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Abstract: Herein we report the synthesis and characterization of a novel bis-tridentate 1,3,4-thiadiazole
ligand (L = 2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole). Two new mononuclear complexes
of the type [MII(L)2](ClO4)2 (with M = FeII (C1) and CoII (C2)) have been synthesized, containing the
new ligand (L). In both complexes the metal centers are coordinated by an N4S2-donorset and each
of the two ligands is donating to the metal ion with just one of the tridentate pockets. The iron(II)
complex (C1) is in the low spin [LS] state below room temperature and shows an increase in the
magnetic moment only above 300 K. In contrast, the cobalt(II) complex (C2) shows a gradual spin
crossover (SCO) with T1/2 = 175 K. To our knowledge, this is the first cobalt(II) SCO complex with an
N4S2-coordination.
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1. Introduction

Switching metal complexes between two different electronic states, high spin [HS] and low
spin [LS], by external stimuli such as temperature, light irradiation or pressure is known as spin
crossover (SCO). Due to the molecular bistability and the associated change in the optical and magnetic
properties upon switching, these compounds can possibly be used in memory storages, displays and
sensors [1–8]. However, abruptness of the property changes and the occurrence of a thermal hysteresis
is necessary for future applications. Both depend on the cooperative interactions between the metal
centers in the solid state. ‘Intermolecularly’, the cooperativity can be enhanced by hydrogen bonding
or π-π-stacking interactions between the complexes. ‘Intramolecularly’, in polynuclear complexes,
the spin-bearing metal centers can be bridged via organic ligands, leading to close proximity and
a stronger communication of these metal centers [5,9–13]. Although SCO coordination polymers
often show large thermal hysteresis [14,15], research on discrete polynuclear, and in particular in
dinuclear SCO systems recently increased because the latter have better reproducibility and easier
characterization. The dimeric structural motif as the simplest and smallest model for investigating
intramolecular cooperative interactions also offers potential access to three states ([HS-HS], [HS-LS]
and [LS-LS]) [4,16,17]. However, the design of ligands that simultaneously act as a bridge and induce a
suitable ligand field is a difficult task.

Our group recently reported on the synthesis and characterization of symmetrical dinuclear iron(II)
compounds with bridging ligands based on the 1,3,4-oxadiazole as well as on the 1,3,4-thiadiazole
backbone [18–20]. For the thiadiazole-based ligand 2,5-bis[(2-pyridylmethyl)amino]methyl-1,3,4-thiadiazole
with pyridyl donor sidearms, the complexes are in the [LS-LS] state at low temperatures and show
a gradual but incomplete spin crossover only above room temperature [19]. Inspired by the fruitful
work of S. Brooker et al. [21], we herein report the modification of the previous reported ligand [19]
by replacing the amino for thioether linkages. The longer C-S bonds compared to the C-N bonds
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give greater flexibility of the ligand, and thus, should enable the population of the [HS-LS] and/or
the [HS-HS] state at elevated temperatures. However, rather than obtaining the dimeric [Fe2(µ-L)2]4+

complex cation, we exclusively isolated two new mononuclear complexes [MII(L)2](ClO)4 (with M
= FeII (C1) and CoII (C2) and L = 2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole). While the
iron(II) complex (C1) remains in the [LS] state as well, the cobalt(II) complex shows a gradual SCO.

2. Results and Discussions

2.1. Synthesis

The synthesis of the ligand is presented in Scheme 1. We have previously reported the
preparation of 2,5-bis(chloromethyl)-1,3,4-thiadiazole (1) [19]. Thioacetic acid S-pyridine-2-ylmethyl
ester (2) was synthesized as described in literature [21]. Finally, the ligand (L =

2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole) was obtained according to [21] by treating 2
with sodium ethanolate and thereafter reacting with 1 in a nucleophilic substitution.
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Scheme 1. Synthesis of the Ligand (L) starting from 2,5-bis(chloromethyl)-1,3,4-thiadiazole (1).

The iron(II) and cobalt(II) complexes, [MII(L)2](ClO4)2, have been synthesized in a stochiometric
reaction of the ligand (L) with the corresponding perchlorate salt (Fe(ClO4)4 × xH2O and Co(ClO4)2 ×

6H2O) in methanol. The compounds were obtained as single crystals (C1 and C2) suitable for X-ray
diffraction experiments via slow evaporation of the complex solutions. The iron(II) complex reaction
was performed under nitrogen atmosphere and by using absolute methanol. The dried complexes are
stable to air, no oxidation was observed.

