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According to the WHO, “cirrhosis of the liver” was the 11th leading cause of death globally
in 2019. Many kinds of liver diseases can develop into liver cirrhosis, and liver fibrosis is the
main pathological presentation of different aetiologies, including toxic damage, viral
infection, and metabolic and genetic diseases. It is characterized by excessive
synthesis and decreased decomposition of extracellular matrix (ECM). Hepatocyte cell
death, hepatic stellate cell (HSC) activation, and inflammation are crucial incidences of liver
fibrosis. The process of fibrosis is also closely related to metabolic and immune disorders,
which are usually induced by the destruction of oxygen homeostasis, including
mitochondrial dysfunction, oxidative stress, and hypoxia pathway activation.
Mitochondria are important organelles in energy generation and metabolism. Hypoxia-
inducible factors (HIFs) are key factors activated when hypoxia occurs. Both are
considered essential factors of liver fibrosis. In this review, the authors highlight the
impact of oxygen imbalance on metabolism and immunity in liver fibrosis as well as
potential novel targets for antifibrotic therapies.
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BACKGROUND

Liver cirrhosis is an irreversible liver fibrosis and was the 11th leading cause of death worldwide from
2000 to 2019 according to the WHO (WHO, 2020). Liver fibrosis is a common pathological pathway
for various liver diseases, including viral hepatitis, toxic hepatitis, autoimmune hepatitis, and
metabolic and genetic liver diseases (Iredale and Campana, 2017). It is a response to persistent
liver injury and is characterized by excessive deposition of extracellular matrix (ECM) (Alegre et al.,
2017). In the end stage, most liver fibrosis progresses into liver cirrhosis, with the loss of normal
function. Early liver fibrosis is reversible, but once it develops into cirrhosis, it is irreversible and leads
to functional failure and many complications, such as portal hypertension. Therefore, the prevention
and reversal of fibrosis is the main aim for the treatment of liver diseases (Schuppan et al., 2018).

The death of hepatocytes, activated hepatic stellate cells (HSCs), and inflammation are the main
causes of the development of liver fibrosis (Alegre et al., 2017). An imbalance in oxygen supply can
lead to injury to organ parenchymal cells to secrete various fibrotic and inflammatory cytokine
factors and recruit inflammatory cells to the injured stroma in chronic diseases (Darby and
Hewitson, 2016; Liu et al., 2017). Hypoxia is rather common in chronic liver diseases. There are
several pathways regulating oxygen homeostasis, and hypoxia-inducible factor-1α (HIF-1α) is one of
them. HIF-1α, activated in hypoxia, could regulate the transcription of many genes (Kietzmann,
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2019). Increasing evidence shows the role of HIF-1α in the process of
liver fibrosis (Strowitzki et al., 2018). On the other hand, it always
shows excess oxidative stress, mitochondrial dysfunction, and
excessive inflammation in chronic liver diseases. Mitochondria are
the center of metabolism. With mitochondrial dysfunction in liver
disease, it not only releasesmitochondrial danger-associatedmolecular
patterns (DAMPs) but also disrupts oxygen homeostasis. DAMPs are
released during the condition of liver injury, activating
inflammasomes. These injuries may activate HSCs, myofibroblasts,
and other cells to synthesize ECM (Schuppan et al., 2018).

Here, we summarize the molecular mechanism of immune,
metabolic, and oxygen homeostasis regulation in liver fibrosis to
explore precise therapeutic targets and provide clinical treatment
strategies.

THE MOLECULAR MECHANISM OF
OXYGEN HOMEOSTASIS REGULATION

Mitochondrial Function
Mitochondria are important organelles in the generation of
adenosine triphosphate (ATP) from lipid, glucose, and amino acid
metabolism. The Krebs cycle in the mitochondrial matrix and
oxidative phosphorylation in the mitochondrial inner membrane
are important processes in energy production.Mitochondria also play
a role in β-oxidation of fatty acids, reactive oxygen species (ROS)
generation, cell apoptosis, autophagy, calcium homeostasis, and other
biological processes (Boengler et al., 2017).

HIF Pathway
HIFs are key receptors for detecting cellular oxygen rates, consisting
of an oxygen-labile α subunit (HIF1α, HIF2α or HIF3α) and a
constitutively expressed β subunit (HIFβ) (Peek, 2020). HIFβ is
expressed stably and continuously and does not participate in
oxygen detection. HIFα subunits are regulated by oxygen at the
posttranslational level. Under normal conditions, HIFα subunits are
hydroxylated at specific proline residues by the prolyl hydroxylase
domain (PHD) protein (Wong et al., 2013). Then, the von Hippel-
Lindau (VHL)/E3 ubiquitin ligase system recognizes the
hydroxylated subunits that induce protein degradation and
inactivation (Günter et al., 2017). In hypoxic environments, HIFα
subunits are not hydroxylated, which mediates protein stabilization.
HIFα subunits heterodimerize with HIFβ subunits to form a nuclear
heterodimer, which drives target gene transcription by binding to the
hypoxia response element (HRE) (Baik and Jain, 2020).

