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Verification of gait analysis 
method fusing camera‑based pose 
estimation and an IMU sensor 
in various gait conditions
Masataka Yamamoto1,2*, Koji Shimatani3, Yuto Ishige1 & Hiroshi Takemura1

A markerless gait analysis system can measure useful gait metrics to determine effective clinical 
treatment. Although this gait analysis system does not require a large space, several markers, or 
time constraints, it inaccurately measure lower limb joint kinematics during gait. In particular, it 
has a substantial ankle joint angle error. In this study, we investigated the markerless gait analysis 
method capability using single RGB camera-based pose estimation by OpenPose (OP) and an inertial 
measurement unit (IMU) sensor on the foot segment to measure ankle joint kinematics under various 
gait conditions. Sixteen healthy young adult males participated in the study. We compared temporo-
spatial parameters and lower limb joint angles during four gait conditions with varying gait speeds 
and foot progression angles. These were measured by optoelectronic motion capture, markerless 
gait analysis method using OP, and proposed method using OP and IMU. We found that the proposed 
method using OP and an IMU significantly decreased the mean absolute errors of peak ankle joint 
angles compared with OP in the four gait conditions. The proposed method has the potential to 
measure temporo-spatial gait parameters and lower limb joint angles, including ankle angles, in 
various gait conditions as a clinical settings gait assessment tool.

Gait metrics such as gait speed, stride length, and joint kinematics, are crucial assessment parameters for per-
sons with gait disability in clinical settings. Temporo-spatial and kinematic parameters of gait have been used 
to assess the treatment effect in neurological disorders1,2 and to predict fall risk in elderly individuals3. These 
metrics provide valuable information for planning physiotherapy treatments and determining the treatment 
effects. Currently, optoelectronic marker-based three-dimensional motion capture (3DMC) is used as a typical 
measurement tool for clinical gait analysis and can accurately measure gait metrics. The optoelectronic 3DMC 
system has reliability and repeatability of gait metrics4,5. Although the 3DMC accurately measure gait metrics, it 
is difficult to employ it in a clinical setting because of economic and time constraints6. Furthermore, it requires 
a large space and technical skills for measurement. Inertial measurement unit (IMU)-based motion capture 
system are also used as an alternative method to 3DMC7. However, this system requires the attachment of many 
IMU sensors to human body segments. Camera-based markerless motion capture system using human pose 
estimation algorithms are used to measure human gait as an alternative method to 3DMC. Microsoft Kinect, 
which comprises RGB cameras equipped with a depth sensor, can measure gait without reflective markers. Kinect 
can measure temporo-spatial parameters, such as gait speed, step time, and step length with high reliability8–10. 
Furthermore, it is used as an exergaming aid for prefrail and frail individuals, and as a cognitive function assess-
ment tool for measuring dual-task gait11,12. However, previous studies have reported that depth cameras cannot 
accurately measure kinematic parameters, such as lower limb joint angles, compared with optoelectronic 3DMC 
system8,10,13. In addition, markerless motion capture systems using depth sensors cannot easily measure fast joint 
movements because of the sampling rate. The sampling rate of most depth sensors is 30 Hz, whereas the 3DMC 
for gait analysis is more than 60 or 100 Hz8. Lower sampling rate might lead to a loss of important lower limb 
joint angle data.

