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Abstract

Information sampling is often biased towards seeking evidence that confirms one’s prior

beliefs. Despite such biases being a pervasive feature of human behavior, their underlying

causes remain unclear. Many accounts of these biases appeal to limitations of human

hypothesis testing and cognition, de facto evoking notions of bounded rationality, but neglect

more basic aspects of behavioral control. Here, we investigated a potential role for Pavlovian

approach in biasing which information humans will choose to sample. We collected a large

novel dataset from 32,445 human subjects, making over 3 million decisions, who played a

gambling task designed to measure the latent causes and extent of information-sampling

biases. We identified three novel approach-related biases, formalized by comparing subject

behavior to a dynamic programming model of optimal information gathering. These biases

reflected the amount of information sampled (“positive evidence approach”), the selection of

which information to sample (“sampling the favorite”), and the interaction between informa-

tion sampling and subsequent choices (“rejecting unsampled options”). The prevalence of all

three biases was related to a Pavlovian approach-avoid parameter quantified within an

entirely independent economic decision task. Our large dataset also revealed that individual

differences in the amount of information gathered are a stable trait across multiple gameplays

and can be related to demographic measures, including age and educational attainment. As

well as revealing limitations in cognitive processing, our findings suggest information sam-

pling biases reflect the expression of primitive, yet potentially ecologically adaptive, behav-

ioral repertoires. One such behavior is sampling from options that will eventually be chosen,

even when other sources of information are more pertinent for guiding future action.

Author Summary

Human decision-making often appears irrational. A major challenge is to explain why
apparently irrational behavior occurs and what potential benefits it might have conferred
for our evolutionary ancestors. A well-studied behavior in experimental psychology is
“confirmation bias,” where we sample information that simply confirms what we already
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believe. In this study, we show that one factor giving rise to such information sampling
biases is Pavlovian approach: our natural tendency to approach items that are associated
with reward. We demonstrate three novel information sampling biases in a large-scale
smartphone experiment with>30,000 human subjects.We examine how these three
biases are related to Pavlovian approach, as quantified via an entirely independent eco-
nomic choice task. We also show that, within our population, information sampling is a
stable trait of an individual that is related to demographic variables such as age and educa-
tion. Although irrational in the context of our task, we postulate that approach-induced
biases in information sampling may have been adaptive over evolutionary history. They
would drive organisms towards gathering information about locations that they will even-
tually engage with to obtain reward.

Introduction

Many spheres of human behavior depend upon gathering and understanding evidence appro-
priately to inform decision-making.Yet the best way to sample information is a nontrivial
problem, necessitating decidingwhere to sample information [1,2], when to cease information
gathering [3,4], and weighing up how such evidence should guide behavior [5,6]. Normative
approaches can help address these questions [7], but their computational complexity renders
them unlikely candidates for controlling behavior. Instead, these approaches can be better used
as a basis for understanding limitations in cognitive processes and why biases emerge in
human behavior [8,9].

A particularly well-studied bias is that of confirming one’s prior beliefs [10]. Inspired by
classic rule discovery and falsification studies of Wason [11,12], explanations of confirmation
bias frequently appeal to limits in hypothesis testing as their latent cause. Several alternative
accounts have been proposed. The “positive test account” [13] posits that humans form beliefs
about a particular hypothesis and subsequently selectively seek and interpret evidence in sup-
port of this rule rather than against it. Yet it has been pointed out that this strategymay be nor-
mative in situations where possible competing hypotheses to explain the data are sparse [14].
Other accounts suggest that humans are simply limited in the number of hypotheses they can
consider at any given time [15].

It is widely acknowledged that humans are also subject to more primitive influences on
behavioral control. Whilst these have been overlooked as a potential source of confirmation
bias, they are known to impact upon information seeking in other domains. For instance, a
primitive behavior present in several species is the observing response [16,17]. Here, animals
select actions to yield information (reduce uncertainty) about the probability of receiving
future reward, even when these actions have no bearing upon reward receipt. This can also be
related to human preferences for revealing advance information about rewards when that
information is immaterial to the task at hand [18]. Critical here is the notion that, in nature,
advance information is typically valuable in guiding future action (unlike in the experimental
tasks used to demonstrate these behaviors). Preferences for early temporal resolution of uncer-
tainty [19] is thus conserved across humans and other species and persists in influencing
behavior even when rendered instrumentally irrelevant.

These considerations led us to consider how other primitive behaviors might bias informa-
tion sampling. A notable characteristic of reward-guided behavior in many species is that of
Pavlovian approach. Animals show greater efficacy in learning approach, as opposed to avoid-
ance, actions that will lead to the delivery of reward [20,21]. Humans are also subject to similar
approach biases [22]. Pavlovian approach effects also spill over into the domain of attentional
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control, as stimuli previously ascribed a high value capture attention even when they are con-
textually irrelevant [23]. As the locus of attention is intimately linked to information sampling
during choice [24], this raises the possibility that Pavlovian approach may similarly influence
information search.

To test this idea, we examined gameplay data from a large-scale smartphone app [25] in
which we manipulated several factors of interest whilst probing subjects’ information sampling
behavior. In brief, subjects played a card game in which they paid to sample information from
different locations prior to decidingwhich option was most likely to yield reward. A framing
manipulation meant that in half of all gameplays, approaching (choosing) the “biggest” option
would be rewarded, but in the other half, approaching the “smallest” option would be
rewarded. Crucially, the information structure of the task was identical across these matched
conditions, such that any effects on information sampling could be ascribed to our manipula-
tion as to the option subjects were instructed to approach.

We compared observedbehavior to predictions derived from a normative dynamic pro-
grammingmodel that computes the expected value associated with a perfectmodel of the task,
treated as a Markov decision process (seeMaterials and Methods and [26]). This enabled us to
isolate three distinct biases in subjects’ information search that respectively influencedwhere
information was sought, when information collection terminated, and how information was
used to guide eventual choices. Each of these three biases can be considered as a form of
“approach” behavior towards locations that are more likely to yield reward. Also relevant here
is our recent parameterization of human Pavlovian approach behavior in an approach-avoid-
ance decisionmodel on a separate economic decision task [27]. We demonstrate that the prev-
alence of all three biases is related to the key parameter from this model.

Results

Information Seeking Task Design

Subjects played a binary choice game that involved paying escalating costs for information (by
turning over playing cards) while gambling on which option was best based upon card values
that were revealed (Fig 1A). There were six possible conditions that subjects might play (Fig
1B). Across three of these conditions, subjects’ objective was to identify the pair (row) of cards
with the largest product (“MULTIPLY BIGGEST”), largest sum (“ADD BIGGEST”), or largest
single card (“FIND THE BIGGEST”). Across the remaining three conditions, the objective was
inverted, such that they now sought the row with the smallest product, sum, or single card.