THE DESTRUCTION OF OXYGEN
HOMEOSTASIS IN LIVER FIBROSIS

Role of the Mitochondrial Dysfunction in
Liver Fibrosis

Mitochondrial Structure and Dynamics and Liver
Fibrosis
Mitochondrial dysfunction can be detected in many kinds of liver
diseases and is believed to be involved in liver fibrosis (Mansouri

et al., 2018). It is characterized by ultrastructural mitochondrial
lesions, respiratory chain activity reduction, ATP depletion,
excessive ROS levels, and mitochondrial DNA (mtDNA)
damage. A recent article reported that mitochondrial
dysfunction in peripheral cells along with alterations in
metabolites of the urea cycle may act as biomarkers for the
progression of fibrosis in nonalcoholic fatty liver disease
(NAFLD) (Ajaz et al., 2021). The mitochondrial quality
control system is crucial for the maintenance of mitochondria,
including mitochondrial biogenesis, fusion and fission, and
mitophagy.

Mitochondrial biogenesis is regulated by peroxisome
proliferator-activated receptor-gamma (PPAR γ) coactivator-
1alpha (PGC-1α) (Wu et al., 1999), which is a kind of
transcriptional coactivator that regulates the expression of
several transcription factors, such as nuclear respiratory factor
(NRF)-1 and NRF-2 (Bhatti et al., 2017; Kiyama et al., 2018), and
mitochondrial transcription factor A (TFAM) (Kang et al., 2007).
A recent study proved that astaxanthin attenuated hepatocyte
damage and mitochondrial dysfunction in NAFLD by
upregulating the FGF21/PGC-1α pathway (Wu et al., 2020).
PGC-1α, NRF-1, and TFAM were also elevated after
melatonin treatment in carbon tetrachloride (CCl4)-treated
rats. Melatonin protected against liver fibrosis by upregulation
of mitochondrial biogenesis (Kang et al., 2016). Moreover, the
antifibrotic effects of pomegranate seed oil (PSO),
epoxyeicosatrienoic acid-agonist (EET-A), curcumin,
liquiritigenin, and Solanum nigrum (AESN) may be related to
the upregulation of PGC-1α (Zhai et al., 2015; Zhang et al., 2015;
Tai et al., 2016; Raffaele et al., 2019; Raffaele et al., 2020).

Mitochondrial fusion is regulated by the fusion proteins
mitofusin 1 (Mfn1) and Mfn2 and optic atrophy 1 (OPA1),
while mitochondrial fission in mammals is regulated by
dynamin-related protein 1 (Drp1) (Ni et al., 2015). The role of
PGC-1α in mitochondrial dynamics has been reported. In
oxidative stress-induced mitochondrial damage, the
downregulation of PGC-1α is related to abnormal
mitochondrial fission. Hence, PGC-1α overexpression reduced
Drp1 protein levels and prevented liver fibrosis (Zhang et al.,
2020). Particulate matter ≤2.5 μm (PM2.5) also contributes to
mitochondrial dynamics dysfunction by increasing Drp1 and
decreasing PGC-1α levels (Wang et al., 2021). The
overexpression of HK domain-containing 1 (HKDC1) in the
liver induced a defect in mitochondrial function by increasing
Drp1 (Pusec et al., 2019). The antifibrotic effect of lipoic acid (LA)
may be related to the upregulation of Drp1 (Luo and Shen, 2020).

Impaired Mitophagy and Liver Fibrosis
Mitophagy refers to the removal of dysfunctional mitochondria
through fusion with lysosomes (Yoo and Jung, 2018). It can be
classified into Pink1–Parkin-mediated mitophagy and Parkin-
independent mitophagy. Mitophagy mediated by Drp-1 was
activated by PM2.5, leading to HSC activation and fibrosis.
Chronic CCl4 exposure impaired mitophagy in the liver, and
melatonin may attenuate liver fibrosis by elevating PINK1 and
Parkin (Kang et al., 2016). Researchers have shown that
mitochondrial depolarization (mtDepo) occurs early in mice
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fed a Western diet (high fat, fructose, and cholesterol) and
increases mitophagic burden. Together with suppressed
mitochondrial biogenesis and mitochondrial depletion,
mitochondrial damage promotes the progression of liver
fibrosis (Krishnasamy et al., 2019). It is worth mentioning that
Parkin-independent mediators, including Bcl2/adenovirus E1B
19 kDa protein-interacting protein 3 (BNIP3) and NIX, can be
regulated by HIF-1, thus removing damaged mitochondria and
protecting against ROS accumulation.

Impaired mtDNA Homeostasis and Liver Fibrosis
In the case of mitochondrial dysfunction, mitochondrial DAMPs
(mtDAMPs) are released to the extracellular space. This can
stimulate liver inflammation and promote liver fibrosis. A recent
study reported that mtDAMPs released from impaired
hepatocyte mitochondria could directly activate HSCs (An
et al., 2020). The role of mtDAMPs in liver fibrosis will be
discussed in detail later.

Reactive Oxygen Species Generation in Mitochondria
The mitochondrial respiratory chain is considered the main
source of ROS production. ROS refer to oxygen free radicals
and nonradical oxidants (Zorov et al., 2014). It can be produced
in both the mitochondrial matrix and the intermembrane space
(Bouchez and Devin, 2019). Under normal homeostasis,
mitochondria can remove physiological ROS by antioxidant
mechanisms and metabolic adaptations (Lee et al., 2019) and
thus maintain a balance between ROS production and removal.
The antioxidant system includes superoxide dismutase (SOD),
catalase (CAT), glutathione (GSH), and other antioxidants
(Bhatti et al., 2017).

