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Abstract: Gluten-related disorders (GRD) affect millions of people worldwide and have been related
to the composition and metabolism of the gut microbiota. These disorders present differently in
each patient and the only treatment available is a strict life-long gluten-free diet (GFD). Several
studies have investigated the effect of a GFD on the gut microbiota of patients afflicted with GRD
as well as healthy people. The purpose of this review is to persuade the biomedical community
to think that, while useful, the results from the effect of GFD on health and the gut microbiota
cannot be extrapolated from one population to others. This argument is primarily based on the
highly individualized pattern of gut microbial composition and metabolic activity in each person,
the variability of the gut microbiota over time and the plethora of factors associated with this
variation. In addition, there is wide variation in the composition, economic viability, and possible
deleterious effects to health among different GFD, both within and among countries. Overall,
this paper encourages the conception of more collaborative efforts to study local populations in an
effort to reach biologically and medically useful conclusions that truly contribute to improve health
in patients afflicted with GRD.
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1. Introduction

Human beings are superorganisms or holobionts (i.e., hosts with associated life forms) that have
evolved over millions of years collectively as a unit, yet independently [1]. From all microbial niches
in the body, the digestive tract has received the mostattention in part due to its role in health and
immunity [2]. Many different host-associated (e.g., age, sex, health status) and environmental factors
are known to affect the composition of the gut microbiota but growing evidence suggests that diet
is one of the main contributors [3–5]. Diet is particularly relevant in newborns and infants, where
nutrition is not only vital for growth and development but can also have life-long consequences,
a phenomenon closely linked to the gut microbiota [6,7].

The gut microbiota has been studied in a context of health and disease for over a century now.
Generally, the gut microbiota is in balance with its host and shows certain resilience to change
from one state to another (e.g., from healthy to diseased), although this phenomenon is still not
well understood [8,9]. For example, while different diseases have been related to different states of
“dysbiosis” of the gut microbiota (for example, allergies, inflammatory bowel diseases, diabetes, obesity
and gluten-related disorders, see [10]), a cause–and–effect relationship can hardly be established in
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part because of the well-known high inter-individual variability, a phenomenon occurring even among
closely related individuals [11]. Nonetheless, great progress has been achieved in understanding causal
relationship between the host and its microbes [12].

The purpose of this review is to warn against extrapolation of results in the context of an effect
of gluten-free diet (GFD) on health and the gut microbiota. Indeed, any metabolic response needs
to be investigated specifically within population groups to increase our understanding of whether
dietary treatments are effective in that group. Although the issue of extrapolation is true in all research
in Nutritional Sciences, it is often overlooked and not emphasized enough among clinicians and
clinical scientists.

2. Gluten-Related Disorders and Celiac Disease

Gluten-related disorders (GRD) comprise a variety of different disorders such as celiac disease
(CD), non-celiac gluten sensitivity (NCGS), gluten allergy and others, where the body reacts negatively
upon exposure to dietary gliadins, a class of proteins that are a component of gluten in wheat and
other cereals. Clinically, GRD often range from mild presentations (such as asymptomatic CD) to very
serious and life-threatening conditions in some people such as refractory CD and lymphoma [13].

From all GRD, CD has been the most studied and is currently considered to be the most common
chronic enteropathy worldwide [14]. In people with CD, a significantly enhanced autoantibody
response to the transglutaminase 2 (TG2) enzyme, also known as tissue transglutaminase (tTG), is a
hallmark of the pathogenic process that primarily affects the architecture of the enterocyte lining of
the small intestine [15] but can also affect other organs such as the liver, kidney, lymph nodes and
muscles [16,17]. Interestingly, other autoantibodies may also be involved, especially in extraintestinal
manifestations, such as anti-ganglioside, anti-synapsin I and anti-actin antibodies [18]. Patients with
CD present either typical or atypical symptoms [19] and CD is believed to perpetuate other maladies
and often presents simultaneously with other autoimmune diseases [20–23]. Despite the great progress
in CD research, new key emerging findings suggest previously unknown features of CD pathogenesis,
for example at the transcriptome level of immune cells [24].