At the beginning of each trial, all cards start face down. Subjects then touch the first card
(randomly located) to turn it over at no cost. This enters Task Stage 1 (Fig 1A). One of the
three remaining cards is made available to be sampled at a cost of 10 points, but subjects can
alternatively make a guess (gamble on which option will be rewarded) at no cost. If they choose
to sample, the value of the second card is revealed and they enter Task Stage 2. Either of the
two remaining cards can then be sampled at a cost of 15 points, or subjects can again choose to
make a guess at no cost. If they choose to sample again, they enter Task Stage 3. The last
remaining card can be sampled at a cost of 20 points, or they may again guess at no cost. At
any Task Stage, making a guess means that subjects enter the Choice Stage. Here, subjects
choose which row they think will be rewarded, and all remaining cards are then turned face up.
The subject wins 60 points if the gamble is correct and loses 50 points if incorrect,minus the
points paid for information sampling. Card values ranged, with a uniform distribution (sam-
pled with replacement), from 1 to 10, with “picture cards” removed from the deck.

On each gameplay, subjects were randomly assigned to play two short blocks (11 trials
each) of two from the six possible conditions. The symmetry between the “approach big” and
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“approach small” conditions is crucial to our experimental design. Revealing a card of a partic-
ular value yields the same information content in both versions of the task (with the exception
of the FIND THE BIGGEST and FINDTHE SMALLEST conditions). This means that subjects’
information gathering behavior should, normatively, be matched across these conditions. The
only behavior that should change is the final gamble made by the subject, which should reverse.
By comparing across ADD BIG and ADD SMALL conditions, and across MULTIPLY BIG and
MULTIPLY SMALL conditions, we could probe the influence of the approach direction (i.e.,
big/small) on information sampling behavior and vice versa.

“Positive Evidence Approach” Bias

The first question we asked pertained to Task Stage 1 (Fig 1A). Here, subjects decidedwhether
to sample or guess based upon two variables: the information seen, i.e., the card value, and also
the location where information was made available for sampling. We label the first row sam-
pled as “row A.” In some trials, subjects were constrained to sample the next card from row A
(“AA trials”), whilst in other trials they were constrained to sample from row B (“AB trials”).

Fig 1. Information seeking task design. (A) Subjects aim to select the “winning row” (in this example, the row with the largest product).

After the first card is revealed (here, the 7 of diamonds), subjects enter Task Stage 1. Here, they choose between the two yellow options,

either sampling another card (costing 10 points) or making a guess about which is the winning row (no cost). Greyed-out cards cannot yet

be sampled. If choosing to sample, then Task Stage 2 is entered, in which either remaining card may be sampled (costing 15 points) or

the subject may again guess. In Task Stage 3, sampling the last remaining card costs 20 points. At any Task Stage, making a guess

means that subjects enter the Choice Stage. Here, after choosing, all cards are revealed and the subjected either wins 60 points if

correct, or loses 50 points if incorrect. (B) The six task conditions in a 3-by-2 design. Subjects either select the row with biggest (or

smallest) sum, the biggest (or smallest) product, or the biggest (or smallest) single card.

doi:10.1371/journal.pbio.2000638.g001
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As can be seen from the optimal dynamic programmingmodel (Fig 2A), the card value and
(to a lesser extent) the trial type influences the relative expected value of choosing to guess ver-
sus choosing to sample. The U-shaped function of the graph reflects an intuition that high- or
low-valued cards are informative about the correct option to approach, making it more valu-
able to guess early. Mid-valued cards, by contrast, provide less information and make it more
valuable to sample more information. The differential influence of AA versus AB trials is
because the potential reduction in uncertainty depends upon the information that has already
been revealed. Intuitively, on a MULTIPLY TRIAL where a 1 has been revealed, then sampling
from row A again yields little information relative to row B, as it is already known that row A
will have a low value (between 1 and 10). On a MULTIPLY TRIAL where a 10 has been
revealed, then sampling from row A yields more information than row B as it reduces the
range of possible row A values from between 10 and 100 to an exact value.

Fig 2. Positive evidence approach bias at Task Stage 1. At Task Stage 1, subjects decide whether to make a guess

or pay 10 points to sample. The available card to sample may be on the same row (“AA trials”) or the opposite row (“AB

trials”) as the first card. (A) Model predictions. The relative expected value (in points) of guessing versus sampling from

the dynamic programming model in the MULTIPLY conditions. Mid-valued cards make it more valuable to sample,

whereas extreme-valued cards make it more valuable to guess. There is a weaker influence of the location of available

information (compare “AA trials” versus “AB trials”). Crucially, optimal behavior is identical for both MULTIPLY BIG and

MULTIPLY SMALL conditions. (B) Subject behavior. The probability of guessing in both conditions shows a broad

similarity to the predictions of the dynamic programming model, but behavior in MULTIPLY BIG and MULTIPLY

SMALL shows systematic differences. (See S1 Fig for AA and AB trials plotted together, rather than MULTIPLY BIG

and MULTIPLY SMALL.) (C) Positive evidence approach bias is revealed by subtracting the MUTLIPLY SMALL

condition from the MULTIPLY BIG condition. Subjects are more likely to guess early if they have seen evidence that

supports them approaching row A rather than avoiding it. This effect is strengthened in AB trials, in which subjects only

have the opportunity to sample further information about row B. See also S2 Fig and S3 Fig for other conditions. Data

for reproducing all analyses is freely available for download from Dryad.

doi:10.1371/journal.pbio.2000638.g002
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As expected, the dynamic programmingmodel predicts identical behavior irrespective of
the subject’s approach goal. As an example, consider revealing a 2 in the MULTIPLY BIG con-
dition on an AA trial. This yields a probability of 0.764 that row B will be rewarded, and the
expected value of guessing is therefore 0.764 � 60 + (1–0.764) � (-50) = 34. The expected value
of sampling again from the A row, calculated using dynamic programming, is 28.8, and so the
relative expected value of guessing is 5.2 (Fig 2A). Now consider seeing a 2 in the MULTIPLY
SMALL condition. This now yields the exact same probability of 0.764 that row A will be
rewarded. Hence the expected value of guessing remains 34. The expected value of sampling
further information remains 28.8, and so the relative expected value of guessing remains 5.2.

In contrast with these model predictions, subjects’ actual behavior showed a systematic dif-
ference betweenMULTIPLY BIG and MULTIPLY SMALL conditions (compare circles and
plus signs in Fig 2B, see also S1 Fig). Subjects becamemore likely to guess if they had seen evi-
dence that supported them approaching row A rather than avoiding it. In MULTIPLY BIG, a
high-valued card (6 or above) carries evidence for choosing row A. Subjects becomemore likely
to guess than when seeing the same card in MULTIPLY SMALL. However, a low-valued card
in MULTIPLY BIG (5 or below) carries evidence for avoiding row A. Subjects now become
more likely to sample than when seeing the same card in MULTIPLY SMALL. This framing
effect is seenmost clearly when subtracting behavior in MULTIPLY SMALL fromMULTIPLY
BIG (Fig 2C).

