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Abstract 

Background:  Drug-disease associations (DDAs) can provide important information for 
exploring the potential efficacy of drugs. However, up to now, there are still few DDAs 
verified by experiments. Previous evidence indicates that the combination of informa-
tion would be conducive to the discovery of new DDAs. How to integrate different bio-
logical data sources and identify the most effective drugs for a certain disease based 
on drug-disease coupled mechanisms is still a challenging problem.

Results:  In this paper, we proposed a novel computation model for DDA predictions 
based on graph representation learning over multi-biomolecular network (GRLMN). 
More specifically, we firstly constructed a large-scale molecular association network 
(MAN) by integrating the associations among drugs, diseases, proteins, miRNAs, and 
lncRNAs. Then, a graph embedding model was used to learn vector representations 
for all drugs and diseases in MAN. Finally, the combined features were fed to a random 
forest (RF) model to predict new DDAs. The proposed model was evaluated on the 
SCMFDD-S data set using five-fold cross-validation. Experiment results showed that 
GRLMN model was very accurate with the area under the ROC curve (AUC) of 87.9%, 
which outperformed all previous works in terms of both accuracy and AUC in bench-
mark dataset. To further verify the high performance of GRLMN, we carried out two 
case studies for two common diseases. As a result, in the ranking of drugs that were 
predicted to be related to certain diseases (such as kidney disease and fever), 15 of the 
top 20 drugs have been experimentally confirmed.

Conclusions:  The experimental results show that our model has good performance 
in the prediction of DDA. GRLMN is an effective prioritization tool for screening the reli-
able DDAs for follow-up studies concerning their participation in drug reposition.

Keywords:  Drug-disease association, Graph representation learning, Multi-
biomolecular network
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Introduction
Drugs can relieve the symptoms of illness, control the further development of the dis-
ease, and help the body to recover. Owning to the increasingly abrupt outbreak of dis-
eases, the demand for new drugs is also on the rise. For example, the sudden outbreak of 
COVID-19 requires researchers to develop drugs and vaccines in a short period of time. 
Drug repositioning can effectively reduce the cost of drug development by more than 
half. Although many researchers have proposed some models for predicting drug-dis-
ease associations for drug reposition, how to effectively extract drug-disease association 
information is still a challenging problem. Analyzing the complex association between 
drugs and diseases from the microscopic perspective of biomolecules in cells can pro-
vide new insights for exploring the mechanism of disease.

Through the integration of large-scale genomic and protein data, a network model 
is constructed. This provides new ideas for predicting the association between disease 
molecules and drug molecules. The emergence of network-based predictive approaches 
not only comprehensively synthesizes associations among protein, miRNA, lncRNA, 
diseases, and drugs, but also provides a promising computational tool for determining 
new DDAs and repositioning drugs.

There have been many studies on predicting drug repositioning, including some net-
work-based models. For example, Yu et al. proposed to use Layer Attention Graph Con-
volutional Network (LAGCN) to predict DDA, which use the graph convolution to learn 
DDA, drug-drug similarity and disease-disease similarity, and use the attention mecha-
nism to combine multiple graph convolutions layers [1]. SCMFDD is a DDA prediction 
method based on matrix factorization, which maps drug-disease associations into low-
rank space and introduces disease semantic similarity and drug similarity increase con-
straints [2]. Zhang et al. used a binary network to predict DDAs, selecting only drugs 
and disease information [3]. Researchers are gradually solving the computational prob-
lem of drug repositioning from a macro perspective, but previous studies of DDA pre-
diction have not considered the whole cell. The FSPGA algorithm proposed by He et al. 
can effectively detect more meaningful clustering hidden in the attribute graph, taking 
into account the topology structure and attribute value of the graph [4]. CCPMVFGC 
proposed by He et al. which can well capture the contextual interdependency of features 
in each cluster by combining graph clustering with multi-view learning [5]. The MrSBM 
model proposed by He et al. performs unsupervised learning tasks in network data. In 
addition to modeling edges located within blocks or connecting blocks, MrSBM also 
considers modeling vertex features using vertex-clustering preferences and probability 
of feature-clustering contributions [6].

