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Liver cancer is the main reason of cancer deaths globally, with an unfavorable

prognosis. DNA methylation is one of the epigenetic modifications and

maintains the right adjustment of gene expression and steady gene

silencing. We aim to explore the novel signatures for prognosis by using

DNA methylation-driven genes. To acquire the DNA methylation-driven

genes, we perform the difference analysis from the gene expression data

and DNA methylation data in TCGA or GEO databases. And we obtain the

31 DNAmethylation-driven genes. Subsequently, consensus clustering analysis

was utilized to identify the molecular subtypes based on the 31 DNA

methylation-driven genes. So, two molecular subtypes were identified to

perform those analyses: Survival, immune cell infiltration, and tumor

mutation. Results showed that two subtypes were clustered with distinct

prognoses, tumor-infiltrating immune cell and tumor mutation burden.

Furthermore, the 31 DNA methylation-driven genes were applied to perform

the survival analysis to select the 14 survival-related genes. Immediately, a five

methylation-driven genes risk model was built, and the patients were divided

into high and low-risk groups. The model was established with TCGA as the

training cohort and GSE14520 as the validation cohort. According to the risk

model, we perform the systematical analysis, including survival, clinical feature,

immune cell infiltration, somatic mutation status, underlying mechanisms, and

drug sensitivity. Results showed that the high and low groups possessed

statistical significance. In addition, the ROC curve was utilized to measure

the accuracy of the risk model. AUCs at 1-year, 3-years, and 5-years were
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respectively 0.770, 0.698, 0.676 in training cohort and 0.717, 0.649, 0.621 in

validation cohort. Nomogram was used to provide a better prediction for

patients’ survival. Risk score increase the accuracy of survival prediction in

HCC patients. In conclusion, this study developed a novel risk model of five

methylation-driven genes based on the comprehensive bioinformatics analysis,

which accurately predicts the survival of HCC patients and reflects the immune

and mutation features of HCC. This study provides novel insights for

immunotherapy of HCC patients and promotes medical progress.

KEYWORDS

hepatocellular carcinoma, DNA methylation, immune, clinical, mutation, prognostic
model, immunotherapy, bioinformatics

Introduction

In global cancer statistics, the incidence and mortality of

hepatocellular carcinoma (HCC) rank top 10, which foster a

considerable threat to life and health of human (Singal et al.,

2020; Siegel et al., 2021; Sung et al., 2021). HCC is the most

common style of liver cancer and accounts for more than 90% of

all cases (Llovet et al., 2021). The treatment of HCC has

noticeable improvements, including surgery and non-surgery

therapy, but the treatment effect is still not ideal (Faivre et al.,

2020; Petrowsky et al., 2020; Pillai et al., 2020; Rebouissou and

Nault, 2020). Therefore, to improve the current status and bring

benefits to the treatment of HCC patients, we must explore new

molecular mechanisms of HCC progression.

DNA methylation is one of the epigenetic modifications and

maintains correct adjustment of gene expression and steady gene

silencing (Kulis and Esteller, 2010). Total DNA hypomethylation

plays a vital role in Tumorigenesis, which is associated with

chromosomal instability (Kawano et al., 2014).

We selected shared genes and DEGs based on the expression

data of TCGA and GSE14520. Next, based on the expression and

DNA methylation data of TCGA, we identified the methylation-

driven genes. The consensus clustering analysis was employed to

establish molecular subtypes by taking advantage of methylation-

driven genes. Based on the molecular subtypes, we perform the

following analysis: survival analysis, immune cell infiltration

analysis, and mutation analysis.

Furthermore, in order to construct a prognostic model with

as few genes as possible and high accuracy, the methylation-

driven genes were employed to carry out the survival analysis to

select the survival-related genes. Immediately, a five methylation-

driven genes risk model was built, with TCGA as the training

cohort and GSE14520 as the validation cohort. From the risk

model, we perform the systematical analysis, including survival,

clinical feature, immune cell infiltration, somatic mutation status,

underlying mechanisms, and drug sensitivity. ROC curve was

utilized to assess the accuracy of risk model. Nomogram was used

to provide a better prediction for patients’ survival. Finally, our

study established and validated a predictive model for HCC

based on the methylation-driven genes, which was utilized to

predict the prognosis of HCC patients effectively.

Although most studies were based on bioinformatics

analysis, it may contribute to immunotherapy of HCC and

promote scientific advances in the future. The workflow of the

study is shown in Figure 1.