The global prevalence of CD based on serologic test results is 1.4% and based on biopsy results
is 0.7% [25]. The prevalence of CD varies with sex, age, and location and, in some regions and
populations, it can be as high as 5.6% [26]. While different treatments are under study (e.g., using
prolyl endopeptidases and vaccines [17,27]), the only effective treatment available to date for patients
with CD and other GRD is a strict life-long gluten-free diet (GFD). Interestingly, GFD is being adopted
worldwide by a growing number of people with and without GRD for weight control and the rather
misconceived perception that this diet is healthier [28]. However, whether a GFD is healthier remains
highly controversial (see Section 5.2).

3. GRD and the Gut Microbiota

The fact that genetic susceptibility is not determinant for the presentation of CD (30–40% of the
population have the required genotype but the prevalence of CD is only about 1%) has prompted
research to discover what other factors can predict the clinical manifestation of the disease [21].
For example, there is enough evidence to suggest that the gut microbiota (especially Bacteria) plays a
role in the onset and clinical manifestations of CD [29–38] and probably other GRD. Although the exact
mechanisms involved in the relationship of the gut microbiota and gut diseases are currently unknown
(a relationship that is likely to be highly individualized as well), fellow colleagues have suggested an
interesting proposal involving first a microbial dysbiosis (e.g., after antibiotic therapy), independent
of gluten sensitivity, which then drives an activation of the innate immune system resulting in the
secretion of pro-inflammatory molecules, epithelial barrier disruption, and an increased transfer of
gluten peptides, a cascade that ultimately may lead to CD development [15]. Interestingly, CD may
also be related with non-bacterial members of the gut microbiota such as yeasts [39,40], although the
mechanisms may involve quite different mechanisms such as inter-kingdom interactions [41]. As in
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the case of other intestinal maladies, the main objective of these studies is to better understand the
host–microbiota relationship during the disease (often compared to healthy counterparts), thus helping
find new routes for treatment. For instance, the growing body of literature about host–microbiota in CD
patients has prompted the use of some probiotics (e.g., Lactobacillus spp.) to treat GRD, particularly CD,
with promising results (e.g., suppression of pro-inflammatory cytokines, reduction of mucosal damage,
and enhanced production of SCFAs [31,42–45]). Other studies have shown a potential of probiotics to
modulate the indigenous gut microbiota in patients with CD with inconsistent results [46,47].

4. Effect of GFD on the Gut Microbiome

The effect of GFD on the gut microbiome and related parameters has been studied in patients
afflicted with GRD (particularly with CD) and in healthy subjects (Table 1). Please note that most of
these studies have important limitations including small sample sizes and the use of low-throughput
techniques (e.g., culturetechniques and non-sequencing based molecular techniques) that allow the
analysis of a few bacterial groups that are not representative of the whole microbiota (Table 1,
please note that great progress has been achieved in the field of gut microbiota culturomics [48]).
The small sample sizes are particularly worrying because of the clinical variations of CD presentation.
These limitations by themselves should be considered as warning signs by the biomedical community
every time someone attempts to extrapolate results among different populations, especially in cases
where there are patients involved because individuals are highly unique in terms of their gut
microbiome (Figure 1).
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Table 1. Summary of studies that have analyzed the effect of gluten-free diet (GFD) on the gut microbiota and related parameters.

Patients Characteristics Sample Collection and Analysis Methods Main Finding(s) Reference (Year
of Publication)

30 subjects (21–73 years old) with CD (n = 6), NCGS
(n = 12) and controls (n = 12) from Veracruz, México

Samples were obtained at baseline and
after 4 weeks on a GFD

16S rDNA sequencing using the
Illumina MiSeq platform

Pseudomonas was higher in duodenum of CD
patients after 4 weeks on GFD

[49]
(Unpublished)

21 healthy adults (16–61 years old) from Groningen,
The Netherlands

Nine samples were obtained from each
participant at baseline, during and after

4 weeks on GFD

16S rDNA sequencing using
454 pyrosequencing

Veillonellaceae (class Clostridia, Firmicutes) was
reduced on GFD; 21 predicted pathway activity

scores showed significant association to the
change in diet

[50] (2016)

53 young subjects (0.5–18 years old) with CD at
presentation; 74 young subjects (1–18 years old) with

CD on GFD for less than 1 year; 25 subjects
(3–33 years old) with CD on GFD for more than 1 year

from Norrköping, Sweden

One fecal sample was obtained once from
each subject

Gas liquid chromatography for
SCFA measurement

Fecal SCFA levels were higher in CD patients on
GFD for < 1 year compared to those on GFD > 1 year [51] (2013)