In previous studies on DDA, some have considered adding an "intermediate bridge" 
molecule (such as miRNA and protein) between drugs and diseases [7]. With regard to 
this idea of adding intermediate biomolecules to search for DDA, whether adding more 
types of biomolecules and the following higher complexity of the MAN network will 
guarantee a better effect of DDA prediction? In fact, the combination of two biomol-
ecules is a complicated law, and it is not the case that a better DDA prediction effect can 
be assured with the increase of the number of the intermediate biomolecules. If multiple 
types of biomolecules data are introduced into the DDA prediction model, most of them 
will be equivalent to noise, which will directly affect the prediction results. Based on the 
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previous studies of miRNA-disease associations, lncRNA-disease associations, drug-
protein associations, and disease-protein associations, we have designed a DDA predic-
tion model that uses protein, lncRNA, and miRNA as intermediate molecules. As shown 
in Fig. 1, there are 9 confirmed associations among the five biomolecules [8].

Graphs are one of the most powerful framework in algorithms, and can be used to 
represent almost all types of structures or systems. Different biomolecules and their 
interactions can be viewed as vertices (nodes) and links (edges) in a graph [9]. Based 
on the above, in this paper, we constructed a molecular association network (MAN), 
including miRNA, lncRNA, protein, drug, disease, and nine associations (lncRNA-
protein interaction [10], drug-protein association [11], protein–protein interaction [12, 
13], protein-disease interaction [14], miRNA-disease association [15], miRNA-disease 
association [16], miRNA-lncRNA association [17], lncRNA-disease interaction [18], 
and drug-disease association [19]). Each node in the MAN is composed of the attribute 
of the node itself and the associated information with other nodes. Node information 
includes drug molecular fingerprint, disease semantic information, ncRNA sequence, 
and protein sequence [20]. A unique feature of GRLMN combines five biomolecules and 
nine molecular associations [21]. Although this paper mainly solves the problem of drug 
repositioning, GRLMN has better scalability and can predict the association between 
other molecules using the proposed network model [22]. Figure 2 shows the workflow 
of GRLMN model, in which the complex network of biomolecules consists of two parts: 
nodes (drug, disease, protein, miRNA, and lncRNA) and edges (the relationship of 
nodes) [23].

To evaluate the ability of the GRLMN to predict DDAs, fivefold cross-validation 
method was performed on SCMFDD-S data set [24]. Through the comparison with dif-
ferent feature models and classifier models, the proposed model achieved good results 
[25]. In addition, we also tested the validity of the model for two human diseases, 

Fig. 1  Schematic diagram of the complex relationship among miRNA, lncRNA, protein, disease, and drugs
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including Kidney disease and Fever [26]. As a result, among the top 20 drugs predicted 
by GRLMN that are related to kidney disease or fever, 15 have been verified in the com-
parative toxicogenomics database (CTD) [27]. Experiment results show that the pro-
posed model combines node attribute information and mode information to obtain 
effective robust prediction performance [28]. Complex molecular association networks 
allow us to understand biology and disease pathology from a global perspective.

Materials and methods
Multi‑biomolecular associations data

In this work, the SCMFDD-S data set collected by Zhang et  al. [29] is used for train-
ing, which includes 269 drugs, 598 diseases, and 18,416 DDAs. DrugBank [30] is a com-
prehensive database of extensive drug information, providing SMILE for drugs. We use 
python packages to convert SMILE to Morgan fingerprints. In addition, as shown in 
Table 1, we downloaded eight types of heterogeneous associations from nine other data-
bases, 8374 pairs of miRNA-lncRNA association provided by lncRNASNP2 database, 
16,427 pairs of miRNA-disease association provided by HMDD database [31], 4944 pairs 
of miRNA-protein association provided by miRTarBase database [32], and 1264 pairs of 

Fig. 2  MAN is formed by associations between proteins, miRNAs, lncRNAs, drugs, and diseases. The attributes 
and behaviors of biomolecules learned by graph embedding are input into random forest classifier for 
training to predict potential drug-disease associations. a process of computing semantic similarity of diseases 
by constructing directed acyclic graph; b process of obtaining the Morgan fingerprint and extracting the 
structural similarity of the drug; c 3-mer analysis of the sequence; d a schematic diagram of LINE; e prediction 
process of random forest
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lncRNA-disease association provided by LncRNADisease [33] and lncRNASNP2 [34] 
databases. LncRNA2Target [35], DisGeNET [36], DrugBank, and STRING [37] provided 
690 pairs of lncRNA-protein associations, 25,087 pairs of protein-disease associations, 
11,107 pairs of drug-protein associations, and 19,237 pairs of protein–protein interac-
tions [38–40]. After unifying identifiers, eliminating redundancy, simplify, and delet-
ing irrelevant items, the downloaded experimental data are sorted out and obtained in 
Table 2.