2.2. Variable Temperature Magnetic Susceptibility Measurements

Variable temperature magnetic susceptibility measurements were carried on dried samples in the
temperature range of 300–400 K for C1 and of 10–400 K for C2 in an applied magnetic field of 1000 Oe
(0.1 T) and with a scan rate of 1.5 K/min. The temperature-dependent magnetic susceptibility date
of the samples C1 and C2 are shown in Figure 1. C1 shows a χMT value of 0.15 cm3Kmol−1 at 300 K
accounting for a diamagnetic iron(II) ion in the [LS] state. Also, the structural data obtained by X-ray
crystallography at 173 K (described below) confirms an LS state of the iron(II) indicating that no spin
crossover occurs until 300 K. Raising the temperature to 400 K, the χMT value slightly increases to
0.36 cm3Kmol−1. Although this rise is no evidence of a spin crossover, it is at least a strong indication.
The diamagnetic nature of C1 at room temperature is further confirmed by the 1H-NMR spectra of the
complex, shown along with that of the ligand in Figure S3 in the supporting information.

At low temperature, compound C2 shows a χMT value of 0.47 cm3Kmol−1, which accounts
for a cobalt(II) ion in the [LS] state in accordance with the single X-ray structure analysis at 120 K.
With increasing temperature, the χMT product remains almost constant until 100 K, then raises up to
2.20 cm3Kmol−1 at 250 K. This is explained by a gradual spin transition of the complex from [LS] to [HS]
with a transition temperature T1/2 of 175 K. No magnetic hysteresis is observed. In fact, when using
a cooling/heating rate of 1.5 K/min, the χMT vs. T curves for the heating or cooling mode cannot be
distinguished. The χMT values for [LS] and [HS] cobalt(II) are slightly higher than the calculated ones
([LS] = 0.38 cm3Kmol−1 and [HS] = 1.88 cm3Kmol−1) using the spin-only formalism. This is expected
because the spin-only formalism does not take into account orbit angular momentum contribution.
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Figure 1. χMT vs. T data for the compounds C1 (dots) and C2 (squares). The Data is given per molecule.

It is known from literature that cobalt(II) complexes with N-donor ligands, which form with
iron(II) only [LS] complexes, might show SCO and is well studied for terpyridine complexes [2,4,22].
However, to the best of our knowledge, the cobalt(II) complex reported here is the only one showing
this phenomena with Co(II) in a N4S2 coordination.

2.3. Crystal Structures

The complex [FeII(L)2](ClO4)2 (C1) crystallizes in the monoclinic space group P21/c at 173 K.
The crystal structure of complex [CoII(L)2](ClO4)2 (C2) was measured at two different temperatures
(120 K and 250 K) to confirm the spin crossover phenomenon. For both temperatures, the monoclinic
space group is P21/c. In all three structures, C1 (@173 K) and C2 (@120 K) and C2 (@250 K) the complex
cation consists of one metal ion and two ligand molecules, showing pseudo centrosymmetry as
sketched in Figure 2. Each ligand contributes with one of the tridentate N2S binding pockets to the N4S2

octahedral coordination sphere. The second potentially donating binding pocket is not coordinating.
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Figure 2. Sketch of the pseudo centrosymmetry of the complex cation representative for all three
structures of C1 and C2.

For all complex cations (C1 and C2 at both temperatures), the cis-angles within the donor atoms
of one ligand (NTDA(L,L’)-M-NPy(L,L’), NTDA(L,L’)-M-S(L,L’) and NPy(L,L’)-M-S(L,L’), Figure 3) are
ranging from 83◦ to 85◦, while the cis-angles between the donor atoms of the different ligands
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(NTDA(L)-M-NPy(L’), NTDA(L)-M-S(L’) and NPy(L)-M-S(L’) and vice versa) are ranging from 95◦ to
97◦. This results in trans-angles (NTDA(L)-M-NTDA(L’), NPy(L)-M-NPy(L’) and S(L)-M-S(L’)) of almost
180◦ and in a slightly distorted octahedral coordination for the metal centers, in which the axis
NPy(L)-M-NPy(L’) is inclined around 5–6◦ from the ideal geometry (black lines) towards the ligands
due to the strain within the ligand backbone.
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Figure 3. Coordination octahedron for the metal(II) ion of C1 and C2.