However, the excessive level of ROS caused by increased ROS
production and decreased ROS scavenging may lead to protein,
DNA, and lipid damage to mitochondria (Zorov et al., 2014;
Sorrentino et al., 2018). Additionally, ROS can activate several
pathways. Under hypoxia, with low-intensity ROS, the HIF-1α
pathway is activated, leading to metabolic adaptation and
subsequently inhibiting ROS production (Finkel, 2012). With
moderate intensity of ROS in hypoxia, it can regulate
inflammatory reactions, such as NACHT, LRR, and PYD
domain-containing protein 3 (NLRP3) inflammasome, and
mitogen-activated protein kinase (MAPK) signalling (Win
et al., 2018). With a high intensity of ROS, apoptosis and
autophagy may occur, preventing more damage.

Considering that changes in mitochondrial physiological
processes participate in the development and progression of
liver diseases, mitochondria are believed to be a promising
treatment target for liver fibrosis.

Role of the HIF Pathway in Liver Fibrosis
Hypoxia and HIFs have been acknowledged as important drivers
of liver fibrosis (Strowitzki et al., 2018). In fact, hypoxia is
involved in a variety of liver diseases. Hypoxia levels are
elevated in liver cancer and may be involved in destroying the
natural immune response and creating an immunosuppressive
microenvironment (Yuen and Wong, 2020). In NAFLD, hypoxia
may mediate hepatic steatosis and abnormal lipid metabolism

(Mesarwi et al., 2019). Hypoxia-mediated abnormal immune and
metabolic microenvironments are also key factors in the
development of fibrosis and liver cirrhosis.

The interaction of HIF-1α and Rho-associated coiled-coil-
forming kinase 1 (ROCK1) promotes cell proliferation and
collagen synthesis in rat HSCs under hypoxia (Hu et al.,
2018). A recent study also showed that activated HIF-1α or
HIF-2α in hepatocytes stimulates upregulation of chemokine
ligand 12 (Cxcl12) by converting latent transforming growth
factor β (TGF-β) to active TGF-β (Strickland et al., 2020). Cxcl12
is involved in the process of liver fibrosis through chemotaxis and
activation of HSCs (Li et al., 2020). These findings indicate that
HIF acts as an important regulator of liver fibrosis-targeting
HSCs (Tirosh, 2018).

During liver fibrosis, hepatic sinusoidal blood flow disorder
and hypoxia lead to the secretion of angiogenic factors by liver
intrinsic cells. Pathological angiogenesis destroys the hepatic
architecture and aggravates liver fibrosis (Poisson et al., 2017).
Recent studies identified that hedgehog signalling promoted
prospero homeobox protein 1 (PROX1) expression in liver
fibrosis, which inhibited HIF-1α ubiquitination via a
deubiquitinase called ubiquitin specific peptidase 19 (USP19).
This hedgehog signalling-mediated hypoxia response participates
in liver sinusoidal endothelial cell (LSEC) angiogenesis and the
activation of HSCs (Feng et al., 2019; Yang et al., 2020). It has also
been suggested that activated peroxisomal proliferator receptor γ
(PPARγ) in HSCs could inhibit the expression of HIF-1α via an
SMRT-dependent mechanism. The activation of PPARγ improved
angiogenesis and vascular remodelling in carbon tetrachloride
(CCl4)-induced liver fibrosis in rats. A possible negative
feedback loop was raised in which HIF-1α might induce PPARγ
expression in response to hypoxia or pathological stress, and then
overexpressed PPARγ would inhibit HIF-1α transcription to limit
amplification (Zhang et al., 2018).

THE OXYGEN IMBALANCE
MEDIATED-IMMUNE AND METABOLIC
ALTERATIONS IN LIVER FIBROSIS

Mitochondrial Dysfunction
Mediated-Immune Regulation in Liver
Fibrosis
Sterile inflammation (SI) is a common response to stress and
injury in liver disease (Chen et al., 2018). This is a major process
in the development of fibrosis and carcinogenesis (Kubes and
Mehal, 2012). In SI, DAMPs, which are usually in the intracellular
space, are released to the local microenvironment when
infections, metabolic disorders, and other stimuli result in
hepatocyte cell death, leading to a wide range of immune
responses (Iredale and Campana, 2017). Several DAMPs have
been identified, including mtDNA and nuclear DNA, high
mobility group box-1 (HMGB-1), ATP and other molecules.
HMGB-1 is released mostly by hepatocytes and Kupffer cells
(KCs). Recent research confirmed the role of HMGB1 in liver
fibrosis. It has been reported that HMGB1 could increase collagen
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type I production in HSCs via the receptor for advanced glycation
end-products (RAGE), leading to liver fibrosis. The underlying
mechanism was the pMEK1/2/pERK1/2/pcJun signalling
pathway (Ge et al., 2018). Furthermore, HMGB1 also links
hepatocyte injury to hepatocellular carcinoma (HCC)
(Hernandez et al., 2018).

MtDAMPs, including mtDNA and formyl peptides, are
released to the extracellular space in the case of ROS-driven
mitochondrial membrane permeability transition (Mihm, 2018).
They recognize pattern recognition receptors (PRRs) on target
cells to modulate the function of antigen-presenting cells (APCs),
eosinophils, mast cells, and neutrophils (Krysko et al., 2011). For
example, mtDNA recognizes Toll-like receptor 9 (TLR9) and
NLRP3, and N-formyl peptides (NFPs) recognize TLR9 (Kubes
and Mehal, 2012). Therefore, mitochondria are key stimuli of the
innate immune response in liver diseases.