Disease descriptors

In order to represent the similarity between diseases, we calculated disease seman-
tic similarity by referring to the MeSH database [41], which developed by the National 
Library of Medicine (NLM). The MeSH database categorizes diseases strictly and accu-
rately. Each disease we download from https://​www.​nlm.​nih.​gov/ has a descriptor that 
can construct a directed acyclic graph (DAG) to describe the disease. Specifically, for 
disease e , and its DAG can be described as DAGe = (e,Ne,De) , where Ne represents 
the set of diseases associated with disease e , and De represents the set of edges between 
them. The contribution of a certain disease d to the semantic value of disease e in the set 
Ne is:

where ε is a contribution parameter. The semantic value DV (e) can be obtained by add-
ing up the contribute values of all diseases in the disease set Ne , and its formula is as fol-
lows [42]:

(1)

{

Ce(d) = 1, if d = e,

Ce(d) = max
{

ε · Ce

(

d́
)

|d́ ∈ children of d
}

, if d �= e,

Table 1  Details of nine kinds of biomolecular association used by the proposed model

Association type Database Number of 
associations

Drug-disease SCMFDD-S [29] 18,416

Drug-protein DrugBank [30] 11,107

Protein–protein STRING [37] 19,237

Protein-disease DisGeNET [36] 25,087

lncRNA-protein LncRNA2Target [35] 690

lncRNA-disease LncRNADisease [33] lncRNASNP2 [34] 1264

miRNA-protein miRTarBase [32] 4944

miRNA-disease HMDD [31] 16,427

miRNA-lncRNA lncRNASNP2 [34] 8374

Total 105,546

Table 2  The number of five types of nodes in the proposed model

Node Drug Disease LncRNA MiRNA Protein Total

Number 1025 2062 769 1023 1649 6528

https://www.nlm.nih.gov/
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Assume that the more DAGs shared by two diseases, the more similar they are. Based 
on this assumption, diseases semantic similarity is calculated according to the relative 
positions of diseases e(i) and e(j):

NcRNA and protein sequence descriptors

In order to standardize and characterize the ncRNA transcription and protein 
sequences, we use 3-mer to analyze each sequence. As shown in Fig. 2, in order to facil-
itate the coding of proteins and ncRNA, we divided the 20 amino acids and the four 
nucleotides into 4 groups. The grouping of amino acids is: [Ala, Val, Leu, Ile, Met, Phe, 
Trp, and Pro], [Gly, Ser, Thr, Cys, Asn, Gln, and Tyr], [Arg, Lys, and His], and [Asp and 
Glu] [43]. The grouping of ncRNAs is adenine (A), cytosine (C), guanine (G), and uracil 
(U). As shown in Fig. 2c, we calculate the frequency of each different amino acid or RNA 
combination through a sliding window of length 3. Here, we can express a 64 (43) dimen-
sional vector through 3-mer.

Stacked auto‑encoder

As shown in Fig.  2b, the SIMLES (simplified molecular input line entry specification) 
of the drug can be found in the DrugBank database. The RDkit python package can 
convert SIMLES into Morgan fingerprints [44, 45]. In this work, Stacked Auto-encoder 
(SAE) is introduced to extract the constructed Morgan fingerprints. As shown in Fig. 3a, 
auto-encoder is a kind of symmetric neural network, which belongs to semi-super-
vised learning, and its learning function is x́ = fW ,b(x) ≈ x , where x is the input vector, 
W = (W1,W2) and b = (b1, b2) represent the weights and biases.

Figure 3b shows the structure of a stacked auto-encoder with an h-stage auto-encoder. 
The vector output by the first auto-encoder layer is used as the vector of the second auto-
encoder layer input until the output vector of the top autoencoder layer is obtained. The 
random gradient descent was selected for training. Drug molecular fingerprints obtain a 
vector characterizing molecular structure by stacking autoencoder.