Materials and methods

Data collection

Gene expression and clinical files were downloaded from

GEO (https://www.ncbi.nlm.nih.gov/geo/) and TCGA databases

(https://portal.gdc.cancer.gov/repository). DNA methylation

and copy number variation (CNV) files were also obtained

from TCGA (Wang et al., 2016). The gene expression and

clinical files of GSE14520 (Chen et al., 2021) originated from

the GEO database and are based on the GPL3921 platform [HT_

HG-U133A] (Affymetrix HT Human Genome U133A Array),

covering 241 normal and 247 tumor samples. The mRNA

expression of TCGA (TPM format) includes 50 normal and

374 tumor samples. DNA methylation data of TCGA have

50 normal and 379 tumor samples. The “sva” R package was

applied for data correction and normalization.

Acquisition of 31 DNA methylation-driven
genes

The “limma” package of R language was applied to identify

differentially expressed genes (DEGs) in TCGA database, with

p < 0.05 and | log2FC| > 0.585 as thresholds. And 2850 DEGs

were selected. The “MethylMix” package of R language was

employed to select the methylation-driven genes in TCGA,

with p < 0.05, | log2FC| > 0.5 and correlation

coefficient > −0.3 as thresholds. Finally, 31 methylation-driven

genes were identified. Those genes were showed in

Supplementary Table S1.
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FIGURE 1
The workflow of the study.
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Consensus clustering

The expression data of 31 methylation-driven genes were

extracted from TCGA cohort. The “ConsensusClusterPlus” R

package was utilized to cluster samples (Wilkerson and Hayes,

2010). Clustering analysis was overlapped 50 times to enhance

the availability of Clustering.

Construction of DNA methylation-driven
genes prognosis model

Firstly, univariate Cox and survival analyses were applied to

acquire the prognostic DNA methylation-driven genes. Next, the

TCGA cohort was regarded as a training group, and the

GSE14520 cohort was followed as a testing group. According

to the prognostic DNA methylation-driven genes, Lasso-Cox

regression analysis was applied to select genes to minimize the

overfitting risk and construct a risk prediction model. The risk

score was calculated through the following formula:

Risk score � ∑[Exp(Gene) p coef(Gene)]

Exp (Gene) is the expression of DNA methylation-driven

genes, and coef (Gene) is the associated regression coefficient.

Survival curves were designed using the “survival” and

“survminer” R packages. ROC (receiver operating

characteristic) curves were created by using the “survival”,

“survminer” and “timeROC” R packages.

Tumor mutation burden

Cluster group and risk score were utilized to classify the raw

mutation annotation format (MAF). The TMB score for each

patient was determined based on the somatic mutation data. The

“maftools” R package was applied to perform mutation analysis

and draw the waterfall. The “survival” and “survminer” R

packages were used to analyze and design the survival curve.

Tumor immunity analysis

The ESTIMATE algorithm (Yoshihara et al., 2013) was

applied to calculate stromal, immune, and estimate scores.

The following R packages were used to acquire and visualize

results of ESTIMATE algorithm based on TCGA database,

including “limma”, “estimate” and “ggpubr” packages. The

CIBERSORT algorithm (Newman et al., 2015) was used to

evaluate the correlation between 22 immune cells and

different groups. In addition, based on the TCGA-LIHC-TPM

cohort, seven tools were utilized to predict infiltration, including

XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, and

CIBERSORT-ABS. The following R packages were used:

“limma”, “scales”, “ggplot2″, “ggtext”, “reshape2″, “tidyverse”
and “ggpubr".

GSEA

The GSEA algorithm (Subramanian et al., 2005) (Mootha

et al., 2003) is an abundance way to calculate the measured

proportion of specific paths or features in different clusters. The

“limma”, “org.Hs.eg.db”, “clusterProfiler” and “enrichplot” R

packages were applied to perform GSEA analysis. Gene sets

(c5.go.symbols.gmt and c2.cp.kegg.symbols.gmt) were used to

perform GSEA analysis, where p < 0.05 and FDR <0.05. And the

top 5 were shown.

Nomogram and calibration

R language was used to build a predictive Nomogram. The

following packages were used, including “survival”, “regplot” and

“rms”. The calibration curve was applied to quantify the

consistency between predictive and actual results for 1-, 3-,

and 5-year survival time.

Survival analysis and clinical correlation
analysis

The correlation between expression of 5 methylation-driven

genes and survival time was visualized through drawing a

survival curve based on R language. In addition, R language

also was applied to visualize the correlation between methylation

level of 5 methylation-driven genes and survival time. The

“survival” and “survminer” R packages were employed to

paint survival curve. The “ComplexHeatmap” package was

used to draw a clinical correlation heatmap for high-risk and

low-risk groups.