MtDNA is the major part of mtDAMP and is released into the
cytosol when mitochondrial dysfunction and apoptosis occur. In
different kinds of liver injury, the effects of mtDAMP on immune
response is different. In patients with nonalcoholic steatohepatitis
(NASH), mtDNA levels have been reported to increase (Garcia-
Martinez et al., 2016). Furthermore, it increased in patients with
active NASH (NAS 4–8 versus NAS 0–3, p = 0.0334) (An et al.,
2020). It can activate several pathways (Zhang et al., 2019). The first
is NLRP3 inflammasomes. NLRP3 can directly activate HSCs,
triggering liver fibrosis (Inzaugarat et al., 2019). Furthermore, it
has been reported that in the mouse NASHmodel, mtDNA released
by KCs bound and activated the NLRP3 inflammasome to induce
interleukin (IL)-1β and IL-18, triggering proinflammatory responses
and resulting in liver fibrosis (Shimada et al., 2012; Pan et al., 2018;
Hu et al., 2019). Likewise, KCs induced by palmitic acid (PA)
induced mtDNA and activated the NLRP3 inflammasome (Pan
et al., 2018). The second is TLR9. In a mouse model of NASH, the
plasma level of mtDNA increased, and it could activate TLR9,
leading to a proinflammatory response (Garcia-Martinez et al.,
2016). Therefore, the activation of TLR9 by mtDNA is believed
to play a role in the transition from steatosis to steatohepatitis
(Garcia-Martinez et al., 2016). The use of the TLR7/9 antagonist
IRS954 could block the ability of mtDNA, resulting in a decrease in
steatosis, ballooning and inflammation, serum transaminases, and
inflammatory cytokine transcript levels (Garcia-Martinez et al.,
2016). This revealed the potential of TLR9 ligand therapies. In
acute liver injury induced by acetaminophen (APAP), mtDNA,
which binds to TLR9, can induce neutrophil activation and liver
inflammation. The crucial mediator is microRNA-223 (miR-223),
which acts as a negative feedback loop to limit neutrophil
overactivation and liver injury (He et al., 2017). DNA-sensing
pathways could induce type I interferon (IFN I) production in
liver NPCs, which is related to hepatocyte necrosis (Araujo et al.,
2018). The third is cyclic GMP-AMP synthase (cGAS)-stimulator of
interferon genes (STING). In a mouse model of NASH, STING
deficiency attenuated steatosis, fibrosis, and inflammation in the
liver; exposure to a STING agonist led to hepatic steatosis and
inflammation in WT mice but not in STING-deficient mice (Yu
et al., 2018). STING functions as a mtDNA sensor in KCs and
increases the expression of TNF-α and IL-6 through the nuclear
factor-κB (NF-κB) signalling pathway in NASH (Yu et al., 2018).

The activation of STING in macrophages is also related to liver
fibrosis (Luo et al., 2018). Furthermore, other mediators related to
mitochondria are formyl peptides. Formyl peptides are released from
dysfunctional mitochondria and bind to formyl peptide receptors
(FPRs) (Krysko et al., 2011). FPRs are expressed at high levels on
neutrophil granulocytes and mononuclear phagocytes (Mihm,
2018). This binding leads to the migration of immune cells to the
injured tissue, activating proinflammatory responses (Raoof et al.,
2010). The role of formyl peptides has been revealed in systemic
inflammatory response syndrome (SIRS) and ischaemia/reperfusion
injury (IRI) (Zhang et al., 2010; Hu et al., 2015). However, the direct
effect of formyl peptides on liver fibrosis has not been identified.

Moreover, mitochondria are the site of ATP production, and
when in disease, high concentrations of ATP may be released
extracellularly. ATP binds to P2X7 receptors on neutrophils,
inducing NLRP3-ASC-caspase-1 inflammasome and IL-1β
secretion (Schroder and Tschopp, 2010; Karmakar et al., 2016).

These studies revealed the crucial role of mtDAMPs in
modulating the immune response and liver fibrosis, which are
promising biomarkers and treatment targets.

HIF Mediated-Metabolic Regulation in Liver
Fibrosis
An increasing number of studies have confirmed that HIF-1 acts
as a crucial regulator in metabolic reprogramming in liver fibrosis
(Corcoran and O’Neill, 2016). Glucose transporters 1 (GLUT1)
and pyruvate kinase isozymes M2 (PKM2) are confirmed to be
the target genes of HIF-1 and the key molecules of the Warburg
effect (Wan et al., 2019). Wan et al. (2019) reported that HIF-1
upregulated GLUT1 and PKM2 expression in fibrotic liver and
exosomes derived from activated HSCs. Interestingly, exosomes
from activated HSCs were absorbed by KCs, LSECs, and
quiescent HSCs, which enhanced glycolysis of these liver
nonparenchymal cells. These findings represent a novel
mechanism: upon injury of parenchymal hepatic cells, HIF-1
can regulate nonparenchymal cells (NPCs) to maintain
synchronization of metabolic reprogramming.

In mice fed a high-fat diet (HFD), hepatic steatosis leads to
liver tissue hypoxia. The HIF1-mediated PTEN/NF-kB-p65
pathway plays a critical role in the development of NAFLD to
liver fibrosis (Han et al., 2019). In an apolipoprotein E-deficient
(Apoe−/−) mouse model, the circadian locomotor output cycle
kaput (CLOCK) protein indirectly regulates HIF1α expression by
modulating PHD protein levels. In CLOCK deficiency, HIF1α
binds to the Cd36 promoter, promoting CD36 expression and
uptake of fatty acids in the liver. This regulatory link among
hypoxia, metabolism, and circadian locomotor promotes
cirrhosis in NAFLD (Pan et al., 2020). Studies of high
cholesterol diet (HCD)-induced liver fibrosis revealed that
inducible nitric oxide synthase (iNOS)-mediated enhancement
of fibrosis was associated with HIF1α stabilization (Anavi et al.,
2015). It has been suggested that cholesterol-mediated activation
of HIF-1 is ROS- and nitric oxide (NO)-dependent. Cholesterol
load increased mitochondrial dysfunction and NO levels, which
promoted HIF-1 stabilization and transcriptional activity (Anavi
et al., 2014). Succinate, an intermediate of the tricarboxylic acid
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cycle, accumulates in hepatocytes due to enhanced fatty acid
oxidation in fibrosis. Accumulated succinate stabilizes and
activates HIF-1α by impairing PHDs, which induces
inflammation and HSC activation (Cho, 2018; She et al.,
2018). We summarized the details of the mechanism above in
Figure 1.