Node representation

In the MAN, each node is composed of two parts, one is the attributes of the node itself, 
and the other is the association with other nodes. Attributes of the node itself include 
ncRNA sequences, protein sequences, semantic information of disease, and drug finger-
prints. Specifically, the network representation learning is used to calculate the association 
between nodes and other nodes which can globally represent the information flow between 
the entire network nodes. Due to the sparseness and discreteness of the MAN network, we 
urgently need a simple and efficient low-dimensional representation method to represent 
it, and graph embedding is such a method. As the current mainstream network embedding 

(2)DV (e) =
∑

d∈Ne
Ce(d)

(3)SV 1

(

e(i), e
(

j
))

=
∑

d∈Ne(i)
⋂

Ne(j)
(Ce(i)(d)+ Ce(j)(d))

DV (e(i))+ DV (e(j))
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algorithm, LINE [46] can embed large-scale information networks into low-order vector 
spaces and is suitable for any type of information network.

LINE is a method based on the assumption of neighborhood similarity, which can be 
seen as an algorithm that use Breath First Search (BFS) to construct neighborhoods. A 
major feature of LINE is that it optimizes the goal of preserving local nodes and global 
network structure. LINE combines the first-order similarity and second-order simi-
larity in the graph structure to obtain richer graph representation results. Figure  2d 
explains first-order and second-order. The thickness of the edge represents the value of 
the weight. Because node 6 and node 7 are directly connected and have a larger weight, 
their first-order similarity is higher. In the MAN network, the weights of the edges are 
all equal. Node 5 and node 6 are not directly connected, but they share a common adja-
cent node, so their embedding should have a similar distance and a greater second-order 
similarity.

First-order is to model each undirected edge. First, calculate the probability distribu-
tion of node transition. For each directed edge (a, b) , we first define the probability that 
the neighbor of vertex va is vb as:

where ua and ub are the embedding vector representations of node a and node b , respec-
tively. According to the weights of the edges, the empirical distribution can also be 
obtained:

(4)p1(vb|va) =
1

1+ exp(−uTb · ua)
,

(5)p1
′(a, b) = ωab

W
,W =

∑

i,jǫE
ωij ,

Fig. 3  The structure of the auto-encoder and structure of the stacked auto-encoder
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where W  is the sum of the weights of the edges in the graph. In order to keep the empiri-
cal distribution similar to the probability distribution, we use KL divergence to measure 
the similarity of the two distributions. After we remove the constant term, the loss func-
tion obtained is as follows:

therefore, as long as the L1 is minimized, we can guarantee the first-order similarity of 
node embedding in the graph.

Second-order applies to both directed and undirected graphs. We first define the prob-
ability distribution of node transition:

where |V | is the number of vertices, ua is the representation when va is regarded as vertex 
and úa is the representation of va when it is treated as a specific “context”. At the same 
time, the second-order empirical distribution is defined as follows:

where da is the output degree of node a and N (i) is the adjacent node of node i.
To make sure the empirical distribution  and the probability distribution similar. we 

use KL divergence to measure the similarity of the two distributions. After removing 
the constant term and performing a series of approximations, we get the loss function as 
follows:

Random forest

Ensemble learning has been widely used in bioinformatics, the idea of which is to com-
bine multiple single classifiers into a new classifier to obtain better classification effect. 
We choose the random forest classifier in the ensemble learning algorithm to classify 
and predict the drug-disease association [47]. Random forest can avoid the problem 
of decision tree overfitting. Compared with other single classifiers, it usually has more 
stable prediction performance [48]. Since stability and accuracy are very important for 
large-scale prediction of drugs-diseases association, in this work, random forest was 
selected as the classifier to process the extracted features.

Results and discussion
Evaluation criteria

In order to verify the prediction ability of GRLMN, fivefold cross-validation method was 
performed on the real data set collected in Table 1 in the experiment. Specifically, five-
fold cross-validation is to randomly divide the sample into 5 subsets of the same number. 
Each time a subset is selected as the test set, and the remaining subsets are used as the 

(6)L1 = −
∑

(a,b)ǫE
ωablog(p1(va, vb)),

(7)p2(vb|va) =
exp(úTb · ua)

∑|V |
k=1exp(ú

T
k · ua)

(8)p2
′(vb|va) =

ωab

da
, da =

∑

k∈N (i)
ωik ,

(9)L2 = −
∑

(a,b)ǫE
ωablog(p2(vb|va)).
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training set. The training process is repeated five times so that each subset could be used 
as the test set, and the average of the five groups is used as the finally result. To quan-
tify the results of fivefold cross-validation, we selected five kinds of evaluation criteria, 
including sensitivity (SEN), specificity (SPE), precision (PRE) accuracy (ACC) and Mat-
thews correlation coefficient (MCC). The calculation formula is as follows:

where TP is true positive, FP is false positive, TN is true negative and FN is false nega-
tive. For further evaluation, we also compute the receiver operating characteristic (ROC) 
curve, sum up the ROC curve in a numerical way, and calculate the area under the ROC 
curve (AUC).

