flow in regions where the small 

airways are not as distended as they are in the first second of 
forced expiration.28 These are important limitations in the 
current conventional labelling system. Inclusion of data from 
the entire flow-volume loop may improve the detection of 
small airway or early-stage abnormalities and will be included 
in future deep learning models.

Lastly, our laboratory uses the Canadian reference 
equations to calculate percent predicted values.21 The 
application of different reference equations can alter the 
‘true’ label of the PFT from normal to abnormal; this is 
another limitation. The use of reference equations that 
are most appropriate for the specific patient population 
should be considered, and the MLP model retrained.

CONCLUSION
We developed a DMLP model to classify lung function 
patterns using biometrics and spirometry with compa-
rable accuracies to full PFTs inclusive of plethysmography 
and biometrics. Hand-held spirometers are affordable 
and widely used as stand-alone diagnostic tools in primary 
care and outpatient settings. Implementation of the 
DMLP model into the software of spirometers can facil-
itate screening of patients with suspected lung disease. 
Implementation of the model will improve access to high 
calibre healthcare for patients who cannot perform or 
access diagnostic laboratories for full PFT with plethys-
mography. It will particularly benefit patients who live in 
regions of the world where only spirometry is available, 
and thus improve healthcare equity. It is also anticipated 
to improve patient outcomes by focusing subsequent 
investigations, such as full PFTs for patients identified by 
the DMLP model to have restrictive or mixed obstructive-
restrictive defects, to facilitate earlier diagnoses, leading 
to reduced healthcare expenditure.
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