This evidence indicates that the oxygen balance in liver fibrosis
is disrupted, which mediates metabolic disorders and the
pathological accumulation of metabolic substances. There is no

doubt that HIF-mediated oxygen balance control is a potential
target for metabolic liver disease.

HIF Mediated-Immune Regulation in Liver
Fibrosis
Although HIF-α is often activated in liver diseases, the roles of
HIF-1 mediated-immune regulation in different liver injuries are
different. In cholestatic liver disease, nuclear HIF-1α protein was

FIGURE 1 | HIF pathway applied in liver fibrosis. During the development of liver fibrosis, oxygen mediated metabolic reprogramming occurs in a variety of cells.
Abnormal lipid metabolism and activation of HIF in hepatocytes mediate the fibrotic pathway and the activation of HSC cells. Besides, activated HSCs occur in
intracellular metabolic reprogramming, and they also mediate the metabolic transformation of other parenchymal cells. (A) In hepatocytes, activated HIF-1α or HIF-2α
stimulates upregulation of Cxcl12 through converting latent TGF-β to active TGF-β. Succinate accumulates in hepatocytes due to enhanced fatty acid oxidation,
which stabilized and activated HIF-1α through impairing PHDs. Expression of Cxcl12 and HIF-1α is involved in activation of HSCs. (B) In LSECs, PROX1 inhibites HIF-1α
ubiquitination via a deubiquitinase called USP19. A possible loop shows that HIF-1α induces PPARγ expression as a hypoxic response, then overexpressed PPARγ will
inhibit HIF-1α transcription hypoxia as a negative feedback. (C) In activated HSCs, HIF-1 upregulates the GLUT1 and PKM2 expression in exosomes. Then these
exosomes are absorbed by KCs, LSECs, and quiescent HSCs, which enhanced glycolysis of these nonparenchymal cells. (D) High-fat diet and Apoe knockout are
common modeling methods of NAFLD. HIF-1 is also involved in metabolic disorder in the development of NAFLD to liver fibrosis. In this process, cholesterol load
increased mitochondrial dysfunction and iNOS levels, which promoted HIF-1 stabilization and transcriptional activity. Then, the abnormal activation of HIF-1 promoted
the production of iNOS and formed a malignant loop for fibrosis. Furthermore, HIF-1 is also involved in the circadian locomotor-related metabolic disorders in NAFLD. In
CLOCK deficiency, HIF1α binds to the Cd36 promoter, promoting CD36 expression and uptake of fatty acids in the liver. High fat feeding and AP knockout mice are
common modeling methods of NAFLD.
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present in hepatocytes, liver macrophages, and liver fibroblasts of
patients with primary biliary cirrhosis and primary sclerosing
cholangitis (Copple et al., 2012). A study of cholestatic mice
indicated that chronic liver injury activated HIF-1α in
macrophages. Activated HIF in macrophages may regulate the
expression of platelet-derived growth factor-B (PDGF-B) to
promote fibrosis, which induces HSC proliferation,
chemotaxis, and collagen production.

In NASH mice, the significant upregulation of HIF-1α in
hepatocytes increased proportion of M2 macrophages and
promoted liver fibrosis and HCC (Ambade et al., 2016).
Furthermore, HIF-1α is not only upregulated in hepatocytes,
where it induces steatosis, but also in macrophages of NASH
patients (Wang et al., 2019). The role of HIF-1α in
macrophages in NASH was explored in the methionine-choline-
deficient (MCD) diet-fed mice. Mice with stabilized HIF-1α levels
in macrophages showed higher steatosis and liver inflammation.
HIF-1α impaired autophagic flux in macrophages and upregulated
NF-κB activation andmonocyte chemoattractant protein-1 (MCP-
1) production, leading to MCD diet-induced NASH (Wang et al.,
2019). At the same time, digoxin was reported to be protective in
inflammasome activity inmacrophages and hepatic oxidative stress
response in hepatocytes in NASH (Zhao et al., 2019). The
protective effect was related to the downregulation of HIF-1α
transactivation (Ouyang et al., 2018).

A recent article has reported the role of HIF-1α in viral hepatitis
type B that HIF-1α down-regulated apolipoprotein BmRNA editing
enzyme catalytic subunit 3B (APOBEC3B) and thus impaired the
anti-HBV effect of A3B (Riedl et al., 2021). However, HIF-1α also
induced deoxyribonucleases (DNases), which limited the duplication
of hepadnaviruses (Hallez et al., 2019).