Evaluate prediction performance

In this section, fivefold cross-validation method was performed on the SCMFDD-S data 
set to evaluate the ability of the proposed model to predict DDAs. Table 3 shows that 
in the experiment on the SCMFDD-S data set, GRLMN yielded the average accuracy, 
sensitivity, specificity, and precision of GRLMN are all around 80%, and the Matthews 
correlation coefficient is 59.68%. In a huge network of nine biomolecule association rela-
tionships, all indicators can perform well, which shows that GRLMN has good predic-
tive ability by fusing molecular features.

As mentioned in “Node representation” section, GRLMN calculates the association 
between each node and other nodes through LINE algorithm to predict DDA. In this 
section, we also evaluated the effectiveness of the introduction of node association infor-
mation and node attribute information. We call the model that only uses the attributes 

(10)SEN . = TP

TP + FN
,

(11)SPE = TN

FP + TN
,

(12)PRE = TP

TP + FP
,

(13)ACC = TP + TN

TP + TN + FP + FN
,

(14)MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

,

Table 3  fivefold cross-validation results performed by the three models GRLMN, GRLMN_A, and 
GRLMN_M

Model ACC (%) SEN (%) SPE (%) PRE (%) MCC (%) AUC (%)

GRLMN 79.84 ± 0.50 80.03 ± 0.95 79.64 ± 0.22 79.72 ± 0.28 59.68 ± 1.00 87.90 ± 0.54

GRLMN_A 73.91 ± 0.32 75.43 ± 0.77 72.39 ± 0.34 73.20 ± 0.20 47.84 ± 0.64 81.12 ± 0.28

GRLMN_M 77.58 ± 0.54 78.41 ± 1.07 76.75 ± 0.46 77.14 ± 0.39 55.18 ± 1.10 85.61 ± 0.42
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Fig. 4  Performance yielded GRLMN in DDA prediction: a ROC curves yielded by GRLMN using fivefold 
cross-validation on SCMFDD-S data set. b ROC curves yielded by GRLMN_A using fivefold cross-validation on 
SCMFDD-S data set. c ROC curves yielded by GRLMN_M using fivefold cross-validation on SCMFDD-S data set
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of the node itself as GRLMN_A, and the model that only uses the associated attributes 
of the node as GRLMN_M. As shown in Table 3 and Fig. 4, without using the node’s own 
attribute features, the prediction performance of GRLMN_M in fivefold cross-valida-
tion is significantly reduced, but all indicators are still higher than those in GRLMN_A. 
The comparison results showed that the attributes of the node itself and the associated 
attributes of the node in GRLMN were closely related and mutually beneficial to the pre-
diction task.

Impact of different graph embedding on GRLMN

Graph Embedding has been widely used in recommender systems and computational 
advertising, and the corresponding algorithms are constantly being extended. In this 
section, we discuss the difference between applying LINE and Node2vec in the GRLMN 
model. Node2vec adjusts the weights of random walks to make the results of graph 
embedding weighed in the homophily and structural equivalence of the network. Spe-
cifically, the "homophily" of the network means that the embedding of nodes that are 
close to each other should be as close as possible, and the "structural equivalence" means 
that the embedding of nodes that are structurally similar should be as close as possible.

Based on the control variable method, we replace the LINE part of GRLMN with 
Node2vec, and the rest remain unchanged. For the sake of distinction, we call GRLMN 
based on Node2vec as GRLMN-node2vec, and GRLMN based on LINE as GRLMN-
LINE. Figure 5a is the fivefold cross-validation AUC curve of GRLMN-node2vec on the 
SCMFDD-S data set. Figure 5b is the ROC curves yielded by GRLMN-node2vec con-
taining only attribute using fivefold cross-validation on SCMFDD-S data set. The AUC 
result of GRLMN-node2vec is 0.18% higher than that of GRLMN-node2vec which only 
contains attribute features, but its performance is still inferior to GRLMN-LINE. LINE 
is based on the edge sampling algorithm to improve and optimize the objective function, 
which overcomes the limitations of the traditional stochastic gradient descent algorithm, 
so the effect will be better.