The crystal structures further compromise two perchlorate anions to counterbalance the charge.
All the complexes crystallize without any solvent molecules, which allows to investigate dried
crystalline samples.

The average Fe-N bond length of 1.990 Å and Fe-S bond length of 2.264 Å in C1 (@173 K) are in
accordance with those reported in literature and account for an iron(II) ion in the [LS] state [23–29].
Figure S7 shows the crystal structure/asymmetric unit of C1 (@173 K). Detailed information on bond
lengths and angles for C1 and C2 are summarized in Table 1.

Table 1. Selected bond lengths [Å] and bond angles [◦] for the compounds [FeII(L)2](ClO4)2 (C1) and
[CoII(L)2](ClO4)2 (C2).

Selected Parameters [a] C1 (@173 K) C2 (@120 K) C2 (@250 K)

M-NTDA(L) 1.967(1) 1.979(4) 2.057(2)
M-NPy(L) 2.014(1) 2.019(4) 2.075(2)

M-NTDA(L′) 1.964(1) 1.981(4)
M-NPy(L′) 2.016(1) 2.027(4)

M-S(L) 2.263(1) 2.472(2) 2.479(1)
M-S(L′) 2.264(1) 2.470(2)

cis NTDA-M-NPy 84.1–95.9 84.6–95.6 85.1, 94.1
cis NTDA-M-S 85.3–94.8 82.9–97.4 83.8, 96.2
cis NPy-M-S 84.8–95.2 83.2–96.7 82.8, 97.2

av. trans X-M-X 179.8 179.6 180.0

[a] NTDA = N donor atom on thiadiazole; NPy = N donor atom pyridine; X = S, NTDA or NPy donor atom.

For C2 (@250 K), the average Co-N bond length of 2.066 Å, as well as the average Co-S bond length
of 2.479 Å indicate a [HS] cobalt(II) ion [30–36]. Cooling to 120 K results in a spin crossover from the
[HS] to the [LS] state for the cobalt(II) center as shown by magnetic data. The average Co-N distance
decreases to from 2.066 Å to 2.002 Å, which is in accordance with literature [37–39]. The shortening



Molecules 2020, 25, 855 5 of 10

of the Co-N bond is explained by the decrease of electron density in the antibonding d-orbitals from
t2g

5eg*2 in the [HS] state to t2g
6eg*1 in the [LS] state. Notably, the average Co-S distance remains about

the same (2.479 Å @250 K and 2.472 Å @120 K) upon changing the electronic state of the cobalt(II) ion.
This is explained by the Jahn-Teller distortion expected for a d7-Co(II) ion in [LS] state, with four short
Co-N bonds in equatorial plane and two long ‘axial’ Co-S bonds. Uponcooling down the transition
from [HS] to [LS] also affects the counter ion. Ordering of one of the perchlorate anions in the crystal
structure results in a phase change. While at 250 K only half of the complex is in the asymmetric unit,
the entire complex cation is found at 120 K. This is accompanied by a doubling of the cell volume from
1990 Å3 (@250 K) to 3874 Å3 (@120 K) (see Figure 4 and Figures S8 and S9 in ESI).
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Figure 4. Crystal structures of the complex cations of C2 (asymmetric unit) with thermal ellipsoids at
(a) 120 K and (b) 250 K. Hydrogens, solvent molecules and counter ions have been omitted for clarity.
Color code: Co is dark blue, N blue, S yellow, and C grey.