In contrast, the role of HIF-1α in chemicals-induced acute
liver injury is different from its role in chronic liver diseases.
Mochizuki et al. proposed a model in which liver necrotic cells
could activate HIF-1α in HSCs through regional hypoxia or other
mechanisms yet to be determined. HIF-1α then stimulated
recruited macrophages to remove necrotic hepatocytes. In
HSC-specific HIF-1α knockout, the levels of M1 macrophage
activation markers and the percentage of Gr1hi macrophages in
the liver were reduced, which impaired the clearance of necrotic
cells and promoted fibrosis (Mochizuki et al., 2014). In APAP-
induced liver injury, T-cell-specific Hif-1α gene knockout mice
sustained severe liver damage, which was related to the
aggravated inflammatory responses by enhancing aberrant
innate-like γδ T-cell recruitment and excessive neutrophil
infiltration (Suzuki et al., 2018).

It has also been reported that hepatocyte-specific deletion of
HIF-2α improved NAFLD-associated fibrosis through
downregulated histidine-rich glycoprotein (HRGP). The
fraction of inflammatory Ly6Chigh hepatic macrophages, its
production of IL-12, and the expression of M1 cytokines/
chemokines were significantly decreased in HIF-2α–/– mice.
These findings indicated that HIF-2α/HRGP in parenchymal
cells could promote proinflammatory responses of hepatic
macrophages (Bartneck et al., 2016; Morello et al., 2018).
These studies suggest that although liver injury is usually
accompanied by the activation of HIF, different activated cells

may have opposite effects on fibrosis. We summarized the oxygen
imbalance mediated-immune alterations above in Figures 2A,C.

THERAPEUTIC SIGNIFICANCEOFOXYGEN
HOMEOSTASIS IN LIVER FIBROSIS

Therapies Targeting Mitochondrial
Dysfunction to Alleviate Fibrosis
Since increasing evidence has proven the crucial role of mitochondria
in liver fibrosis, several efforts have been made to assess the efficacy
of pharmacologic therapies targeting mitochondria.

Attenuated mitochondrial dysfunction, increased mitochondrial
fission, decreased HSC migration and activation, and decreased
oxidative stress are involved in the protective role of augmenting
liver regeneration (ALR) in liver fibrosis (Song et al., 2011; Ai et al.,
2018). Ming Song et al. first reported the therapeutic effect of ALR
gene therapy (Song et al., 2011). The underlying mechanisms were
attenuating mitochondrial dysfunction and oxidative stress and
inhibiting the activation of HSCs. The results of Ai et al. (2018)
were consistent with the former results. The inhibition of ALR
expression aggravated liver fibrosis in mice that were administered
CCl4 by promoting mitochondrial fusion and HSC migration. The
inhibition of ALR may lead to increased mitochondrial Ca2+ influx
in HSCs, resulting in HSC migration. ALR transfection inhibited
F-actin assembly, retarded HSC migration, and promoted
mitochondrial fission (Ai et al., 2018).

Poly (ADP-ribose) polymerase (PARP) activation was found
in patients with hepatic cirrhosis, and the inhibition of PARP had
antifibrotic effects (Mukhopadhyay et al., 2017). PARP inhibition
or genetic deletion of PARP1 was reported to attenuate alcohol-
induced hepatic oxidative stress and mitochondrial dysfunction
by improving the activity of complexes I and IV (Mukhopadhyay
et al., 2017). Xing Lin et al. reported that didymin could alleviate
liver injury and fibrosis induced by CCl4 by inhibiting HSC
proliferation and inducing apoptosis (Lin et al., 2016).

HSC apoptosis was partly mediated by MPTP opening.
Didymin treatment led to cytochrome c release into the
cytosol and decreased Bcl-2 expression, resulting in HSC
apoptosis (Lin et al., 2016). Similarly, the curative effect of
dihydroartemisinin (DHA) on liver fibrosis was also partly
mediated by HSC apoptosis by releasing cytochrome c and
activating the caspase pathway (Chen et al., 2016a).

Oxidative stress is a main stimulative factor of liver fibrosis,
and it is a promising target. Melatonin may improve hepatic
mitochondrial functions and thus reduce oxidative stress in some
diseases (Coto-Montes et al., 2012; Jimenéz-Aranda et al., 2014;
Agil et al., 2015). In CCl4-induced liver fibrosis rats, melatonin
protected against liver fibrosis by attenuating mitochondrial
dysfunction, which was manifested by improved mitophagy
and mitochondrial biogenesis (Kang et al., 2016). Melatonin
also attenuated lipid-mediated mitochondrial dysfunction and
ROS generation in hepatocytes and improved mitochondrial
respiratory functions, leading to decreased oxidative stress and
inflammation and thus inhibition of HSC activation (Das et al.,
2017). Another mitochondria-targeted antioxidant, mitoquinone,
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could attenuate liver fibrosis by reducing hepatic oxidative stress,
preventing apoptosis, and promoting the removal of
dysfunctional mitochondria (Turkseven et al., 2020).

It has been reported that adiponectin and its receptors
enhanced fatty acid oxidation and glucose uptake and
prevented the activation of HSCs induced by CCl4, thus
alleviating NASH and fibrosis in mouse models (Xu et al., 2020).

Mitophagy is a selective form of autophagy that eliminates
dysfunctional mitochondria (Williams et al., 2015a). It protects
the liver from both acute and chronic ethanol consumption (Ma
et al., 2020). Targeting mitophagy may protect the liver from
acetaminophen and alcohol injury (Williams et al., 2015b).
Interestingly, chronic deletion (KO) of Parkin alleviated
APAP-induced liver injury, but acute knockdown of Parkin
exacerbated injury (Williams et al., 2015a). This result
suggested other protective pathways in the liver.