Performance comparison

To further verify the performance of GRLMN in predicting DDA, we performed five-
fold cross-validation of the other six models on the same data set. SCMFDD model pro-
posed by Zhang et al. [29], which proposed mapping the association between drugs and 
diseases to two low-rank spaces, using matrix decomposition to predict associations. 
Table 4 shows the average AUC value of the other six models and our method. From the 
table we can see that GRLMN achieves a higher average AUC value on SCMFDD-S data 
set. In the SCMFDD-S data set, the AUC obtained by the proposed model was the high-
est, 0.78% higher than the AUC generated by LNS, 0.53% higher than SCMFDD-Drug 
interaction, 1.16% higher than SCMFDD-Enzyme, 0.81% higher than SCMFDD-Path-
way, 3.77% higher than SCMFDD-Target, and 0.5% higher than SCMFDD-Substructure. 
The Experimental results show that GRLMN has more advantages. Unlike the com-
parison method, GRLMN is more extensible, which uses the attribute of five biological 
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molecules and their association to form a molecular association network. We integrate 
more comprehensive molecular information to achieve significant prediction results.

Impact of different classifier on GRLMN

GRLMN use random forest to make predictions based on feature fusion. In this section, we 
evaluate the effectiveness of random forest. Specifically, we use Adaboost classifier, Logis-
tic Regression classifier, and Naïve Bayes classifier to replace of random forest classifier to 
compare the effectiveness of GRLMN and the combination of these classifiers. Accord-
ing to the control variable method, all kinds of experimental data are the same except for 

Fig. 5  Performance yielded GRLMN-node2vec in DDA prediction: a ROC curves yielded by GRLMN-node2vec 
using fivefold cross-validation on SCMFDD-S data set. b ROC curves yielded by GRLMN-node2vec containing 
only attribute using fivefold cross-validation on SCMFDD-S data set

Table 4  Comparison of AUC values generated by different methods on benchmark data set

Methods AUC (%)

SCMFDD-substructure 87.37

SCMFDD-target 84.10

SCMFDD-pathway 87.06

SCMFDD-enzyme 86.71

SCMFDD-drug interaction 87.34

LNS 87.09

GRLMN 87.87
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different classifiers. In order to make results more credible, fivefold cross-validations were 
performed on the four models simultaneously. Use grid search to find the best param-
eters of random forest: n_estimators = 100, max_depth = 110. Adaboost classifier, Logistic 
Regression classifier, and Naive Bayes classifier all adopt default parameters.

Table 5 and Fig. 6 show the results of combining the random forest classifier, the Ada-
boost classifier, the Logistic regression classifier, and the Naive Bayes classifier with the 
proposed feature descriptors. Adaboost classifier achieved accuracy, sensitivity, specificity, 
precision, MCC, and AUC of 70.82%, 71.30%, 70.34%, 70.62%, 41.65%, and 78.05%, respec-
tively. Their standard deviations are 0.35%, 1.15%, 0.88%, 0.41%, 0.71%, and 0.52%. Logistic 
regression classifier achieved accuracy, sensitivity, specificity, precision, MCC, and AUC of 
72.95%, 72.98%, 72.92%, 72.94%, 45.91%, and 80.41%, respectively. Their standard deviations 
are 0.45%, 0.99%, 0.68%, 0.44%, 0.91%, and 0.54%. Naïve Bayes classifier achieved accuracy, 
sensitivity, specificity, precision, MCC and AUC of 68.27%, 70.86%, 65.69%, 67.37%, 36.60%, 
and 74.18%, respectively. Their standard deviations are 0.55%, 0.86%, 0.76%, 0.53%, 1.10%, 
and 0.62%. It can be seen from the comparison that the classification results of random for-
est classifier are superior to the other four classifiers. The average AUC of the random forest 
is 9.85%, 7.49%, and 13.72% higher than that of Adaboost classifier, Logistic Regression clas-
sifier, and Naive Bayes classifier, respectively.