The observedbias is one of approaching an option if positive evidence has been provided in
support of that option; consequently, we term this “positive evidence approach.” We observed
that positive evidence approach was more pronounced in AB trials than AA trials (Fig 2C).
This is again consistent with our hypothesis, as subjects are less inclined to sample further
information if it is available on a row they wish to avoid than if it is on a row they wish to
approach.

To quantify positive evidence approach across our population, we used the following sum-
mary statistic:

X10

i¼6

ðpGuessbig;i � pGuesssmall;iÞ þ
X5

i¼1

ðpGuesssmall;i � pGuessbig;iÞ

where pGuessbig,i and pGuesssmall,i denote the average probability of guessing in MULTIPLY
BIG and MULTIPLY SMALL, respectively, having revealed card value i. As there should be no
difference in the probability of guessing across the two conditions, the expected value of this
statistic from the normative model is 0. By contrast, the value of this statistic across our popula-
tion was 0.42 in AA trials and 0.70 in AB trials. To estimate our confidence in this summary
statistic, we recomputed it on 1,000 bootstrapped samples of 10,000 gameplays from our popu-
lation. This yielded 95% confidence intervals of [0.30, 0.54] in AA trials and [0.62, 0.79] in AB
trials. (Throughout the paper, we focus on the reporting of effect sizes and 95% confidence
intervals rather than p-values, as our large sample size renders p-values less informative [28].)

Similar results are seen by comparing the ADD BIG and ADD SMALL conditions (S2 Fig;
AA trials: mean 0.52, 95% CIs [0.40, 0.64]; AB trials: mean 0.79, 95% CIs [0.70, 0.89]). See also
S3 Fig for FIND THE BIGGEST/FINDTHE SMALLEST, which are not directly matched for
information content.

It is also notable that, overall, subjects’ behavioral choices to sample information were simi-
lar to predictions arising from the optimal model (Fig 2B), although not identical (S1 Fig). This
alone does not imply that subjects are implementing the optimal model. Instead, it may simply
reflect the fact that relatively simple behavioral strategies will often recapitulate many features
of more sophisticated strategies [29]. For example, one straightforward strategy would be to
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compare the value of the presented card to the average value, estimate the current degree of
uncertainty in making a choice, and then use these values with a softmax transformation [30]
to calculate a probability for selecting row A, selecting row B, or sampling further information.
We consider this question further in a latter section of the paper and show that this can
approximate the average behavior of subjects in the task without recourse to an optimal model.

“Rejecting Unsampled Options” Bias

We next asked how decisions to sample or reject information might influence subsequent
choices. If subjects elected to guess at the first stage, they entered the Choice Stage, in which
they gambled on which option would be rewarded (Fig 1A). In ADD BIG, the relative expected
value of choosing row A over row B increases with the value of the first card (Fig 3A, blue line),
while in ADD SMALL, it decreases with the value of the first card (Fig 3A, purple line). This
was reflected in subjects’ choices in both sets of trials (Fig 3B; see S4 Fig and S5 Fig for other
conditions). However, this decision arises on two different types of trial. The subject will either
have just declined the opportunity of sampling information from the A row (on AA trials), or
the B row (on AB trials). Our hypothesis was that information sampling depends upon the

Fig 3. Rejecting unsampled option bias at the Choice Stage. If subjects choose to guess at Task Stage 1, they then select between row A and row

B. (A) Model predictions. The relative expected value (in points) of choosing row A versus row B in the ADD BIG (cyan) and ADD SMALL (purple)

conditions. Crucially, the decision is identical for AA and AB trials; the only difference between these conditions is which row subjects have previously

declined to sample. (B) Subject behavior. The probability of choosing row A shows a softmax relationship to the relative values shown in Fig 3A. Note

that the green line (AB trials) is higher than the blue line (AA trials) at nearly all card values, particularly near the point of subjective equivalence. (C)

Rejecting unsampled option bias is revealed by subtracting AB trials from AA trials in both ADD BIG and ADD SMALL conditions. Subjects are more

likely to choose row A if they have declined to sample row B. See also S4 Fig and S5 Fig for other conditions. Data for reproducing all analyses is freely

available for download from Dryad.

doi:10.1371/journal.pbio.2000638.g003
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underlying approach value of an item. A corollary is that declining to sample an item reflects
an underlying preference for not approaching it.

When we compared choice preferences on AA and AB trials for identical card values on the
same condition, we observed that, across all six conditions, subjects showed a systematic shift
towards being less likely to choose the option that had just been left unsampled. Hence, subjects
presented with the same card value on an AA trial were more likely to choose option B than on
an equivalent AB trial (Fig 3B). This effect was most pronounced near the point of subjective
equivalence in subjects’ choices and is revealedmost clearly by subtracting subjects’ choice
behavior in AB from AA trials (Fig 3C).

We term this a “rejecting unsampled options” bias. To quantify rejecting unsampled options
across our population, we used the following summary statistic:

X10

i¼1

pðChoice ¼ AÞi;AB � pðChoice ¼ AÞi;AA

where p(Choice = A)i,AB denotes the probability of choosing row A having observedcard i on an
AB trial, and p(Choice = A)i,AA denotes the same probability on an equivalent AA trial. There is
no difference in the choice that is presented to the subject betweenAB and AA trials, and the
expected value of this statistic is therefore 0. The mean value of this statistic across the population
was 0.21 in ADD BIG (95% CIs [0.10, 0.32]) and 0.30 in ADD SMALL (95% CIs [0.18, 0.41]).

We also found the rejecting unsampled options bias to be present across all the other condi-
tions: MULTIPLY BIG (mean 0.24, 95% CIs [0.12, 0.35]; S4 Fig), MULTIPLY SMALL (mean
0.27, 95% CIs [0.15, 0.39]; S4 Fig), FIND THE BIGGEST (mean 0.22, 95% CIs [0.11, 0.35]; S5
Fig), and FIND THE SMALLEST (mean 0.21, 95% CIs [0.09, 0.34]; S5 Fig).

“Sampling the Favorite” Bias

Our design enabled us to also investigate where subjects chose to sample information. At Task
Stage 2 on AB trials, we could determine subjects’ relative preference for sampling from row A
versus row B (Fig 1A). Here, different conditions have different predictions for which row is
more advantageous to sample. For example, in both the ADD BIG and ADD SMALL condi-
tions, sampling from either row yields exactly the same amount of information about which
row might be rewarded. The optimal dynamic programmingmodel predicts no relative advan-
tage for sampling from row A versus row B (S6 Fig).