Therapies Targeting the HIF Pathway to
Alleviate Fibrosis
Since hypoxia and HIFs are considered to be important drivers of
liver fibrosis, targeting HIF may be an effective treatment for

fibrosis (Strowitzki et al., 2018). In mice fed with HFD, curcumin
can inhibit succinate-induced HSC activation by blocking the
HIF-1α signalling pathway in mouse primary HSCs (She et al.,
2018). In acute liver injury Tamoxifen, an agonist of the G
protein-coupled oestrogen receptor (GPER), has been
confirmed to inhibit the HIF1α pathway and prevent HSC
activation by a mechanical mechanism (Cortes et al., 2019). In
a rat model of CCl4-induced liver fibrosis, ligustrazine alleviated
hepatic injury, angiogenesis, and vascular remodelling by
decreasing the level of HIF-1α (Zhang et al., 2018). The
combination of celecoxib and octreotide decreased
thioacetamide-induced liver fibrosis in rats by inhibiting the
phosphorylation of the extracellular signal-regulated kinase
(p-ERK)/HIF-1α/vascular endothelial growth factor (VEGF)
pathway (Gao et al., 2016). MicroRNA-122 can protect the
liver from ethanol-induced injury and fibrosis by inhibiting
HIF-1α expression (Satishchandran et al., 2018). In cholestatic
liver fibrosis, it has also been reported that EW-7197, a TGF-β
Type I receptor kinase inhibitor, can inhibit HIF1α-induced
epithelial mesenchymal transition to alleviate cholestatic liver
fibrosis (Kim et al., 2016). In NASH, isochlorogenic acid B was
reported to have anti-fibrosis effects by inhibiting HSC activation,

FIGURE 2 | Immune regulation in liver fibrosis. (A) Inflammation is a major process in the development of fibrosis. MtDAMPs, including mtDNA, N-formyl peptides,
and ATP, are released to extracellular space in the case of ROS-driven mitochondrial membrane permeability transition. MtDNA can activate NLRP3 inflammasomes,
TLR9, and cGAS-STING, which separately induce HSCs, neutrophil, and KCs activation. NFPs are released from dysfunctional mitochondrial, binding to FPRs, which
leads to the migration of neutrophil cells to the injury tissue. Released ATP binds to P2X7 receptors on neutrophils, inducing NLRP3-ASC-caspase-1
inflammasome and IL-1β secretion. (B)MSCs act as a bridge to prevent inflammation and oxidative stress via extracellular vesicles, etc. MSCs suppress the proliferation
of Th17 cells and decrease the expression of IL-17A and il-17RA. Meanwhile, MSCs promote the activation of M2macrophages and inhibit M1 macrophages activation,
hypoxia-preconditioning, and HIF-1 overexpression can improve MSC therapeutic. (C) HIF may play different roles in different cells. The chronic liver injury activates HIF-
1α in macrophages, whichmay regulate the expression of PDGF-B to induce HSCs activation and fibrosis. However, liver necrotic cells can also activate HIF-1α in HSCs.
HIF-1α then stimulated recruited macrophages to remove necrotic hepatocytes and alleviate fibrosis.
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attenuating oxidative stress via Nrf2, and suppressing multiple
profibrogenic factors through miR-122/HIF-1α signalling
pathway (Liu et al., 2019). The protective role of digoxin in
steatohepatitis was related to the inhibition of PKM2/HIF-1α
signalling pathway (Ouyang et al., 2018; Zhao et al., 2019).

MSCs Act as a Bridge to Link
Immunometabolism, Oxygen Homeostasis,
and Fibrosis
Mesenchymal stem cells (MSCs) are pluripotent stem cells that can
be induced to differentiate into several tissue cells (Chen et al.,
2016b). MSC sources are diverse, such as in bone marrow, adipose
tissue, placenta, amniotic tissue, cord, lung, liver, and skin (Zhuang
et al., 2019). Existing studies have shown that MSC therapy is
prominently effective in hepatic fibrotic diseases indirectly by
regulating the immune metabolism microenvironment (El Agha
et al., 2017). The secretion of IL-17A from Th17 cells can promote
fibrosis by activating fibroblasts (Huang et al., 2019; Hu et al.,
2020). BM-MSCs inhibited liver fibrosis by decreasing the
expression of IL-17A and IL-17RA and the serum levels of IL-
17 in the liver (Farouk et al., 2018). Milosavljevic et al. also
confirmed that MSC-conditioned medium (MSC-CM)
promoted the expansion of CD4+-FoxP3+-IL-10+-T regulatory
cells and suppressed the proliferation of Th17 cells, which
attenuated liver fibrosis (Dong et al., 2020).

Furthermore, BM-MSC transplantation promoted the
activation of M2 macrophages expressing matrix
metalloproteinase 13 (MMP13) and inhibited M1 macrophage
activation. Meanwhile, MSCs reduced the expression of
proinflammatory cytokines and increased the expression of anti-
inflammatory cytokines (van der Helm et al., 2018; Luo et al., 2019;
Yu et al., 2019). Increasing mitophagy and reducing mitochondrial

ROS to restrict the inflammatory activation of macrophages may
be critical mechanisms by which MSCs inhibit inflammation (Li
et al., 2018). In response to oxidative stress, MSCs can transport
depolarized mitochondria to macrophages through extracellular
vesicles (Phinney et al., 2015). Mitochondrial transfer also
promotes an anti-inflammatory macrophage phenotype by
enhancing oxidative phosphorylation (Morrison et al., 2017).
Existing studies also confirmed that hypoxia preconditioning
and HIF-1 overexpression significantly improved MSC therapy
(Martinez et al., 2017). MSCs cultured under hypoxic conditions
presented an enhanced therapeutic effect on liver cirrhosis, which
promoted macrophage polarity to an anti-inflammatory
phenotype via prostaglandin E2 (PGE2) expression (Kojima
et al., 2019). In summary, MSC treatment is emerging as a
connecting bridge to drive immune and metabolic regulation
and oxygen balance in the fibrotic microenvironment. We
summarized the details of mechanism above in Figure 2B.