When comparing our findings with the dinuclear structures obtained by S. Brooker et al. [21],
the question arises, why the use of our new ligand (L) results in mononuclear complexes? In the dimeric
complexes of S. Brooker et al. two iron(II) ions are coordinated by two ligand molecules, thus each iron(II)
center has a N4S2 coordination sphere, and the two sulphur donor atoms are coordinating cis to each
other as depicted in Figure 5a. Changing the 1,3,4-triazole to the 1,3,4-thiadiazole as the backbone in the
thioether-linked ligand leads to a different strain and to closer proximity of the sulphur donor atoms in the
cis coordination, which is highly unfavorable. Hence, we exclusively obtained mononuclear complexes in
which the sulphur donor atoms are coordinating trans to each other (Figure 5b). Similar findings were
previously reported for iron(II) complexes with 1,3,4-triazole or 1,3,4-thiadiazole bridging ligands with an
amino- rather than a thioether-linker group. Here, changing from the 1,3,4-triazole to the 1,3,4-thiadiazole
backbone results in a larger angle between the intraligand donor atoms and the amine donor atoms of the
two facing ligands, which are in closer proximity compared to the ones in the 1,3,4-triazole [19].
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Figure 5. Schematic representation of the two coordination modes for the sulphur donor atoms. (a) The
sulphur donor atoms are coordinating cis to each other, which is necessary to obtain dinuclear complexes.
(b) The sulphur donor atoms are coordinating trans to each other, as described for the mononuclear
complexes herein.
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3. Materials and Methods

3.1. General Methods and Materials

All chemicals were purchased from Alfa Aesar, Deutero, Fisher Chemicals, TCI, Sigma-Aldrich
and Acros Organics and used without further purification. Absolute solvents were dried according
to known procedures and used freshly distilled [40]. The NMR spectra were recorded at room
temperature with a Bruker Avance DSX 400 and analyzed with the program MestReNova [41].
Magnetic susceptibility measurements were performed on a Quantum Design SQUID magnetometer
MPMSXL in a temperature range between 10–400 K with an applied field of 1 kOe. ESI and FD mass
spectra as well as elemental analysis (C,H and N) were measured at the microanalytical laboratories
of the Johannes Gutenberg University Mainz. X-ray diffraction data were collected at 173 K with
STOE STADIVARI and at 120 K with a STOE IPDS 2T at the Johannes Gutenberg University Mainz.
The structures were solved with ShelXT [42] and refined with ShelXL [43] implemented in the program
Olex2 [44]. Caution! The prepared perchlorate complexes are potentially explosive. Even though no
explosions occurred, only small amounts should be prepared and handled with care.

3.2. Ligand Synthesis

2,5-Bis(chloromethyl)-1,3,4-thiadiazole (1) and thioacetic acid S-pyridine-2-ylmethyl ester (2) were
prepared as described in literature [19,21]. The ligand (L = 2,5-bis[(2-pyridylmethyl)thio]methyl-
1,3,4-thiadiazole) was synthesized based on similar nucleophilic substitution to that found in
literature [21].

2,5-Bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole (L)

Sodium (1.17 g, 51.0 mmol, 8.5 equiv.) was dissolved in ethanol (100 mL) at 0 ◦C and under
nitrogen atmosphere. Thioacetic acid S-pyridine-2-ylmethyl ester (2) (2.11 g, 12.6 mmol, 2.1 equiv.)
in ethanol (25 mL) was added, and the resulting brown solution was stirred at 0 ◦C for 30 min.
Afterwards, 2,5-bis(chloromethyl)-1,3,4-thiadiazole (1) (1.10 g, 6.0 mmol, 1.0 equiv.) in ethanol (25 mL)
was added at room temperature and the orange suspension was stirred for 17 h. The reaction mixture
was poured into water (150 mL) and ethanol was removed under reduced pressure. The resulting
suspension was extracted three times with dichloromethane (50 mL). The combined organic extracts
were washed with brine (30 mL) and dried over magnesium sulfate. The solvent was removed under
reduced pressure and the resulting crude product was purified by column chromatography (SiO2,
dichloromethane/methanol 49:1) to give the pure product as brown oil. Yield: 1.54 g (4.28 mmol,
71.4%). 1H-NMR (400 MHz, CDCl3, 25 ◦C): δ = 8.57–8.51 (m, 2H, H-6, py), 7.67–7.54 (m, 2H, H-4, py),
7.32–7.29 (m, 2H, H-3, py), 7.19–7.05 (m, 2H, H-5, py), 4.01 (s, 4H, CH2, tda), 3.84 (s, 4H, CH2, py) ppm.
13C-NMR (100 MHz, CDCl3, 25 ◦C): δ = 170.7 (C, tda), 157.3 (C-1, py), 149.9 (C-6, py), 136.8 (C-4, py),
123.5 (C-3, py), 122.3 (C-5, py), 37.8 (CH2, py), 29.5 (CH2, tda) ppm. ESI-MS (MeOH): m/z (%) = 361.06
(96) [(M+H)+], 383.04 (32) [(M+Na)+], 743.10 (100) [(2M+Na)+]. Elemental analysis (C16H16N4S3):
calcd. C 53.30, H 4.47, N 15.54; found C 52.83, H 4.58, N 15.78.