In bothMULTIPLY BIG and MULTIPLY SMALL conditions, however, dynamic program-
ming predicts that sampling from the row that currently has the higher-valued card will be
more informative. The intuition behind this is that the range of possible outcomes on the row
with the higher-valued card is greater, and so sampling further information on this row leads
to a greater reduction in uncertainty than sampling the row with the lower-valued card. This is
borne out in a heat map of model predictions, showing the difference in relative value from
sampling from row A versus row B (Fig 4A). Importantly, these predictions are identical for
bothMULTIPLY BIG and MULTIPLY SMALL conditions. Somewhat counterintuitively, it is
therefore more advantageous to sample from the row with the largest card even in MULTIPLY
SMALL. (Note that this is different from the relative expected value of guessing versus sam-
pling, which is shown in S8 Fig)

In contrast to model predictions, we found that subjects preferred to sample from the option
that currently had the higher value in the MULTIPLY BIG condition alone (Fig 4B, left). In the
MULTIPLY SMALL condition, they preferred to sample from the option that currently had
the lower value (Fig 4B, right). The influence of this bias in subjects’ information sampling is
revealedmore clearly by subtracting behavior in MULTIPLY SMALL from that of MULTIPLY
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BIG (Fig 4C). Whereas the optimal model shows no difference between these two conditions
(i.e., the entire heat map should equal 0), subjects reliably sampled information from the row
that they currently sought to approach rather than avoid.

We term this bias “sampling the favorite.” To quantify sampling the favorite, we derived
two statistics for trials in which subjects decided to sample a third piece of information.We cal-
culated one “strong evidence” statistic for trials in which the “favorite” (the item that would
eventually be approached) was clear. We defined this as trials where the difference in card val-
ues was 4 or greater in magnitude:

X10

i¼5

Xi� 4

j¼1

ðpðSample ¼ AÞi;j;big � pðSample ¼ AÞi;j;smallÞ�

X10

j¼5

Xj� 4

i¼1

ðpðSample ¼ AÞi;j;big � pðSample ¼ AÞi;j;smallÞ

where P(Sample = A)i,j,big refers to the relative probability of choosing to sample from row A

Fig 4. Sampling the favorite bias at Task Stage 2. If subjects choose to sample at Task Stage 1, they enter Task Stage 2. If this is on an AB

trial, they then may sample again from row A, or from row B, or make a guess. (A) Model predictions. The relative expected value (in points) of

sampling from row A versus sampling from row B in the MULTIPLY conditions. It is generally more valuable to sample from the row that

currently has the higher-valued card (e.g., the 7, in the example shown). Crucially, this prediction is the same in both MULTIPLY BIG and

MULTIPLY SMALL conditions. (B) Subject behavior. Subjects show a propensity to sample from the row containing the high-valued card in

MULTIPLY BIG, but this trend is reversed in MULTIPLY SMALL. Subjects are therefore inclined to sample the option that is currently most

likely to be approached. (C) Sampling the favorite bias is revealed by subtracting MULTIPLY SMALL trials from MULTIPLY BIG trials. The

normative model predicts this heat map to show no difference between conditions, yet there is a clear tendency to sample the currently favored

row. See also S6 Fig and S7 Fig for other conditions, and S8 Fig for relative value of guessing versus sampling across all six conditions. Data

for reproducing all analyses is freely available for download from Dryad.

doi:10.1371/journal.pbio.2000638.g004
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over row B, when card i is presented on row A and card j presented on row B, on MULTIPLY
BIG trials. The top row of the equation denotes trials where row A has a higher-valued card
than row B, favoring approaching A in MULTIPLY BIG but approaching B in MULTIPLY
SMALL. The converse is true for the bottom row.

We calculated a second “weak evidence” statistic for trials in which the “favorite” was less
clear. We defined this as trials in which the difference in card values was between 1 and 3 in
magnitude:

X10

i¼2

Xi� 1

j¼maxð1;i� 3Þ

ðpðSample ¼ AÞi;j;big � pðSample ¼ AÞi;j;smallÞ�

X10

j¼2

Xj� 1

i¼maxð1;j� 3Þ

ðpðSample ¼ AÞi;j;big � pðSample ¼ AÞi;j;smallÞ

Crucially, because the optimal model predicts identical values for sampling from row A versus
row B onMULTIPLY BIG and MULTIPLY SMALL, the expected value for both statistics is
always 0. In contrast, the value of the “strong evidence” statistic across our population was
12.35 (95% CIs [10.55, 14.01]), whilst the value of the “weak evidence” statistic was 7.21 (95%
CIs [5.85, 8.48]).

Note this bias was also observed in the ADD BIG/ADD SMALL condition (S6 Fig), where
the value of the “strong evidence” statistic was 11.93 (95% CIs [10.39, 13.51]), whilst the value
of the “weak evidence” statistic was 6.86 (95% CIs [5.61, 8.14]). See S7 Fig for FIND THE BIG-
GEST/FINDTHE SMALLEST, which are not directly matched for information content.

A Parametric Model of Subject Behavior

We consider that subjects are unlikely to be implementing dynamic programming when they
perform the task, yet their overall behavior shows a surprising resemblance to model predic-
tions (e.g., Fig 2B, Fig 3B). We therefore constructed a simpler model that describes subjects’
performance without recourse to dynamic programming.

In this model, subjects first compute the value of choosing each option by comparing the
presented value to the average value of all possible cards. In ADD BIG trials, at stage 1, for
example, this would be the following:

VðAÞ ¼ b1ð1stCardValue� < 1stCardValue >Þ

VðBÞ ¼ b1ð< 1stCardValue > � 1stCardValueÞ

where<1stCardValue> is the expected value of the first card (5.5) and β1 is a free parameter.
In ADD SMALL trials, we simply inverted the value of the each card, such that 10 became 1, 9
became 2, and so on.

We also considered an AB trial (e.g., Fig 4B), where after turning the second card, the values
of option A and B become the following:

VðAÞ ¼ b1ð1stCardValue � 2ndCardValueÞ

VðBÞ ¼ b1ð2ndCardValue � 1stCardValueÞ
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At both stages, we compute the degree of uncertainty, ω, in choosing either option:

o ¼ � ð
1

1þ eVðBÞ� VðAÞ
� 0:5Þ

2

This is then used to derive the value of sampling information from option A or option B:

Vðsample AÞ ¼ b2 þ b3 o

Vðsample BÞ ¼ b2 þ b3 o

The probability of each choice C being option o is finally generated using a softmax choice rule:

p C ¼ oð Þ ¼
e
VðoÞ

t

P
ie

VðiÞ
t

where i indexes the entire set of available options at a given stage of the task. Hence, at stage 1
of an AA trial, it indexes the set {choose A, choose B, sample A}; at stage 1 of an AB trial, it
indexes the set {choose A, choose B, sample B}; at stage 2 of an AB trial, it indexes the set
{choose A, choose B, sample A, sample B}. Note that the model therefore assumes a three- or
four-way decision at each stage of the game. Although in the structure of the task this was
made as two sequential binary decisions (guess or sample, then select a row), it reflects the intu-
ition that when subjects decide to guess, they already have internally committed to choosing a
particular row.