10 untreated CD patients, 11 treated CD patients
and 11 healthy adults from Leon, Spain

Samples were obtained in normal gluten
diet and in GFD

DGGE and gas-liquid
chromatography of SCFAs

Microbial communities of treated CD clustered
together with those of healthy adults [52] (2012)

19 CD children (6–12 years old) on GFD for at least
2 years and 15 non-celiac children from Bari, Apulia,

Italy

Duodenal biopsies and fecal samples
were obtained once from each subject

DGGE and
culture-based methods

2 years of GFD does not fully restore the microbiota
and metabolome of CD children [53] (2010)

24 untreated CD patients (2–12 years old) on a
normal-gluten containing diet; 18 treated CD patients
(1–12 years old) on GFD for at least 2 years; 20 healthy

children (2–11 years old) without known gluten
intolerance from Valencia, Spain

One fecal sample was obtained once from
each subject

FISH, flow cytometry and
immunoglobulin-coated

bacterial analysis

CD patients have lower levels of IgA-coated
bacteria thus providing new insights into the
relationship between the gut microbiota and

host immune defenses

[54] (2010)

20 children with CD (1.2–16.1years old) before and after
at least 9 months on GFD, and 10 controls

(7.8–20.8 years old) from Rome, Italy

Biopsies from the second part of the
duodenum from CD children before and
after at least 9 months on GFD; duodenal

biopsies from the controls undergoing
upper GI endoscopy for

functional dyspepsia

TGGE
Number of bands was higher in active and inactive

states compared to controls, implying
higher biodiversity

[55] (2010)

10 healthy adults (23–40 years old) from Valencia, Spain
One fecal sample was obtained once from
each subject at baseline and after 1 month

on GFD
FISH and qPCR Reduction of “beneficial” bacteria and the ability of

fecal samples to stimulate the host’s immunity [56] (2009)

34 CD patients at diagnosis and after 12 months on GFD,
and 34 healthy controls from Fiorentino, Italy

Serum and urine samples were obtained
once from each subject

Nuclear Magnetic Resonance
(NMR) of urine and

serum samples

After 12 months of GFD, all but one patient was
classified as healthy [57] (2009)
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Table 1. Cont.

Patients Characteristics Sample Collection and Analysis Methods Main Finding(s) Reference (Year
of Publication)

Group 1 (30 untreated CD patients on a normal
gluten-containing diet, 56–61 months old); group 2

(18 treated CD patients with a GFD for at least 2 years,
64–58 months old); group 3 (30 control children without

gluten intolerance, 45–49 months old) from
Valencia, Spain

30 fecal and 25 duodenal biopsies from
Group 1; 18 fecal and 8 biopsy samples

from Group 2; 30 fecal and 8 biopsy
samples from Group 3

qPCR for a small group of
selected microbes

Duodenal and fecal microbiota is partially restored
after long-term (>2 years) GFD [58] (2009)

Seven symptom-free CD patients on GFD for at least
2 years; seven CD patients on gluten-containing diet;

seven children with no known food intolerance
(6–12 years old) from Bari, Apulia, Italy

Each child provided 3 fecal samples over
an unknown period of time. The samples

were mixed

DGGE and culture-based
techniques; gas

chromatography-mass
spectrometry for VOCs

CD is associated with differences in fecal microbiota
and biochemistry [59] (2009)

20 CD patients (1.6–12 years old) and 10 symptom-free
CD patients who had been on GFD for 1–2 years

(2–8 years old) and 8 control children (2–7.8 years old)
from Valencia, Spain

An unknown number of biopsy
specimens was obtained once from

each subject

FISH and flow cytometry for a
few selected bacterial groups

in duodenum

Ratio of Lactobacillus-Bifidobacterium to
Bacteroides-E. coli was reduced in CD patients with

either active or inactive disease compared to controls
[60] (2007)

36 children with CD at presentation, 47 patients on GFD
for at least 3 months, and 42 healthy controls from

Stockholm, Sweden

One fecal sample was obtained once for
each subject

Gas-liquid chromatography of
SCFAs in fecal samples

Difference between children on GFD and controls
regarding acetic, i-butyric, i-valeric acid,

and total SCFAs
[61] (2005)