Recently, RGB camera-based two-dimensional (2D) markerless human motion tracking systems, such as 
PoseNet14 and OpenPose (OP)15, have been developed to estimate human poses and body segments. OP is 
an open-source human pose estimation software that estimates human body keypoints using a two-branch 
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multistage convolutional neural networks (CNN) from each RGB image as the input. Although these systems do 
not have depth sensors, they can estimate the human joint point using 2D images or videos with the CNN. These 
systems have great potential as gait analysis tools in clinical settings because they do not require the attachment 
of markers, technical skills, or immense costs. OP can be used as a screening tool for Parkinson’s disease16 and 
autism spectrum disorders17. There are some problems when using 2D pose estimation system for gait analysis. 
As pose estimation only estimate body keypoints, users are required to calculate joint kinematics from body 
segments and alignment. In addition, accuracy is required when OP is used for gait analysis18. Some previous 
study reported that OP can measure temporo-spatial and kinematic parameters in the sagittal plane during 
gait without substantial error19,20. Our previous study revealed that single RGB camera gait analysis by OP can 
measure several temporo-spatial parameters and sagittal plane joint angles with good to excellent agreement and 
consistency compared with optoelectronic 3DMC systems; however, the lower limb joint angle error increased in 
some gait conditions, including out of the 2D image plane excessive motion, such as increasing foot progression 
angle (FPA)21. In particular, the peak ankle joint angles had substantial error. When single RGB camera is used 
to measure a walking subject from the side, the 2D image plane of the camera captures flexion-extension motion 
easily. In contrast, out of the 2D image plane motion such as excessive FPA affect the accuracy of joint angle. 
The pose estimation algorithm also affected accuracy because this algorithm did not design for gait kinematics 
analysis in such conditions22. Although researchers attempted to decrease the joint angle errors caused by out 
of 2D image plane motion in single RGB camera analysis, the effective correction methods for out of 2D plane 
excessive motion and ankle joint angle error have been inadequately solved. Preparing many RGB cameras may 
decrease the angle error23; however, it is difficult to employ the measurement method using many cameras in 
clinical settings because of the large space and costs. 3D pose estimator using a single camera might be useful, 
however, this method has problems such as processing speed and ease of application when considering its use 
in clinical setting. To overcome these limitations, the complementation of OP kinematics using IMU data, such 
as segment acceleration and angular velocity, might be useful for improving accuracy.

In this study, we proposed a simple and accurate sensor-fusion approach for gait analysis using a single RGB 
camera and an IMU sensor. The primary aim of this study was to clarify whether the proposed method that fuses 
OP and IMU can decrease ankle joint angle error during gait. In the proposed method, an IMU was attached to 
foot segments to reduce the ankle joint angle error by using acceleration and angular velocity data. The secondary 
aim was to clarify temporo-spatial parameters and lower limb joint angles during four overground gait condi-
tions with combinations of self-selected and slow speeds and with their normal FPA and with a larger FPA, as 
measured by 3DMC and OP. Although our previous study examined the accuracy of temporo-spatial parameters 
and joint kinematics by OP, we measured only treadmill gait21. Some previous studies have compared 3DMC and 
markerless gait analysis systems on overground gait10,24; however, the four gait conditions were not measured, 
including out of 2D image plane excessive motion, such as large FPA. Therefore, we measured temporo-spatial 
and kinematic parameters in the four gait conditions on the ground. Moreover, we used cross-correlation coef-
ficients (CCC) for evaluating similarity of the data between these methods. We measured four gait conditions 
including large FPA conditions in healthy young adults using 3DMC and OP. To decrease the ankle angle error 
in the OP method, an IMU sensor data was fused with the OP data using a complementary filter. The 3DMC 
data served as the ground-truth labels.

Methods
Participants.  Sixteen healthy adult males (age: 22 ± 1 years, height: 1.70 ± 0.05 m, mass: 64.4 ± 8.6 kg) par-
ticipated in this study. The exclusion criteria were as follows: age < 20 years; limitation of physical activity owing 
to current injury or disease; history of lower limb surgery, neurological disorders, or cardiac disease; and back or 
leg pain during gait. All study procedures were approved by the ethics committee of Tokyo University of Science 
(20022), and written informed consent for study participation, publication of gait data, and images was obtained 
from all participants. This study was conducted in accordance with the principles of the Declaration of Helsinki.