We fit parameters β1, β2, β3, and τ, using maximum likelihood estimation (fminsearch in
MATLAB) separately at stage 1 and stage 2. Fitting was repeated at 50 random seed locations
to avoid local minima, and the model was fit to the average behavior of all subjects across each
condition using a sum of squared errors cost function.We performed fitting separately for
both ADD and MULTIPLY conditions; we do not consider FIND THE BIGGEST/SMALLEST
conditions here, as these are not matched for information content. Note that this model does
not explicitly feature terms for the costs associated with sampling information; instead, these
are implicitly factored into the constant term β2.

This model captures the main features of the behavioral data (S9 Fig). At stage 1, it displays
a U-shaped effect of card value on information sampling (as in Fig 2B) caused by the effects of
choice uncertainty on the value of sampling information. It also displays a softmax choice
curve (as in Fig 3B) between options A and B, matching subjects’ real choice probabilities
between these two options. At stage 2, it displays choice probabilities between options A and B
that again closely match subjects’ behavior.

However, because this model makes symmetric predictions for BIG and SMALL trials, it
fails to capture the three biases described above (S9 Fig). We therefore adapted the model with
three additional parameters to capture these biases (Fig 5). At stage 1, before entering values
into the softmax choice equation, we captured the “rejecting unsampled options” bias (Fig 5D–
5F) by adding an “approach bonus” (β4) to the value of the item that could not be sampled.
This makes subjects more likely to choose this option if they do not sample information.

VðAÞ ¼ VðAÞ þ b41stCardValue ½on AB trials only�;

VðBÞ ¼ VðBÞ þ b4 < 1stCardValue > ½on AA trials only�:

A natural consequence of this value modulation by β4 is that it also induces a change in the
form of the uncertainty ω, which determines the value of sampling information (see above).
Whereas previously this would have been symmetric around the average value of the first card,
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Fig 5. Behavioral predictions from the full parametric model of subject behavior, with best-fit parameters. (A) Predicted probability of guessing

at stage 1 for AA trials (compare to Fig 2Bi) and (B) AB trials (compare to Fig 2Bii) in “add” condition. (C) Predicted “positive evidence approach” bias.

Compare to Fig 2C. (D) Predicted probability of choosing row A, having chosen to guess, at stage 1, for “add big” (compare to Fig 3Bi) and (E) “add small”

(compare to Fig 3Bii) conditions. (F) Predicted “rejecting unsampled options” bias. Compare to Fig 3C. (G) Predicted probability of sampling row A in

“big” (compare to Fig 4Bi) and in (H) “small” (compare to Fig 4Bii) conditions. (I) Predicted “sampling the favorite” bias. Compare to Fig 4C. See also S9

Fig. Data for reproducing all analyses is freely available for download from Dryad.

doi:10.1371/journal.pbio.2000638.g005
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it now becomes asymmetric, but in opposite directions on “add big” versus on “add small” tri-
als. On AB trials, this feature of the model is thus sufficient to also capture the “positive evi-
dence approach” bias (Fig 5B and 5C).

On AA trials, however, the “approach bonus” alone predicts the opposite pattern of “posi-
tive evidence approach” to that observed in the data. We instead found that we could capture
the “positive evidence approach” bias (Fig 5A–5C) by modulating the value of sampling option
A:

Vðsample AÞ ¼ b2 þ b3 o � b5ð1stCardValueÞ ½on AA trials only�:

Notably, we found increasing first card value had a negative influence on the value of sampling
A, reflected by the negative sign in front of parameter β5. We infer that on AA trials (where
option A is available to be sampled), subjects are more inclined to choose option A when it is
of high value than to sample again from it. This parameter is not needed on AB trials, where
“positive evidence approach” is already captured by the β4 parameter alone. It should also be
noted that it captures another general feature of the data, which is that subjects are more likely
overall to guess on AA trials than on AB trials (see S1 Fig). This is because β5 reduces the value
of sampling on AA trials selectively.

Finally, at stage 2, we found that we could capture the “sampling the favorite” bias (Fig 5G–
5I) by introducing a parameter that affected subjects’ propensity to sample from higher-valued
cards:

Vðsample AÞ ¼ b2 þ b3 oþ b6ð1stCardValue� 2ndCardValueÞ

Vðsample BÞ ¼ b2 þ b3 oþ b6ð2ndCardValue� 1stCardValueÞ

Parameter fits for stage 1 and stage 2 for both ADD and MULTIPLY trials are given in S1
Table. To confirm that the additional parameters provided additional complexity to model fits
without overfitting, we used 10-fold nested cross-validation. Parameters were fit using 90% of
the data (training set), and then the cost functionwas calculated for the remaining 10% of the
data (test set, not used to train the model). This process was iterated ten times using different
portions of the data as the test set each time. At both stage 1 and stage 2, for both ADD and
MULTIPLY conditions, the model with additional parameters provided consistently better fits
to the test set than the reducedmodel (S2 Table).

The close fit betweenmodel predictions and subject behavior reveals that a far simpler
framework (comparing a card value to the average expected value) can approximate an optimal
dynamic programmingmodel. Moreover, subjects’ approach-induced biases in information
sampling can be readily parameterizedwithin this framework.We anticipate that further, more
refinedmodels will be subsequently tested by downloading the raw behavioral data from
Dryad [31].

One potential drawback of the proposedmodel is that each of the three biases is captured by
a separate parameter rather than a single unifyingmechanism driven by Pavlovian approach.
We therefore tested whether these parameters are related to each other across the entire popu-
lation of subjects—that is, whether they might show positive covariance with each other. To
this end, we adopted an alternative model fitting strategy using a mixed effects analysis to
describe population behavior. A mixed effects analysis contains population-level hyperpara-
meters to constrain individual subject model fits (see reference [32] for details). An added ben-
efit is that one can examine the covariance structure of these hyperparameters to explore how
β4, β5, and β6 are related to each other. Importantly, we found that, after model fitting, the
covariance between all three parameters was positive.We normalized by the variance of each
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parameter to yield correlation coefficients between β4, β5, and β6; this yielded a positive correla-
tion between β4 and β5 (r = 0.21), between β4 and β6 (r = 0.06), and between β5 and β6 (r = 0.12;
p< 0.0001 for all comparisons). This analysis provides evidence that subjects who showed
stronger expression of one of the biases also tended to show greater expression of the remain-
ing two biases.