CD, celiac disease; DGGE, Denaturing Gradient Gel Electrophoresis; TGGE, Temperature Gradient Gel Electrophoresis; FISH, Fluorescent in situ hybridization; SCFAs, short-chain fatty
acids; VOCs, volatile organic acids; NCGS, non-celiac gluten sensitivity.
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Figure 1. Results of the effect of gluten-free diet (GFD) on health and the gut microbiota cannot be 
extrapolated from one population to others. Genetic predisposition to CD is present in about 30–40% 
of the whole population (non-blue silhouettes) but affects clinically only about 1% of the population 
(red silhouettes). Each individual in either population harbors a highly specific microbiome in the 
gut (represented here by hypothetical data in pie charts where each color represents a different 
microbial group) that shows a unique pattern of change after consuming a GFD. The individualized 
microbiome and its response against dietary or therapeutic challenges is due to multiple sources of 
variation at the population (e.g., genetics andliving habits), individual (e.g., age andsex) and 
experimental (e.g., type and time on GFD) level. 

Before discussing the issues with extrapolation and the main arguments against extrapolation 
of results, it is important to briefly discuss about the nature of microbes and their identification. 
First, while we tend to think that members of the same “species” should share a great deal of similar 
characteristics, this is far from being true for most (if not all) microbial species [62]. Second, when 
dealing with reference gene sequences (e.g., 16S rRNA gene sequences), it has been a long tradition 
to group these sequences into something we call Operational Taxonomic Units (OTUs), which are 
simply groups of sequences based on sequence similarity, based on the belief that a given OTU 
would comprise similar organisms. However, OTUs show extensive mixed phylogenetic and 
ecological signals [63] and in fact current trends suggest that OTUs should be replaced by exact 
sequence variants [64]. Third, there is extensive horizontal gene transfer (i.e., movement of genetic 
material between different organisms, for example genes associated with antibiotic resistance) 
among the many members of the gut microbiota that happens at mostly unknown rates [65], a 
phenomenon shaped principally by ecology rather than geography or phylogeny [66] that likely 
generates “new” microbes de novo. Fourth, there are different techniques to identify 
microorganisms (e.g., culture and culture-independent), each with its own advantages and 

Figure 1. Results of the effect of gluten-free diet (GFD) on health and the gut microbiota cannot be
extrapolated from one population to others. Genetic predisposition to CD is present in about 30–40%
of the whole population (non-blue silhouettes) but affects clinically only about 1% of the population
(red silhouettes). Each individual in either population harbors a highly specific microbiome in the gut
(represented here by hypothetical data in pie charts where each color represents a different microbial
group) that shows a unique pattern of change after consuming a GFD. The individualized microbiome
and its response against dietary or therapeutic challenges is due to multiple sources of variation at the
population (e.g., genetics andliving habits), individual (e.g., age andsex) and experimental (e.g., type
and time on GFD) level.

Before discussing the issues with extrapolation and the main arguments against extrapolation
of results, it is important to briefly discuss about the nature of microbes and their identification.
First, while we tend to think that members of the same “species” should share a great deal of similar
characteristics, this is far from being true for most (if not all) microbial species [62]. Second, when
dealing with reference gene sequences (e.g., 16S rRNA gene sequences), it has been a long tradition
to group these sequences into something we call Operational Taxonomic Units (OTUs), which are
simply groups of sequences based on sequence similarity, based on the belief that a given OTU would
comprise similar organisms. However, OTUs show extensive mixed phylogenetic and ecological
signals [63] and in fact current trends suggest that OTUs should be replaced by exact sequence
variants [64]. Third, there is extensive horizontal gene transfer (i.e., movement of genetic material
between different organisms, for example genes associated with antibiotic resistance) among the
many members of the gut microbiota that happens at mostly unknown rates [65], a phenomenon
shaped principally by ecology rather than geography or phylogeny [66] that likely generates “new”
microbes de novo. Fourth, there are different techniques to identify microorganisms (e.g., culture
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and culture-independent), each with its own advantages and disadvantages to truly depict the real
microbial ecosystem inside the gut [67]. Finally, there are technical issues that are difficult to overcome,
for example the fact that bacteria are not evenly distributed in stools [68], that mucus and lumen
contain widely distinct microbial ecosystems [69], and that the microbiota is different throughout the
intestinal tract and different fromwhat is found in feces [70].