TIDE

TIDE (http://tide.dfci.harvard.edu/) may evaluate multiple

published transcriptomic biomarkers to predict patient response

according to tumor pre-treatment expression profiles. Our study

used TIDE to explore the relation between TIDE score and high-

risk and low-risk groups.

Cell culture

HCC cell lines (MHCC-97H, Hep-G2) and normal liver cell

line (MIHA) were purchased from the Cell Bank of Chinese
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FIGURE 2
Identification of DNAmethylation-driven genes. (A) The heatmap of DEGs. (B) The volcanomap of DEGs. (C) Expression of 31 DNAmethylation-
driven genes. (D) The heatmap ofmethylation levels about 31 DNAmethylation-driven genes. (E) The heatmap of expression of 31 DNAmethylation-
driven genes.
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Academy of Science (Shanghai, China). Subsequently, all cell

lines were cultivated into DMEM (Gibco) with 10% FBS (Gibco)

and stored in 5% CO2 at 37°C.

RT-PCR

Firstly, according to the manufacturer’s instructions, we

performed the extraction of total RNA. Secondly, we acquired

the cDNA through reverse transcription. Finally, we carried out

the RT-PCR. The primers were shown in the Supplementary

Material S1.

Drug sensitivity analysis

The IC50 value, collected from the GDSC website (https://

www.cancerrxgene.org/), was calculated to speculate the

available compounds for treating HCC patients. The

“oncoPredict” package (Maeser et al., 2021) was utilized to

observe the therapeutic effect of medications on high-risk and

low-risk groups. The criterion is p < 0.001.

Statistical analysis

R language (version:4.2.1) was employed to carry out

statistical analysis. Data analysis was deemed as meaningful

data, while the formula p < 0.05 showed the meaning of a

statistically significant difference.

Results

Workflow of research

The flowchart of this study is shown in Figure 1. The

precise procedure is as follows: First, we obtained 31 DNA

methylation-driven genes through acquiring the shared genes

between GSE14520 and TCGA data, performing the

difference analysis. Second, ConsensusClusterPlus

computational method was utilized to classified the HCC

patients into two subtypes based on the 31 DNAmethylation-

driven genes. Finally, we built a novel DNA methylation

prognosis model.

Identification of DNA methylation-driven
genes

We firstly acquired the 10,413 shared genes between

TCGA and GSE14520. Next, we obtained 2850 DEGs

through performing the difference analysis based on TCGA

database. DEGs (Differential expression gene) heatmap was

shown in Figure 2A, and volcano map was shown in Figure 2B.

Moreover, the DNA methylation and expression data of

TCGA were used to acquire the DNA methylation-driven

genes, and we acquired the 31 methylation-driven genes

(Supplementary Table S1). The expression of

31 methylation-driven genes was tested using the TCGA

database (Figure 2C). The heatmap of methylation level

(Figure 2D) and heatmap of gene expression (Figure 2E)

showed that expression level and methylation level of

31 DNA methylation-driven genes in each sample. And we

found that most tumor samples have relatively high

methylation levels.

Subtypes establishment of DNA
methylation-driven genes

ConsensusClusterPlus computational method was used to

divide the HCC patients into two subtypes according to the

expression file of 31 DNA methylation-driven genes

(Figure 3A). CDF (Cumulative distribution function) was

applied to obtain the k value while the distribution reached

a maximum means applicable stability (Figure 3B). The Delta

region graph uncovered that the region under the curve slowly

climbed while k = 2 (Figure 3C). Furthermore, the tracking

graph unfolded the consensus clustering of projects at

different k values (Figures 3D,E). The survival curve

uncovered that Cluster 2 had poor survival time, and

Cluster1 had a better survival advantage. In addition, the

heatmap (Figure 3F) showed the expression of 31 DNA

methylation-driven genes in two subtypes.

Cluster subtypes are associated with
tumor microenvironment features

The ESTIMATE algorithm was used to assess the immune

cell composition in each sample. Tumor microenvironment

difference of two Subtypes was identified through ESTIMATE

score, stromal score, Immune score, and tumor purity. We found

that Meth-high group had a higher stromal score (Figure 4C).