Relationship of Biases to Pavlovian Approach-Avoid Parameter

An advantage of large-scale data collection via a smartphone app is that it allows data to be
gathered on a range of cognitive tasks across a large cohort of subjects. Recently, we reported
learning and choice behavior on another gambling task contained within the same app plat-
form [27,33]. In this simpler gambling task, subjects make binary choices between safe and
risky options in three types of trials: gain trials (a certain gain versus a larger gain/zero gain
gamble), mixed trials (certain zero gain versus a mixed gain/loss gamble), and loss trials (a cer-
tain loss versus a larger loss/zero loss gamble). Notably, subject behavior in this task was best
characterizedwithin a Pavlovian approach-avoidance decisionmodel when compared to a
range of models that also included a standard Prospect Theorymodel [27]. This decision
model captures the influence on risk-taking behavior of both economic preferences and Pav-
lovian influences. It describes subjects’ value-independent propensity to approach or avoid
gain gambles with a single parameter, βgain, and their value-independent propensity to
approach or avoid loss gambles with a second parameter, βloss. Full details of modeling are pro-
vided in [27] and Materials and Methods.

For each subject who played both games within the app (n = 21,866 users), we estimated
βgain and βloss and computed the difference between these two parameters. We performed a
median split on these values to derive two subpopulations of subjects, one exhibiting a larger
bias for approach potential rewards over avoid potential losses and one exhibiting a weaker
bias. Next, we calculated the average behavior in our task of the subjects within these two sub-
populations.We then fit the model described in the previous section to subjects’ aggregate
behavior and compared the fits of β4 (rejecting unsampled options), β5 (positive evidence
approach), and β6 (sampling the favorite) statistics across the different subpopulations. To esti-
mate our confidence in these statistics, we performed 100 bootstraps using 10,000 samples
drawn from each subpopulation.

All three of our information sampling biases were differentially present in the high
approach-avoid versus low approach-avoid groups. Positive evidence approach was greater in
the high approach-avoid group in both add and multiply trials (Fig 6A). Rejecting the
unsampled option was also greater in the high approach-avoid group in the add condition,
although this difference was slightly reversed in the multiply condition (Fig 6B). Sampling the
favorite showed a subtler pattern of expression was greater in the high approach-avoid group
in both add and multiply trials (Fig 6C). All of the different observedbiases are linked by the
tendency to sample information from locations that will eventually be approached. The present
results show that this is also reflected in the expression of these biases in groups exhibiting dif-
ferential levels of Pavlovian approach influence on their behavior.

Variability in Information Sampling across Age and Education Groups

An additional advantage of acquiring data via smartphone is that it enables examination of var-
iation in information sampling across a much wider range of subjects than is typically exam-
ined in laboratory studies. In an initial exploration of this, we examined variation in a simple
measure of information seeking, namely the average number of cards turned relative to the
optimal model.
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Fig 6. Expression of all three biases is differentially present in subjects with high versus low Pavlovian approach, quantified in a separate

gambling task. Blue bars denote subjects with below-median values for βgain–βloss; red bars denote subjects with above-median values. (A) The positive

evidence approach bias is quantified using the β5 parameter in the parametric model of subject behavior; in both conditions, subjects with high approach-

avoid parameter differences show more positive evidence approach than subjects with low parameter differences. (B) The rejecting unsampled option is

quantified using the β4 parameter in the parametric model of subject behavior; in the add conditions, there is considerably greater expression of rejecting

unsampled option in subjects with high approach-avoid parameter differences; there is a weaker trend in the opposite direction in the multiply condition. (C)

The sampling the favorite bias is by quantified using the β6 parameter in the parametric model of subject behavior; in both conditions, subjects with high

approach-avoid parameter differences show more sampling the favorite bias than subjects with low parameter differences. Bars/error bars reflect mean/

standard deviation across 1,000 bootstrapped samples of 10,000 gameplays. Data for reproducing all analyses is freely available for download from Dryad.

doi:10.1371/journal.pbio.2000638.g006

Fig 7. Individual differences in information seeking. (A) Histogram of the mean number of cards sampled in each trial relative to how many

would be sampled by the optimal model. Subjects show a propensity to guess early, but there is considerable individual variation. (B) Individual

variation in information sampling reproduces across subsequent gameplays. Each dot is a subject; subjects who were inclined to seek little

information in gameplay 1 also sought little information in gameplay 2. (C) Variation in information seeking (top) and subject performance

(bottom) as a function of educational attainment (left panels) and age (right panels). General Certificate of Secondary Education (GCSE) is

equivalent to 10th grade in United States; A Level (ALev) is equivalent to 12th grade. Datapoints denote mean +/- standard error of the mean.

Data for reproducing all analyses is freely available for download from Dryad.

doi:10.1371/journal.pbio.2000638.g007
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Subjects reliably sampled less information than predicted from the optimal model, but there
was substantial variation across the population (Fig 7A). It is important to remember, however,
that the model is only “optimal” in the sense of maximizing expected points per gameplay. It
does not, for example, include additional factors such as the subjective cost of sampling infor-
mation. Indeed, we found that adding a “subjective sampling cost” of 5 points per turn to the
optimal model shifted the distribution in Fig 7A so that it was now centered around zero (S10
Fig). Nonetheless, variability in the extent to which individual subjects sampled information
was highly reproducible across repeated gameplays (Fig 7B and S10 Fig), and we also found it
to be stable irrespective of which set or ordering of conditions subjects played (S11 Fig). This
suggests that it provides a measure that might be related to performance on other cognitive
tasks or demographic information about participants. An example of the latter is our finding
that the number of cards gathered was positively related to both the highest level of attained
education and age group of our participants (Fig 7C, top panels). Importantly, this measure
was decoupled from general performance on the task, which was positively related to educa-
tional attainment but negatively related to age (Fig 7C, bottom panels). There was a very slight
tendency for subjects within the “high approach-avoid group” to gather more evidence versus
subjects in the “low approach-avoid group,” but this difference was negligible relative to the
overall variance in information sampling across the population (mean of 0.0066 more cards
sampled in high approach-avoid group, 95%CIs [0.0037, 0.0094]).

Discussion

Information seeking comprises interlinked decisions that include how much to sample, where
to sample from, and, finally, which option to choose based upon sampled information.Whilst
the complexity of our task allowed these different features to be indexed simultaneously within
a single scenario, the task was sufficiently constrained such that it can be treated as a Markov
decision process. As such, an optimal model of the task can be derived using dynamic pro-
gramming [26]. Dynamic programming has rarely been considered as a normative basis for
analysis of information search strategies in human information search [7]. Although computa-
tionally expensive, a distinct advantage for our purposes is that it straightforwardly derives a
common currency for the expected value of sampling in different locations against the value of
choosing a particular option.

Subjects rapidly learnt the task, with their performance in terms of points gained becoming
relatively stable within ~4 trials; moreover, basic features of subject behavior (e.g., Figs 2B and
3B) matched with the overall pattern of predictions from the normative model. This confirms
our previous observations concerning the validity of behavioral data acquired via smartphone
[25]. We make the large behavioral dataset freely available for download [31], providing an
empirical testing ground for models of human information seeking.