5. The Issue of Extrapolation

The main objective of this paper is to critically argue against extrapolation in the context of an
effect of GFD on health and the gut microbiota (Figure 1). Extrapolation of results from one population
to another is incorrect and risky for various reasons, both strictly statistical and scientific. As it will
become clear throughout this manuscript, this concern is particularly important in the context of
gut microbial ecology, health and disease. On a recent review of the relationship between the gut
microbiota and dietary nutrients, Shortt et al. [71] acknowledgedthe fact that animal-derived data
can hardly be extrapolated to humans, and there is a well-known bias to choose male rodents in
studies from different fields of science [72], including microbial ecology [3]. However, the problem
with extrapolating results among human populations is barely mentioned in the literature, even in
papers from our own research group [73]. We do not generally mention this because we consider it to
be common knowledge and implicit in the results of our publications. However, we strongly believe
that this concern should be discussed, especially within the context of health benefits derived from a
change in the gut microbial ecosystem.

5.1. Individuality and Over Time Variability of the Gut Microbiota

Each human being harbors a unique blend of trillions of microorganisms and viruses in the gut and
other organs, and growing evidence suggest that colonization starts before birth [74]. The microbiota
is not only highly different among individual subjects but it also shows a highly individualized
response to environmental challenges such as antibiotic perturbation [75]. One study showed that
variation in composition of the microbiota across different body sites was consistently larger than
technical variability (e.g., PCR primers, 16S rRNA gene region, sequencing platform) across studies [76].
Overall, this means that the many different analyses showing inter-individual variation are biologically
meaningful and not the result of technical artifacts.

The question of why the microbiota is so unique in each individual deserves thorough examination.
The first studies on the gut microbiota soon revealed that each subject harbors a unique blend of
microbes [77]. Microbial carriage varies between subjects down to the species and strain level [78,79].
Virtually all host-associated and environmental factors can have an effect on an individual’s gut
microbiota, either individually or collectively. Sex is also an important but often neglected topic in
gut microbial ecology [80]. This is important because some GRD are known to be more prevalent
in women [81]. On top of the well-known high inter-individual differences, there is considerable
horizontal gene transfer happening inside the gut [64], which have the potential of increasing the
uniqueness of each individual microbiome, and some microbes show bistable abundance distributions
that are affected differently than the rest [82].

Another reason each individual is unique is because they live in vastly different geographic and
sociocultural regions having unique foods and dietary habits. For example, Mexican people possess
one of the most genome-wide variation, a fact that can affect biomedical traits as well as disease
presentation, progression and response to treatment [83]. Interestingly, one seminal study about
inflammatory bowel disease (IBD) and the gut microbiota showed that the patient’s geographical
origin was strongly associated with disease presentation and involvement of specific microbes [84].

Different studies have evaluated the gut microbiota over short periods of time but very few
studies have analyzed changes in the gut microbiota over long periods of time. One study showed a
pronounced variability in an individual’s microbiota across months, weeks and even days, and that
only a small fraction of all taxa appear to be present across all time points (in this study, 396 time points
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were analyzed [85]). Interestingly, baseline populations (i.e., before any major dietary or other change)
can also predict the response of the gut microbiota in some situations [86].

5.2. Dietary Differences in Gluten-Containing and GFD

Gluten-containing foods provide many nutrients (e.g., prebiotics such as inulin) which may
not be equally abundant in gluten-free foods. The potential issues associated with GFD have been
discussed since the 1950s [87] and the concern that a GFD could produce potentially adverse effects
in the microbiota solely based on a marked reduction in intake of naturally occurring prebiotics has
been raised [88]. On the one hand, a recent review showed that long-term morbidities associated
with CD, such as nutritional deficiencies, impaired bone health, and reproductive abnormalities,
can substantially improve after strict adherence to a GFD [89]. However, a study in Italy reveals an
overall low nutritional quality of gluten-free bakery products [90], and gluten-free products contribute
to imbalanced diets in children from Spain [91]. In addition, a recent review showed that reduced
intake of calcium, vitamins and fiber as well as enhanced consumption of fat and carbohydrates
have been consistently reported in patients on GFD [92]. Moreover, there is evidence that some
gluten-free foods are not enriched and may be deficient in several nutrients, including dietary fiber,
folate, iron, niacin, riboflavin, and thiamine [93,94], although this would not necessarily lead to dietary
deficiency of these nutrients because other gluten-free foods such as vegetables, beef, eggs and cheese
are rich in these compounds. Other studies evaluating the nutritional composition of processed
gluten-free products have demonstrated higher levels of lipids, trans-fat, protein, and salt compared
to their gluten-containing counterparts. Furthermore, recent evidence has shown that patients under
a GFD are at risk of metabolic syndrome and hepatic steatosis [95] and the concerns regarding the
association between micronutrient deficiencies and increased exposure to toxins such as arsenic in
GFD [96]. Moreover, some varieties of GFD do not necessarily lead to a healthier physiological state.
Ercolini et al. [97], for example, showed that changing from an African-style GFD to an Italian-style
GFD provoked significant changes in the salivary microbiota and metabolome of Saharawi (Western
Sahara) celiac children and, more importantly, that these changes suggested metabolic dysfunction.