However, the difference does not exist in ESTIMATE score

(Figure 4A), Immune score (Figure 4B), and tumor purity

(Figure 4D). Next, the CIBORSORT algorithm was utilized to

analyze the immune cell difference between two Subtypes. The

followed immune cells were identified, naïve B cells, resting

memory CD4 T-cells, monocytes, and M0 macrophages

(Figure 4E). To further observe the immune cell infiltration of

two DNA methylation-driven Subtypes, we applied seven

algorithms to draw a heatmap of immune cell infiltration. We

deem that the Meth-low group had a higher immune infiltration

level (Figure 4F). We then analyzed the correlation between two
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FIGURE 3
Identification of two subtypes based on Consensus clustering analysis. (A)Consensus clustering at k = 2. (B) Empirical CDF plots corresponding
to each k. (C) Delta area diagram at different k. (D) Item tracking plot at each k. (E) Survival analysis of HCC patients in two subtypes. (F) The heatmap
of 31 DNA methylation-driven genes in two subtypes.
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FIGURE 4
Immune cell infiltration in two subtypes. (A) ESTIMATE Score in two subtypes. (B) Immune Score in two subtypes. (C) Stromal Score in two
subtypes. (D) TumorPurity Score in two subtypes. (E) The violin map based on the CIBERSORT in two subtypes. (F) The heatmap of seven immune
methods in two subtypes. (G) The difference between HLA subtypes in two subtypes. (H) The difference between immune checkpoints in two
subtypes.
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Subtypes and expression of HLA subtypes as well as immune

checkpoints. We found that most HLA subtypes were highly

expressed in Meth-low group (Figure 4G). For Example, HLA-

DMA, HLA-DMB, HLA-DOA, and HLA-DOB. We also observed

that most immune checkpoints were highly expressed in Meth-

low group (Figure 4H), such as CTLA4, LAG3, HAVCR2,

PDCD1, and TIGIT. Therefore, we deem that the Cluster 2 or

Meth-low group may benefit from the immune checkpoint

inhibitor therapy in our subtypes.

Cluster subtypes are associated with
tumor mutation features

From the waterfall plot (Figures 5A,B), we found that TMB

differences exist in two subtypes. We observed 177 (82.33%) of

215 samples inMeth-high group (Figure 5A) and 118 (80.82%) of

146 samples in Meth-low group (Figure 5B). In addition, we also

observed that CTNNB1, PCOL, APOB, XIRP2, LRP1B, HMCN1,

ADGRV1, and CUBN have a higher TMB in Meth-high group,

FIGURE 5
Tumor mutation analysis in two subtypes. (A) The mutation waterfall map of Cluster 1 group (Meth high). (B) The mutation waterfall map of
Cluster 2 group (Meth low). (C) Survival analysis of two groups. (D) Survival analysis of four groups.
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FIGURE 6
Lasso regression analysis. (A) The univariate cox regression analysis of 31 DNA methylation-driven genes. (B) LASSO coefficient distribution of
DNAmethylation-driven genes. (C) The tuning parameter (λ) in the LASSOmodel. (D) Survival curve of the two risk groups derived from the five-gene
signature in the TCGA cohort. (E) Survival curve of the two risk groups derived from the five-gene signature in the GSE14520 cohort. (F) Univariate
Cox regression analysis of risk scores and clinical features. (G) Multivariate Cox regression analysis of risk scores and clinical features.
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FIGURE 7
The risk model of five-gene signature. (A) The correlated heatmap of the risk score and clinical features. (*p < 0.05; **p < 0.01; ***p < 0.001). (B)
The five-gene mRNA expression, risk score distribution, and the related survival data in the TCGA cohort. (C) The five-gene mRNA expression, risk
score distribution, and the related survival data in theGSE14520 cohort. (D)ROC curves for 1-, 3-, and 5-years overall survival predictions in the TCGA
cohort. (E) ROC curves for 1-, 3-, and 5-years overall survival predictions in the GSE14520 cohort.
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but TP53, RYR2, CSMD3, OBSCN, ABCA13, ARID1A, USH2A,

AXIN1, DOCK2 have a higher TMB in Meth-low group. And

from the survival curve (Figure 5C), we deem that the H-TMB

group possesses a poor survival time. In addition, we also found

that High-TMB and Low-methylation groups are closely

associated with worst prognosis, low-TMB and high-

methylation groups are closely associated with best prognosis

(Figure 5D).

Construction of DNA methylation-driven
genes prognosis model

We perform survival filtering based on the above

31 methylation-driven genes to select survival-related

genes. Thus, we obtain 14 survival-related genes

(Figure 6A). There are GNA14, SLC22A1, CYP2C9, PDK4,

GLS, LAMB1, LAPTM4B, GNG4, ADH1B, ZNF83, FBLN5,

ADM2, CABYR, and SLC1A4. Moreover, LASSO regression

analysis was applied to construct the methylation-driven

genes prognosis model. Cross-validation was applied to

acquire the best value to identify further the prognosis-

associated genes (Figures 6B,C). Finally, five methylation-

related genes were identified to build a risk model,

including GNA14, CYP2C9, LAMB1, GNG4, and CABYR.