CONCLUSION AND FUTURE
PERSPECTIVES

Mitochondrial dysfunction, hypoxia, inflammation, and metabolic
reprogramming are widespread in fibrotic diseases. Here, we have
reviewed the regulatory mechanism for immunometabolism and
oxygen homeostasis in liver fibrosis (Figure 3) as well as potential
novel targets for antifibrotic therapies. A special metabolic immune
microenvironment mediated by oxygen is described, which deeply
affects the balance of tissue damage and repair. The process of
fibrosis is closely related to metabolic and immune disorders,
which are usually induced by the destruction of oxygen
homeostasis, including mitochondrial dysfunction, oxidative
stress, and hypoxia signalling pathway activation. On the one

FIGURE 3 | The regulatory mechanism for immunometabolism and oxygen homeostasis in liver fibrosis. The disorders of immunity and metabolism are cross-
linked in liver fibrosis and play a central role in the pathogenesis. We reviewed the effect of the destruction of oxygen homeostasis on liver fibrosis and described how
oxygen participated in this process through affecting the immune-metabolism axis.
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hand, destruction of oxygen homeostasis promotes oxidative stress
and releases inflammatory mediators, forming a loop with an
inflammatory response and cell damage. On the other hand,
cell metabolic reprogramming affects the activation of immune
cells and fibroblasts, epithelial mesenchymal transformation, and
angiogenesis and further promotes the development of fibrosis.
Furthermore, we noticed that hypoxia-induced metabolic
reprogramming of immune cells and other fibrosis-related cells
is an emerging research direction, but there is still a gap to be filled
in the liver fibrosis field. In summary, as immunometabolism and
oxygen homeostasis are relatively new research directions, the
mechanism, function, and potential clinical application in liver
fibrosis need and deserve further investigation.
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GLOSSARY

ECM Extracellular matrix

HSCs hepatic stellate cells

DAMPs danger-associated molecular patterns

HIF-1α hypoxia inducible factor-1α

ATP adenosine-triphosphate

ROS reactive oxygen species

mtDNA mitochondrial DNA

NAFLD non-alcoholic fatty liver disease

PPAR γ peroxisome proliferator -activated receptor -gamma

PGC -1α peroxisome proliferator -activated receptor -gamma coactivator
-1alpha

NRF nuclear respiratory factor

TFAM mitochondrial transcription factor A

CCl4 carbon tetrachloride

PSO pomegranate seed oil

EET-A epoxyeicosatrienoic acid-agonist

Mfn1 fusion proteins mitofusin 1

OPA1 optic atrophy 1

Drp1 dynamin-related protein 1

PM2.5 Particulate matter ≤ 2.5 μm

HKDC1 HK domain-containing 1

LA lipoic acid

mtDepo mitochondrial depolarization

BNIP3 Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3

mtDAMPs mitochondrial DAMPs

SOD superoxide dismutase

CAT catalase

GSH glutathione

NLRP3 NACHT, LRR and PYD domains-containing protein 3

MAPK mitogen-activated protein kinase

PHD prolyl hydroxylase domain

VHL von Hippel-Lindau

HRE hypoxia response element

ROCK1 Rho-associated coiled-coil-forming kinase 1

Cxcl12 chemokine ligand 12

TGF-β transforming growth factor β

PROX1 prospero homeobox protein 1

USP19 ubiquitin specific peptidase 19

LSECs liver sinusoidal endothelial cells

PPARγ peroxisomal proliferator receptor γ

GLUT1 glucose transporters 1

PKM2 pyruvate kinase isozymes M2

NPCs non-parenchymal cells

HFD high-fat diet

Apoe-/- apolipoprotein E-deficient

CLOCK circadian locomotor output cycles kaput

HCD high cholesterol diet

iNOS inducible nitric oxide synthase

NO nitric oxide

SI sterile inflammation

HMGB-1 high mobility group box-1

KC Kupffer cell

RAGE receptor for advanced glycation end-products

HCC hepatocellular carcinoma

PRRs pattern recognition receptors

APCs antigen-presenting cells

TLR9 Toll-like receptor 9

NFPs N-formyl peptides

NASH nonalcoholic steatohepatitis

IL interleukin

PA palmitic acid

APAP acetaminophen

miR-223 microRNA-223

cGAS cyclic GMP-AMP synthase

STING stimulator of interferon genes

NF-κB nuclear factor-κB

IFN I type I interferon

FPRs formyl peptides receptors

SIRS systemic inflammatory response syndrome

IRI ischemia / reperfusion injury

PDGF-B platelet-derived growth factor-B

MCD methionine-choline-deficient

MCP-1 monocyte chemoattractant protein-1

APOBEC3B apolipoprotein B mRNA editing enzyme catalytic subunit 3B

DNases deoxyribonucleases

HRGP histidine-rich glycoprotein

ALR augmenter of liver regeneration

DHA dihydroartemisinin

GPER G protein-coupled estrogen receptor

p-ERK phosphorylation of extracellular signal-regulated kinase

VEGF vascular endothelial growth factor

MSCs mesenchymal stem cells

MSC-CM MSC-conditioned medium

MMP13 matrix metalloproteinase 13

PGE2 prostaglandin E2
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