Crucially, three features of subject behavior at different Task Stages showed demonstrable
biases in information seeking. Two of these biases, positive evidence approach and sampling
the favorite, were elicited as a consequence of our manipulation of which item subjects
approached across different conditions. A third bias, rejecting unsampled options, was demon-
strated as an effect of rejecting an option on the preference of a subject for choosing that
option. All three biases were a consequence of the item that subjects currently sought to
approach. Althoughmanifesting as suboptimal biases in our experiment, we contend that these
behaviors are present because they are likely to be, and have been, adaptive ecologically [34]. In
nature, foraging decisions (such as whether to stay or depart from a patch, or whether to
engage with or reject an item of prey) are more common than those made between binary
mutually exclusive options [35]. In such contexts, we hypothesize that an adaptive strategy is to
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engage with the most valuable alternative first and then accept or reject this alternative having
acquiredmore information about its value. It would be intriguing to test whether approach-
induced information sampling can produce optimal information sampling in more naturalistic
foraging paradigms.

Further evidence supporting the claim that our biases are related to Pavlovian approach
comes from their differential expression in two groups who varied in the degree of a Pavlovian
approach-avoid parameter derived from a separate decision task. This provides a tentative sug-
gestion of an underlying dopaminergicmechanism for control of Pavlovian approach on infor-
mation seeking behaviors, given our recent demonstration that Pavlovian approach is boosted
in subjects treated with L-DOPA [27]. We also note that polymorphisms in genes controlling
dopamine function have recently been linked to individual differences in confirmation bias
[36]. Moreover, recordings frommidbrain dopaminergic neurons reveal that they signal infor-
mation in a manner consistent with the animal’s preference for advance information in the
same manner that they encode information about reward [17]. Future studies could easily
exploit possibilities of data collection via smartphone to test this and related hypotheses via
combined collection of genetic and behavioral data across large populations. It might also be
possible to design future versions of our task with a larger number of trials/conditions per sub-
ject so as to elicit each of the three observedbiases within-subject rather than depending upon
examining amalgamated data across a population.

It should be noted, however, that this effect was relatively small. This may in part be due to the
limited number of trials completed on both tasks, which provides significant challenges for char-
acterization of individual subject behavior. This is particularly the case whenmultiple conditions/
trial types need to be completed to obtain an effect. In the present study, there were only 22 trials
per subject, and this is becausewe explicitly aimed to ensure that the average time to complete
each game was less than 5 minutes, as shorter games yield the highest number of gameplays [25].

It is possible that subjects had miscalibrated beliefs about task structure. For example, they
may not have realized that there was a card value 1, which is normally replaced by an “ace” in a
regular deck of playing cards; or theymay have believed that the average card value is 5, rather
than 5.5. Such beliefs can straightforwardly be factored into the dynamic programmingmodel, as
can misunderstandings about the cost structure of the task, or additional opportunity costs for
sampling further evidence.We found that such manipulations did indeed influence the relative
preference of the model for guessing or sampling at different card values (S10 Fig). Crucially,
however, none of these belief-basedmanipulations predict any of the three biases observed. “Pos-
itive evidence approach” and “sampling the favorite” depend upon comparisons of SMALL and
BIG conditions: any normative model predicts that subjects’ information sampling should be
identical between these conditions, and that they should simply flip their final choice. Similarly,
“rejecting unsampled options” depends upon a comparison of final choice behavior in AA and
AB trials in situations in which the subject has received identical information in both trial types.

It would also be possible to explore alternative versions of the current experiment that
might examine the generality of our approach-avoidance account of information seeking
biases. For instance, it would be intriguing to manipulate the affective valence of “points” such
that they became aversive rather than rewarding. In such an experiment, we would predict that
the approach-induced biases in information sampling would reverse. It would also be interest-
ing to parametricallymanipulate the costs involved in sampling different cards, as this would
allow the experimenter to directly quantify the value of sampling information from different
locations. It is also important to bear in mind that, even when information sampling is biased,
posterior beliefs can remain unbiased if belief updating is performed normatively [37,38]. It
would be informative in future experiments to formally dissociate subjects’ apparent biases in
information sampling from their biases, if any, in their belief updating.
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Our findings are closely linked to other evidence from recent studies that relates the value of
stimuli to deployment of attention [23,39,40]. Both these studies and our own suggest that
valuable items capture attention and, hence, cause more information to be sampled from the
associated location. In contrast with these previous studies, however, we show that the influ-
ence of value on information sampling occurs rapidly, can be reshaped depending upon cur-
rent task goals, and can manifest as several distinct behavioral biases that affect multiple stages
of information sampling. Combined, this evidence argues that choice models in which atten-
tion and information sampling are determined purely stochastically [6] require revision.
Whereas these models convincingly demonstrate an important role for the locus of attention
on valuation, the present data imply that the converse is also true. In simple terms, the value
subjects ascribe to a location influences how likely they are to sample from it.

Materials and Methods

Ethics Statement

Ethical approval for this study was obtained from University College London research ethics
committee, application number 4354/001.

Smartphone-Based Data Acquisition

Researchers at theWellcome Trust Centre for Neuroimaging at University College London
worked withWhite Bat Games to develop The Great Brain Experiment [25], available as a free
download on iOS and Android systems (see http://thegreatbrainexperiment.com). Ethical
approval for this study was obtained from University College London research ethics commit-
tee, application number 4354/001. On downloading the app, participants filled out a short
demographic questionnaire and provided informed consent before proceeding to the games.
Each time a participant started a game, a counter recording the number of plays was incremen-
ted. At completion of a game, if internet connectivity was available, a dataset was submitted to
the server containing fields defining the game's content and the responses given. The first time
a participant completed any game the server assigned that device a unique ID number (UID).
All further data submissions from that device, as well as the demographic information from
the questionnaire, were linked to the UID. No personal identification of users was possible at
any time. Users who responded that their age was less than 18 years during the demographic
questionnaire (i.e., minors) were excluded from the study: the app allowed these users to play
the games, but no data were submitted to the server (hence the minimum age category on Fig
7C is 18–25 years).

The information-seeking game was available by clicking on “Am I a risk-taker?”, which
launched the game. On each gameplay, subjects were randomly assigned to play short blocks
(11 trials each, as outlined in Fig 1A and main text) of two different conditions randomly
selected from six possibilities (Fig 1B). In two of these, subjects had to select the row that they
believe contained the largest sum (“ADD BIGGEST”) or largest product (“MULTIPLY BIG-
GEST”). In a further two conditions, subjects has to reverse their eventual choice and select the
row containing the smallest sum (“ADD SMALLEST”) or product (“MULTIPLY SMALL-
EST”). The remaining two conditions required participants to select the row with the largest or
smallest individual card (“FIND THE BIGGEST” and “FIND THE SMALLEST,” respectively).
Full instructions for the task can be seen in S1 Text and S1 Movie.