The risk score was calculated by this formula: expression of

GNA14 * (−0.756524222481111) + expression of CYP2C9 *

(−0.0995480923807365) + expression of LAMB1 *

(0.265282085430652) + expression of GNG4 *

(0.157119364590744) + expression of CABYR *

(0.237082502752391).

Next, patient samples, including training group (TCGA

cohort) and validation group (GSE14520 cohort), were

divided into high-risk group and low-risk group based on

the median score of risk value. From survival curve, we deem

that OS is shorter in the high-risk than low-risk group in

TCGA cohort (Figure 6D) and GSE14520 cohort (Figure 6E).

Based on the univariate (Figure 6F) and multivariate cox

regression analysis (Figure 6G) in TCGA cohort, we deem

that risk score and stage were independent prognosis factors

of HCC patients.

Furthermore, R language was utilized to draw the

heatmap of risk value and clinical features. And from the

heatmap found that the risk value is closely associated with

gender, grade stage, TNM stage, and T stage (Figure 7A). Risk

heatmap, risk score distribution, and survival status

distribution were painted, respectively (Figures 7B,C).

ROC curve was generated in the TCGA (Figure 7D) and

GSE14520 (Figure 7E) cohorts, and AUCs at 1 year, 3-years,

and 5 years were respectively 0.770, 0.698, 0.676 in training

cohort and 0.717, 0.649, 0.621 in validation cohort. Results

showed excellent predictive ability in TCGA and

GSE14520 cohorts.

Correlation between risk model and
immune features

Subsequently, we perform the immune cell infiltration

analysis. Firstly, the bubble graph (Figure 8A) showed the

relationship between the risk score and various immune cells

based on the seven methods, including CXELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, and CIBORSORT-

ABS. We uncovered that risk score is closely associated with

immune cell infiltration. Secondly, the CIBERSORT algorithm

was utilized to assess the relationship between risk score and

immune, and we only showed significant results. Results

uncovered that M0 macrophages is positive related to risk

score (Figure 8C), but naïve B cells (Figure 8B),

M1 macrophages (Figure 8D), monocytes (Figure 8E), resting

memory CD4 T-cells (Figure 8F), CD8 T-cells (Figure 8G) were

negatively related to risk score. Lastly, TIDE was used to evaluate

the clinical efficacy of immunotherapy in HCC patients. Results

showed that high-risk groups possess a lower TIDE level than

low-risk groups (Figures 8H–K). Therefore, we deem that HCC

patients in high-risk group were more likely to benefit from

immunotherapy.

Correlation between risk model and
tumor mutation features

Fhrthermore, we focus on the tumor somatic mutation in

the prognosis model based on the TCGA cohort. From the

waterfall graph of TMB, we found that mutation difference

exists in risk groups (Figures 9A,B). The most apparent

somatic mutations in TP53 and CTNNB1 were in the two

groups. However, we discovered that the mutation rate of

TP53 accounts for 21% in the high-risk group but 34% in the

low-risk group. We also observed that the mutation rate of

CTTNB1 accounts for 22% in the high-risk group but 30% in

the low-risk group. Thus, we deemed that the somatic

mutation of TP53 and CTTNB1are the most obvious

between two groups. Thus, we deemed that the risk group

of risk model may bring us novel insights for Tumorigenesis.

Subsequently, we perform the survival analysis based on the

risk group. Results showed that the high-mutation group

possesses a shorter OS than the low-mutation group

(Figure 9C). In addition, we also found that high-mutation

and high-risk groups possess a shorter OS than other groups

(Figure 9D). Therefore, we concluded that low-mutation rate

and low-risk was a protective factor for HCC patients.

GSEA

GSEA was applied to explore the function enrichment and

KEGG pathway based on the high and low-risk groups in the
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TCGA cohort. From the GO analysis (Figure 10A), we found

adaptive immune response, regulation of B cell activation,

regulation of lymphocyte activation, immunoglobulin

complex, and immunoglobulin complex circulating in the

high-risk group. Fatty acid catabolic process,

monocarboxylic acid catabolic process, xenobiotic

metabolic process, monooxygenase activity, and

oxidoreductase activity acting on paired donors with

FIGURE 8
Immune cell infiltration analysis of different risk groups. (*p < 0.05; **p < 0.01; ***p < 0.001). (A) Correlation between risk scores and immune
cells. (B) The correlation between risk score Naive B cells. (C) The correlation between risk score M0macrophages. (D) The correlation between risk
score M1 macrophages. (E) The correlation between risk score Monocytes. (F) The correlation between risk score resting memory CD4 T-cells. (G)
The correlation between risk score CD8 T-cells. (H) TIDE score in different risk groups. (I) Exclusion score in different risk groups. (J)
Dysfunction score in different risk groups. (K) MSI score between different risk groups.
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incorporation or reduction of molecular oxygen reduced