Another issue with GFD is its availability and costs. While some regions in the industrialized
world have the luxury of having access to a wide variety of foods and dietary ingredients, most
regions of the world have limited access to different foods. This translates into wide differences in
GFD, even within the same geographical region. Importantly, not all gluten-free products are certified
(http://www.gfco.org/) and some supposedly gluten-free products are actually contaminated with
gluten [98]. Moreover, the mere availability of dietary foods in one region does not imply that all
people have access to it. In México, for example, differences in income may involve as much as
27-fold difference between the average incomes of the top and the bottom deciles, a difference that
stark contrasts with the average ratio of 10 to 1 in the Organization for Economic Co-operation
and Development (OECD 2014, https://www.worldeconomicsassociation.org/newsletterarticles/
inequality-in-mexico/). Therefore, the purchasing power is likely to be involved in the maintenance of
life-long GFD.

An interesting argument emerged from one anonymous reviewer during the review process.
Indeed, other grains such as corn and rice are the primary grains consumed in many different countries.
In the case of maize, which is often used as an alternative to elaborate GFD for CD patients, there are
some maize prolamins (called zeins) containing amino acid sequences that resemble the wheat gluten
peptides that may in fact be clinically relevant [99]. The case of rice is also interesting, especially
because several countries in Asia have considerably reduced their consumption of rice [100] and
increased the consumption of other grains. In addition, it has been recognized that CD epidemiology
has changed, in particular in areas where previously CD was unrecognized or rare such as India, China
and Latin America. Several hypotheses may explain this phenomenon such as a change in the pattern
of food consumption to try to beat malnutrition that has led to a wheat–rice shift in poor countries,

http://www.gfco.org/
https://www.worldeconomicsassociation.org/newsletterarticles/inequality-in-mexico/
https://www.worldeconomicsassociation.org/newsletterarticles/inequality-in-mexico/
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but dysbiosis and genetic predisposition may be also related [101]. Overall, we agree with the notion
that the cost and availability of GFD may be of lesser clinical importance in some regions of the world.

Aside the availability and costs, there is substantial variation in prescribing rates of gluten-free
foods [102] and many GFD followers find it challenging to follow the GFD [103]. Interestingly,
psychological state has been shown to predict adherence to a GFD in Australia and New Zealand [104].
Finally, a proportion of CD patients with chronic voluntary gluten ingestion do not show a relapse of
clinical signs and villous atrophy despite chronic voluntary gluten ingestion [105], thus suggesting high
inter-individual variability. This phenomenon is of great importance for the biomedical community,
especially considering the variety of gluten-containing and GFD around the world (in other words,
it is likely that not all diets have the same healing effect on regenerating enterocyte architecture and
therefore health).

6. Conclusions

The microbes that inhabit the human body are unique for each individual and vary widely
over time due to multiple interrelated factors. The fact that the effect of GFD on health and the gut
microbiota cannot be extrapolated to other populations is often neglected in the literature but can also
apply to any dietary intervention in all other gastrointestinal maladies (e.g., IBD) associated with the
gut microbiota. This paper shall not be taken as a discouragement to perform more studies on this
topic; on the contrary, as mentioned above, this paper ultimately seeks to encourage the conception of
more collaborative efforts to study local populations in an effort to reach useful conclusions that truly
contribute to improve health in patients afflicted with GRD and other maladies. This paper also strives
for more awareness among the medical community regarding potential negative effects of switching
patients to a GFD without adequate dietetic and medical supervision.
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