3.3. Complex Synthesis

To a yellow solution of the ligand (L) (0.1 mmol) in methanol (3 mL), an almost colorless solution
of the corresponding metal(II) salt [0.1 mmol, Fe(ClO4)2 × xH2O or Co(ClO4)2 × 6H2O] in methanol
(3 mL) was added. Slow evaporation at room temperature of the obtained orange solutions resulted in
the formation of crystals suitable for X-ray diffraction after several hours. The iron(II) complex was
prepared under nitrogen atmosphere and by using dried solvents.
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3.3.1. [FeII(L)2](ClO4)2 (C1)

Fe(ClO4)2 × xH2O (27 mg) and 2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole (L, 36 mg)
were used to obtain C1 (38 mg, 77.9%) as dark brown crystals suitable for X-ray diffraction.
C32H32Cl2FeN8O8S6 [FeII(L)2](ClO4)2 (975.76): calc. C 39.39, H 3.31, N 11.48; found (after drying in
vacuo) C 38.96, H 3.03, N 11.28.

3.3.2. [CoII(L)2](ClO4)2 (C2)

Co(ClO4)2 × 6H2O (36 mg) and 2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole (L,
37 mg) were used to obtain C2 (48 mg, 98.1%) as orange crystals suitable for X-ray diffraction.
C32H32Cl2CoN8O8S6 [CoII(L)2](ClO4)2 (978.85): calc. C 39.27, H 3.30, N 11.45; found (after drying in
vacuo) C 39.00, H 3.21, N 11.34.

4. Conclusions

In conclusion, using the novel bis-tridentate 1,3,4-thiadiazole ligand (L =

2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole), we were able to synthesize and characterize
two new complexes [MII(L)2](ClO4)2 (with M = FeII (C1) and CoII (C2)). Due to the fact that
mononuclear complexes were obtained, rather than the expected dinuclear ones, we assume this is due
to the fact that the sulphur donor atoms of the thioether linkages are large compared to the nitrogen
donor atoms of the amino linkages reported by Herold [19]. Thus, the cis-coordination of two sulphur
donor atoms is unfavorable. The magnetic data of the mononuclear compound together with the
single crystal X-ray structure analysis reveal a [LS] state for the iron(II) complex (C1) until 400 K.
The cobalt(II) compound (C2) shows a gradual SCO between 100 K and 250 K from [LS] to [HS] state
with a transition temperature T1/2 of 175 K. To our knowledge, this is the first cobalt(II) complex with a
N4S2 coordination environment, showing SCO behavior, that has been reported.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/4/855/

s1, Figure S1: 1H-NMR of 2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole (L). Figure S2: 13C-NMR
of 2,5-bis[(2-pyridineylmethyl)thio]methyl-1,3,4-thiadiazole (L). Figure S3: Comparison of the 1H-spectra of
a) [FeII(L)2](ClO4)2 (C1) and b) 2,5-Bis{[(pyridine-2-ylmethyl)-thio]-methyl}-1,3,4-thiadiazole (L). Figure S4:
Mass spectrum of 2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole (L). Figure S5: IR spectrum of dried
[FeII(L)2](ClO4)2 (C1). Figure S6: IR spectrum of dried [CoII(L)2](ClO4)2 (C2). Figure S7: Molecular structure of
[FeII(L)2](ClO4)2 (C1) with thermal ellipsoids at 173 K. b) Asymmetric unit without hydrogens, solvent molecules
and counter ions. Color code: Fe dark red, N blue, S yellow, C grey, H light grey, Cl green and O red. Figure S8:
Molecular structure of [CoII(L)2](ClO4)2 (C2) with thermal ellipsoids at 120 K. Color code: Co dark blue, N blue,
S yellow, C grey, H white, Cl green and O red. Figure S9: Molecular structure of [CoII(L)2](ClO4)2 (C2) with
thermal ellipsoids at 250 K. Color code: Co dark blue, N blue, S yellow, C grey, H white, Cl green and O red.
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