flavoprotein as one donor and incorporation of one atom

of oxygen in the low-risk group. From KEGG analysis

(Figure 10B), cell cycle, ECM receptor interaction,

leishmania infection, neuroactive ligand-receptor

interaction, and ribosome in the high-risk group. Drug

metabolism cytochrome p450, fatty acid metabolism,

metabolism of xenobiotics by cytochrome p450, retinol

metabolism, and steroid hormone biosynthesis in the low-

risk group. Results showed that the majority of enrichment in

the high-risk group is closely associated with the immune and

the majority of enrichment in the low-risk group is closely

associated with metabolism.

Establishment of nomogram

According to the TCGA and GSE14520 cohorts, we built a

Nomogram through integrating risk score and clinical features to

strengthen further the predictive ability of HCC patients (Figures

FIGURE 9
Tumor mutation analysis in different risk groups. (A) The mutation waterfall map of high-risk group. (B) The mutation waterfall map of high-risk
group. (C) Survival analysis of two groups. (D) Survival analysis of four groups.
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11A,C). In addition, calibration graph of 1, 3, and 5- years OS

uncovered that consistency exists in Nomogram prediction and

actual observations (Figures 11B,D).

Expression and survival analysis of 5 DNA
methylation-driven genes

RT-PCR was performed to test the mRNA expression of

5 DNA methylation-driven genes. Results showed that the

expression of CYBYR, GNG4, and LAMB1 is higher in HCC

cell lines than in normal liver cell line, and the expression of

CYP2C9 and GNA14 is lower in HCC cell lines than in normal

liver cell line (Supplementary Figure S1A). Next, survival analysis

was utilized to assess the correlation between five genes of the

prognosis model and survival time based on the expression and

methylation level in TCGA cohort. Results revealed that high

expression of CYBYR (p < 0.001), GNG4 (p = 0.004), and LAMB1

(p < 0.001) is closely associated with short OS, low expression of

CYP2C9 (p < 0.001), and GNA14 (p < 0.001) is closely related to

short OS (Figures 11E–I). Meanwhile, survival curve also

revealed that the low-methylation level of CABYR (p < 0.001)

and LAMB1 (p = 0.004) is related to shorter OS, and the high-

methylation story of CYP2C9 (p < 0.001) is connected to shorter

OS. However, the methylation level of GNA14 (p = 0.125) and

GNG4 (p = 0.089) was not significantly correlated with survival

(Figures 11J–N).

Drug sensitivity

Differences in drug sensitivity and risk group were

analyzed to speculate the clinical application of risk model.

Results showed that 103 drugs have good effects on HCC

patients based on different risk groups (Supplementary Table

S2; Figure 12), including 5-Fluorouracil, ABT737, Afatinib,

and Alpelisib, AT13148, Axitinib, AZ960, etc. We concluded

that 5-Fluorouracil (Figure 12A), ABT737 (Figure 12B),

Afatinib (Figure 12C) and Alpoelisib (Figure 12D)

possessed lower IC50 values compared to the high-risk

FIGURE 10
Gene set enrichment analysis. (A) GO analysis in different risk groups. (B) KEGG analysis in different risk groups.
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FIGURE 11
(A) The nomogram integrated the risk score and clinical features to predict the survival rate of the 1, 3, and 5 years in TCGA cohort. (B) The 1, 3,
and 5 years OS calibration curves in TCGA cohort. (C) The nomogram integrated the risk score and clinical features to predict the survival rate of the
1, 3, and 5 years in GSE14520 cohort. (D) The 1, 3, and 5 years OS calibration curves in GSE14520 cohort. (E) Survival analysis of CABYR expression. (F)
Survival analysis of CYP2C9 expression. (G) Survival analysis of GNA14 expression. (H) Survival analysis of GNG4 expression. (I) Survival analysis
of LAMB1 expression. (J) Survival analysis of CABYRmethylation level. (K) Survival analysis of CYP2C9methylation level. (L) Survival analysis of GNA14
methylation level. (M) Survival analysis of GNG4 methylation level. (N) Survival analysis of LAMB1 methylation level.
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group. Still, AT13148 (Figure 12E), Axitinib (Figure 12F),

AZ960 (Figure 12G), AZD1332 (Figure 12H), AZD2014

(Figure 12I), and AZD5991 (Figure 12J) possessed lower

IC50 values in the low-risk group, representing 5-

Fluorouracil, ABT737, Afatinib and Alpoelisib were more

effective in the high-risk group; AT13148, Axitinib, AZ960,

AZD1332, AZD2014, and AZD5991 were more effective in

the low-risk group. We deem that drug study may bring

scientific research enormous benefits and provide a novel

direction.