The economic gambling task was available by clicking on “What makes me happy?" Subjects
started the game with 500 points and made 30 choices in each play. In each trial, subjects chose
between a certain option and a gamble. Chosen gambles, represented as spinners, were resolved
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after a brief delay. Subjects were presented with the question, “How happy are you at this
moment?” after every two to three trials.

Dynamic Programming Model

The probabilistic structure of the task means that it is straightforward to derive a normative
solution of task performance that maximizes the expected average number of points to be
obtained from a given set of moves. This is achieved by applying dynamic programming to the
task [30]. At each step, dynamic programming calculates the expected value of every possible
action (seekingmore information in a particular location, or making a guess). To do so, it takes
into account the full probability distribution of currently hidden cards and the possible gain in
information that can be obtained from sampling further.

Each combination of presented cards is defined as a state s. The best possible action a that a
subject can take in a given state is defined as:

Q�s ¼
max
a

Qs;a

In a given state, the action valueQ of making a particular guess in a particular state s can be cal-
culated as:

Qs;guess ¼ 60 � pðwinÞ � 50 � pðloseÞ þ totalcost

where p(win) is the current probability of winning by making that guess, p(lose) is the probabil-
ity of losing, and totalcost is the incurred costs for sampling information thus far.

By contrast, sampling further information has a fixed probability (0.1) of transitioning into
one of 10 possible subsequent states (10 different card values may be revealed). The value of
sampling can then be calculated as the best action value in the subsequent state multiplied by
the probability of transitioning:

Qs;sample ¼
X10

i¼1
0:1 � Q�si

where si is the state that the subject would transition into if card value i is revealed. To calculate
the value of sampling, one works backwards from the terminal state (all four cards revealed,
whereQs,guess = 15 (= 60–10–15–20)) to calculateQ�s in all previous states.

Pavlovian Approach-Avoidance Model

Full details of the approach-avoidance decisionmodel are given in reference [27]. In brief, sub-
jects’ expected utilities for choosing the safe option (Ucertain) and risky option (Ugamble) were fit-
ted using an established parametric decisionmodel based on Prospect Theory [41]. The
probability of choosing to gamble was then modelled by modifying the softmax function:

Pgamble ¼
1 � b

1þ e� mðUgamble � UcertainÞ
þ b if b � 0

Pgamble ¼
1þ b

1þ e� mðUgamble � UcertainÞ
if b < 0

This causes a value-independent change in the probability of gambling, with mapping choice
probabilities to be bounded at (β,1) if β is greater than zero, and (0,β) if β is less than zero. β is
fit separately for gain trials and loss trials, yielding two parameters, βgain and βloss.
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Data Deposited in the Dryad Repository

Raw data, along with MATLAB scripts for reproducing all figures shown in the paper and code
for the dynamic programmingmodel, are freely available for download from http://dx.doi.org/
10.5061/dryad.nb41c [31].

Supporting Information

S1 Fig. Probability of guess in MULTIPLY condition for MULTIPLY BIG (left) and MUL-
TIPLY SMALL (right) conditions.Data are the same as in main Fig 2B, but are replotted with
AA and AB trials on top of each other to facilitate comparison with dynamic programming
model predictions.
(PDF)

S2 Fig. Figure layout as per main Fig 2, but for ADD conditions.Note that there is now no
difference between normative model predictions for AA vs. AB trials.
(PDF)

S3 Fig. Figure layout as per main Fig 2, but for single card trials.Note that in single card tri-
als, the same card value carries different amounts of information between the two conditions
(hence part A is split into two plots). As such, there is no direct equivalent for the positive evi-
dence approach bias.
(PDF)

S4 Fig. Figure layout as per main Fig 3, but for multiply trials.
(PDF)

S5 Fig. Figure layout as per main Fig 3, but for single card trials.
(PDF)

S6 Fig. Figure layout as per main Fig 4, but for add trials.Note that there is no relative
advantage for sampling row A over row B in the normative model (part A).
(PDF)

S7 Fig. Figure layout as per main Fig 4, but for single card trials.Note that in single card tri-
als, the same card value carries different amounts of information between the two conditions
(hence part A is split into two plots). As such, there is no direct equivalent for the sampling the
favourite bias.
(PDF)

S8 Fig. The relative expectedvalue of guessing (and choosing the best option) minus the
expectedvalue of sampling further information, at Task Stage 2 on AB trials, derived using
dynamic programming. (A) ADD conditions, where predictions are identical for ADD BIG
and ADD SMALL. (B) MULTIPLY conditions, where predictions are identical for MULTIPLY
BIG and MULTIPLY SMALL. (C) SINGLE CARD conditions. Top row = FINDTHE BIG-
GEST condition, bottom row = FIND THE SMALLEST condition.
(PDF)

S9 Fig. Behavioral predictions from the reduced (4-parameter)model of subject behavior,
with best-fit parameters.Data is plotted as in main Fig 5. (A) Predicted probability of guessing
at stage 1 for AA trials and (B) AB trials in ‘add’ condition. (C) Predicted ‘positive evidence
approach’ bias. (D) Predicted probability of choosing row A, having chosen to guess, at stage 1,
for ‘add big’ and (E) ‘add small’ conditions. (F) Predicted ‘rejecting unsampled options’ bias.
(G) Predicted probability of sampling row A in ‘big’ and in (H) ‘small’ conditions. (I) Predicted
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‘sampling the favorite’ bias.
(PDF)

S10 Fig. Data plotted as in main Fig 7A and 7B, but with an additional ‘subjective sampling
cost’ of 5 points/turn added to the normative model.The mean of the distribution of the
number of cards sampled relative to the model (left panel) now lies close to 0.
(PDF)

S11 Fig. Information seeking is a stable trait irrespectiveof condition ordering.Along the
bottom of the matrix is the condition experienced in the first 11 trials of gameplay 1 (1 = FIND
BIGGEST, 2 = FIND SMALLEST, 3 = ADD BIG, 4 = ADD SMALL, 5 = MULTIPLY BIG,
6 = MULTIPLY SMALL), whilst along the left of the matrix is the condition experienced in the
first 11 trials of gameplay 2. The color of the heatmap reflects the correlation coefficient
between information sampling (relative to the optimal model) across the two gameplays (as in
main Fig 7B).
(PDF)

S1 Table. Maximum likelihoodestimates of parametricmodel of subject behavior.
(DOCX)

S2 Table. Sum of square errors for model fitting on left-out data during 10-fold nested
cross-validation (mean +/- S.E.M.).
(DOCX)

S1 Text. Instructions provided to subjects when performing the task.
(DOCX)

S1 Movie. Examplemovie of subject performing several trials of the task, starting from the
home screen. (Readers can also download the app, at http://www.thegreatbrainexperiment.
com).
(MP4)
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