Table 5  Comparison of results of different classifier models on the same data set

Classifier ACC (%) SEN (%) SPE (%) PRE (%) MCC (%) AUC (%)

Adaboost 70.82 ± 0.35 71.30 ± 1.15 70.34 ± 0.88 70.62 ± 0.41 41.65 ± 0.71 78.05 ± 0.52

Logistic 72.95 ± 0.45 72.98 ± 0.99 72.92 ± 0.68 72.94 ± 0.44 45.91 ± 0.91 80.41 ± 0.54

Naïve Bayes 68.27 ± 0.55 70.86 ± 0.86 65.69 ± 0.76 67.37 ± 0.53 36.60 ± 1.10 74.18 ± 0.62

Random forest 79.84 ± 0.50 80.03 ± 0.95 79.64 ± 0.22 79.72 ± 0.28 59.68 ± 1.00 87.90 ± 0.54

Fig. 6  Comparison of AUC values obtained by Random Forest, Adaboost, Logistic Regression, and Naive 
Bayes classifier models on the same data set
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Case study
To further evaluate the ability of GRLMN to predict potential associations, we select 
kidney disease and fever as cases for experiments. Specifically, we use the SCMFDD-
S dataset to train the model. When predicting associations for specified diseases, all 
associations between specified diseases and drugs in the data set are deleted. Accord-
ing to the prediction results of GRLMN, we validated the top 20 drugs with predicted 
scores in the independent CTD database.

Kidney disease is usually caused by factors such as infection, genetics, and immu-
nity. As shown in Table 6, we validated the top 20 drugs for Kidney disease prediction 
in the CTD database and identified 15 of them. Fever is a state in which abnormal 
body temperature or excessive heat production and heat dissipation caused by vari-
ous reasons, resulting in a rise in body temperature beyond the normal range. The top 
ranked drugs related to fever predicted by the GRLMN model are listed in Table 7. 
Comparing the prediction results with the CTD database, 15 of them were confirmed. 
Associations not listed in the CTD database may actually exist but are not currently 
verified.

Table 6  The proposed model predicted the top 20 drugs associated with Kidney disease

Index Drug name Validation result Index Drug name Validation result

1 Carbamazepine Confirmed 11 Niacin Confirmed

2 Amiodarone Confirmed 12 Nicotine Confirmed

3 Ramipril Confirmed 13 Quinine Confirmed

4 Piroxicam Confirmed 14 Epinephrine N/A

5 Sulindac Confirmed 15 Troglitazone N/A

6 Tretinoin N/A 16 Procainamide Confirmed

7 Naproxen Confirmed 17 Digoxin Confirmed

8 Docetaxel N/A 18 Chloroquine Confirmed

9 Clozapine Confirmed 19 Norfloxacin N/A

10 Methyldopa Confirmed 20 Hydrocortisone Confirmed

Table 7  The proposed model predicted the top 20 drugs associated with Fever disease

Index Drug name Validation result Index Drug name Validation result

1 Lidocaine Confirmed 11 Digoxin Confirmed

2 Propranolol N/A 12 Levodopa Confirmed

3 Diazepam Confirmed 13 Norepinephrine Confirmed

4 Fluoxetine N/A 14 Ribavirin Confirmed

5 Naloxone N/A 15 Midazolam Confirmed

6 Paroxetine N/A 16 Celecoxib Confirmed

7 Methadone Confirmed 17 Hydrocortisone Confirmed

8 Epinephrine Confirmed 18 Timolol N/A

9 Furosemide Confirmed 19 Naltrexone Confirmed

10 Ofloxacin Confirmed 20 Desipramine Confirmed
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Conclusion
Drug reposition requires a lot of theoretical support from DDA, so it is a meaningful 
work to develop an algorithm for predicting DDA. In this paper, the association among 
drug, disease miRNA, lncRNA, and protein were integrated, and the multi-biomolecular 
network was constructed from the perspective of cells.

In the experimental, we evaluated GRLMN model on SCMFDD-S data set using 
the fivefold cross-validation method. Experimental results show that the proposed 
model is highly accurate in predicting drug indications and significantly superior to 
other methods. In addition, case studies of Kidney disease and Fever have shown that 
GRLMN has outstanding performance in predicting a list of potential drugs associ-
ated with a particular disease. Our prediction model can be applied to the prediction 
of actual DDA problems. The experimental results show that the large-scale asso-
ciation prediction network based on machine learning model not only supplements 
the artificial experiment, but also opens up a macroscopic perspective to predict the 
association between molecules. Similar to the general machine learning framework, 
there are inevitable disadvantages. When new nodes are added, the network needs to 
learn the feature again. The addition of new nodes should meet certain conditions: 1. 
The new node must be linked to the original network and cannot be an isolated node; 
2. The more links between new nodes and nodes in the network, better features can 
be learned; However, the time cost of feature relearning is not very high, and now 
powerful machine performance can deal with this problem quickly.
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