FIGURE 12
Drug sensitivity analysis.
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After a comprehensive analysis of methylation-driven genes, we

concluded that low-methylation, low-mutation, low-risk patients

possess a better prognosis. Although most studies are based on

bioinformatics, this research provided new insights for treatingHCC

patients and promoted the advancement of medicine.

Discussion

The incidence and mortality of hepatocellular carcinoma are

high-ranking among worldwide cancers (Siegel et al., 2021; Sung

et al., 2021). HCC treatment includes non-drug and drug therapies.

The former mainly include liver resection, liver transplantation, and

TACE (Transcatheter arterial chemoembolization). The latter was

utilized in the systematic therapy of advanced HCC, including

targeted drugs (such as Lenvatinib) and monoclonal antibodies

(such as nivolumab) (Chen et al., 2020). Although HCC

possesses various therapies, the prognosis of patients is worse. To

improve prognosis of patients, novel prognosis markers are urgently

needed to explore.

DNA methylation is one of epigenetic modifications and

ensures proper regulation of gene expression and stable gene

silencing (Kulis and Esteller, 2010). Proper DNA methylation is

necessary for normal cell development, so abnormal methylation

may lead to disease, including Tumorigenesis. The study showed

that DNA hypomethylation promotes Tumorigenesis through

promoting chromosomal instability (Gaudet et al., 2003). On the

contrary, DNA hypermethylation is the result of transcriptional

suppression and decreased gene expression (Min et al., 2016).

Total DNA hypomethylation plays a vital role in Tumorigenesis,

which is associated with chromosomal instability (Kawano et al.,

2014).

The immune cells within the tumor microenvironment (TME)

play a vital role in Tumorigenesis, including tumor-antagonizing or

tumor-promoting functions (Lei et al., 2020). The components of

TME are closely associated with immune checkpoint blockade

(ICB); ICB reactivates the effective antitumoral immune response

through taking advantage of immune cell infiltration (Petitprez et al.,

2020). Nowadays, partly targeting TME has been approved in solid

cancer treatment (Jiang et al., 2020). Thus, studies of TME may

bring enormous benefits to the treatment of HCC patients. The

somatic mutations influence the development of diseases, and

induction of somatic mutations promotes Tumorigenesis

(Dalgliesh and Futreal, 2007; Frank, 2014).

Based on the expression data of TCGA and GSE14520, we

selected 10,413 shared genes and 2850 DEGs. Next, based on the

expression and DNA methylation data of TCGA, we identified

the 31 methylation-driven genes. Subsequently, we perform

consensus clustering analysis and establish two subtypes by

taking advantage of 31 methylation-driven genes. And we

found that two subtypes are featured by significant survival

outcomes, immune features, and mutation status in HCC.

And the establishment of HCC subtypes can correctly predict

the clinical outcomes, immune features, and mutation status. Of

course, Huang et al. (2020) constructed four subtypes and

analyzed the correlation between different subtypes and

survival, immune checkpoints, metabolism signatures, clinical

feature, etc. However, the study is lack of external validation. In

our study, TCGA cohort was deemed as training cohort and

GSE14520 was regarded as the testing cohort. Although the

consensus clustering is too rough to guide immunotherapy,

the methylation-driven gene subtypes may provide a

promising guideline for HCC clinical treatment.

Moreover, in order to construct a prognostic model with as few

genes as possible and high accuracy, the 31 methylation-driven

genes were used to perform the survival analysis to select the

survival-related genes. Immediately, a panel of 5 methylation-

driven genes was built by the LAASO regression model (Garcia

et al., 2010; Engebretsen and Bohlin, 2019), and the patients were

divided into high and low-risk groups. The model was established

with TCGA as the training cohort and GSE14520 as the validation

cohort. Previous study of Luo et al. (2020) built a 10-gene prognostic

risk score model to predict the prognosis of HCC patients and this

model showed the prediction accuracy. However, their model lacks

external validation and immune associated analysis. Thus, we

systematically analyzed differences in survival, immune cell

infiltration, somatic mutation status, underlying mechanisms, and

drug sensitivity. We deem that risk score is closely associated with

OS and clinical features (gender, grade, stage, and T), and risk score

serve as an independent prognosis factor of HCC patients. In

addition, the risk score is closely related to immune cells based

on TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCP-

counter, XCELL, and EPIC algorithms. The results of CIBORSORT

algorithm showed that risk score is positively correlated with

M0 macrophages and negatively correlated with naïve B cells,

M1 macrophages, monocytes, resting memory CD4 T-cells, and

CD 8 T-cells. Plus, TIDE was used to evaluate the clinical efficacy of

immunotherapy in HCC patients. Results showed that high-risk

group possesses a lower TIDE level than low-risk group, which

means that high-risk group was more likely to benefit from

immunotherapy. Based on the prognosis model, we perform the

tumor mutation analysis. The difference of tumor mutation burden

(TMB) exists in high-risk and low-risk groups. The survival analysis

showed that high TMB and high-risk groups are closely related to a

worse prognosis. Furthermore, to explore the underlying

mechanism, we perform the GSEA analysis. We found that risk-

high group is correlated with cell cycle, ECM receptor interaction,

immune, etc. The ECM receptor interaction plays a significant role

in tumor shedding,movement, adhesion, and hyperplasia (Bao et al.,

2019). The risk-low group is closely correlated with metabolisms.

OncoPredict (Maeser et al., 2021) method was utilized to perform

the drug sensitivity analysis, and various drugs were explored in our

study. Finally, 5methylation-driven genes of thismodel were used to

perform survival analysis based on the expression and DNA

methylation level. And RT-PCR was utilized to test the

expression of 5 genes. We found that 5 methylation-driven genes
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were closely associated with the survival of HCC patients, and DNA

methylation levels of CYBYR, CYP2C9, and LAMB1 were closely

associated with survival of HCC patients.

CABYR is produced by alternative splicing, has high

expression in most tumors, including HCC, and is closely

correlated with a worse prognosis in HCC patients (Yu et al.,

2020). The knockdown of CABYR chemosensitivity through

inactivating AKT pathway in non-small cell lung cancer cells

(Qian et al., 2014). CYP2C9 is essential in drug metabolism and

exogenous carcinogens in various tumors. CYP2C9 over-

expression decreases the migration and invasion of ESCC (Jiang

et al., 2021). Meanwhile, CYP2C9 is also down-regulated in HCC

(Yu et al., 2015). GNA14 is down-expressed and inhabits HCC

progression through MAPK/JNK and PI3K/AKT signaling

pathways (Xu et al., 2021). In addition, hypermethylation of

GNA14 promoter is upregulated in HCC (Song et al., 2021).

GNG4 is high-expressed and closely related to poor prognosis

in colorectal cancer (Liang et al., 2021).GNG4was also explored as

a downstream target of PSMC2 in gallbladder cancer (GBC) (Zhu

et al., 2021). In addition, GNG4 promotes the progression of lung

cancer (Zhou et al., 2022). However, rarely studies of GNG4 were

discovered in HCC. LAMB1 is upregulated in gastric cancer and

promotes tumor development through the ERK/c-Jun axis (Lee

et al., 2021). Plus, LAMB1 serves as a target of miR-124-5p in

glioblastomamultiforme (GBM) (Chen et al., 2014). Of course, we

only observed a few studies in HCC. LAMB1 sever as a target of

DDX24 in HCC. The previous studies found that the

5 methylation-driven genes possess more excellent prospects

and the tumorigenesis mechanism is unclear in HCC.

Our study analyzed the model’s predictive performance

based on survival, clinical, molecular mechanism, immune

landscape, tumor mutation status, and immunotherapy

sensitivity. However, we also found some limitations in our

study. Firstly, most studies are based on public databases, and

there is an urgent need to perform more clinical validation.

Secondly, most of study are based on bioinformatics analysis.

This model needs further confirmation from basic experiments.

Therefore, future studies will further focus on the five

methylation-driven genes.

In conclusion, our study established and validated a prognostic

model for HCC based on the methylation-driven genes, which were

utilized to effectively predict the prognosis of HCC patients.

Although our research possesses a few limitations, this study will

still bring our novel insights and guide scientific progress.

Conclusion

In summary, this study developed a novel risk model of

five methylation-driven genes based on the comprehensive

bioinformatics analysis, which accurately predicts survival of

HCC patients and reflects the immune and mutation features

of HCC. This study provides novel insights for

immunotherapy of HCC patients and promotes medical

progress.
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