Motion task.  The participants were randomly asked to walk under four conditions on a 9 m straight-line 
walkway: self-selected comfortable speed with normal and large FPA conditions, and slow speed with normal 
and large FPA conditions. The slow speed was set to 0.60 m/s, which was based on average of limited community 
ambulation in individuals after a stroke25,26. In normal FPA conditions, participants were asked to walk as usual. 
In large FPA conditions, the FPA of 50° was determined by a physical therapist during static position, and it was 
also checked during gait. The FPA in this study was greater than that in previous studies related to post-stroke 
and knee osteoarthritis gait27–29. The FPA was also monitored during gait using 3DMC. A large FPA is important 
for investigating the accuracy of motion analysis from 2D video images because this condition includes exces-
sive motion in the 2D image plane. In addition, gait with a large FPA is often observed clinically. Although the 
self-selected speed with large FPA condition might not be commonly observed in clinical settings, we evaluated 
whether this condition for the OP could be measured in a difficult condition. Before the measurement, the par-
ticipants had sufficient gait practice for each condition. Thereafter, gait trials were performed at least five times 
for each condition.

Measurement procedures for 3DMC and OP.  The OptiTrack motion capture system with 11 infrared 
cameras (NaturalPoint, Corvallis, OR, USA) were used for the ground-truth data of the 3DMC. A total of 31 
markers were placed on anatomical landmarks. The markers were placed on the seventh cervical vertebra, ster-
noclavicular notch, xiphoid process, right scapular inferior angle, and the tenth thoracic vertebra. Additionally, 
the markers were affixed bilaterally over the acromion processes, anterior-superior and posterior-superior iliac 
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spines, lateral thighs, medial and lateral epicondyles of the femurs, lateral shanks, medial and lateral malleoli, 
calcanei, head of second and fifth metatarsals, and tip of the second toes.

An RGB camera with a pixel resolution of 720 × 520 (Basler AG, Ahrensburg, Germany) was used for the 
2D analysis using human pose estimation. This camera was positioned 3 m away from the participants, and it 
captured their dominant leg. The height of the camera was set at the greater trochanter of each participant. The 
RGB camera data were used for 2D pose estimation by OP. In the first stage, the part affinity fields, which form 
a set of 2D vector fields that encode the location and orientation of the extremities over the RGB images, were 
predicted15. In the second stage, the confidence maps of each human body segment location are predicted. Both 
stages were parsed to output 2D keypoints of the human body in the images. For the OP output, we used the 
Body_25 model, which provides the 2D coordinates of the 25 body keypoints in each RGB image (Fig. 1). More 
details on OP have been described by Cao et al.15. The data from 3DMC and OP were recorded at a sampling rate 
of 100 Hz, and 4th order low-pass Butterworth filter with a 6 Hz cutoff frequency was used.

Data processing and proposed method for ankle joint angle.  Temporo-spatial parameters, such 
as gait speed, stride length, stance time, and swing time were measured for each gait condition. In the 3DMC 
method, the midpoint of both posterior superior iliac spine (PSIS) markers was used to calculate the gait speed, 
whereas the gait speed measurement using the OP and the proposed method was calculated from the mean 
midhip keypoint velocity of the walkway direction in the 2D video. In both methods, initial contact/toe-off were 
defined based on the maximum or minimum point of antero-posterior distance between heel/second metatarsal 
head and midpoint of PSIS in 3DMC or heel/ big toe and midhip in OP by referring to a previous study30. Stride 
length was calculated from the distance between the initial and the next initial contact point of the dominant 
heel marker or keypoint coordination. In the OP method, the distance was calculated based on the length of 
tape on the walkway and number of pixels of the tape in the RGB camera image. In addition, representative 
kinematic parameters of peak joint angles for gait assessment were selected by referring to previous studies31,32. 
In the 3DMC method, flexion-extension angles of the lower limb joints were calculated using Skycom software 
(Accuity Inc., Tokyo, Japan). Hip, knee, and ankle joint flexion-extension angles in the OP method were cal-
culated by body segment vectors. Keypoints for body segment vector were as follows: trunk, neck and midhip; 
thigh, hip and knee; shank, knee and ankle; foot, ankle and big toe. The hip angle was calculated from trunk and 
thigh segment vector. The knee angle was calculated from thigh and shank segment vectors. The ankle angle 
was calculated from shank and foot segment vectors. Joint angles in the OP method were calculated as follows:

where −→Sp and −→Sd are proximal and distal body segment vectors, respectively. Moreover, trailing limb angles 
(TLA) was also measured using both methods. TLA has been used as a useful outcome related to the forward 
propulsive force during gait33–35, and is defined as the angle between a vector joining the greater trochanter with 
the fifth metatarsal head and the laboratory’s vertical axis32. In the OP method, the TLA was calculated from 
the angle between the vector joining the dominant hip and small toe keypoints and a perpendicular line passing 
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Figure 1.   Overview of the experimental set up and body model of OP. (a) Approximate position of infrared 
cameras for 3DMC (blue) and an RGB camera for OP (red). (b) Body keypoints estimation by OP. BODY_25 
model used in this study. Left side gait condition is normal foot progression angle (FPA), whereas right side is 
large FPA.
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through center of the camera image. Knee joint angles obtained using OP methods tend to be underestimated 
by approximately 5°21,36; therefore, we compensated by adding 5° to the knee joint angle using OP methods.

To improve the accuracy of the ankle joint angle in the proposed method using OP, an IMU sensor (Delsys 
Inc., MA, USA) consisting of a triaxial accelerometer and gyroscope was attached to the participants’ dominant 
foot segment. The sampling rate of the IMU was 148 Hz. The acceleration and angular velocity data were filtered 
by a low-pass filter with a 6 Hz cutoff frequency and high-pass filter with a 0.5 Hz cutoff frequency. RGB camera, 
3DMC and IMU were synchronized by an electrical trigger. In the proposed method, a complementary filter was 
used to fuse the OP, acceleration, and angular velocity of the foot segment angle in the sagittal plane (Fig. 2). The 
complementary filter can simply and accurately calculate the joint angle during gait37,38. The foot segment angle 
in the sagittal plane ( θfoot ) applied to the filter was calculated as follows:

where t  is the time; θa and θOP are the foot segment angles calculated from the acceleration and OP data, 
respectively. ω is the filtered foot segment angular velocity obtained from the gyroscope. B and C are the filter 
coefficients. θa was calculated using the filtered acceleration via a trigonometric operation. The filter coefficients 
under normal and large FPA conditions were set from empirical tests based on a previous study37. In this study, 
normal FPA conditions of  B and C were 0.02 and 0.85, respectively, while the corresponding large FPA condi-
tions were 0.05 and 0.77, respectively. The ankle dorsiflexion and plantarflexion angles of the proposed methods 
were calculated using the foot segment angle applied to the complementary filter and the shank segment angle 
from the OP. As an index of measurement parameters, the temporo-spatial parameters, peak hip and peak 
knee flexion–extension angles, and TLA using the 3DMC and OP method were compared for each condition. 
Because the knee joint angle during a gait cycle has peak flexion in the early and late stance phases, both peak 
flexions were measured as 1st and 2nd peak flexion angles. Peak dorsiflexion and plantarflexion angles using the 
3DMC, OP, and the proposed method were compared for each condition. The Mean absolute errors (MAE) of the 
temporo-spatial and kinematic parameters between the 3DMC and OP or the proposed methods were calculated.

Statistical analysis.  For each parameter, the assumption of normality was assessed using the Shapiro–Wilk 
test. The MAE between the 3DMC and OP methods for temporo-spatial parameters and kinematic parameters 
among the four gait conditions was assessed by a one-way repeated measures analysis of variance, followed by 
Shaffer’s modified sequentially rejective Bonferroni procedure as a post hoc test. In addition, the MAE between 
the 3DMC and the proposed methods for peak ankle joint angles was compared using the same statistical analy-
sis. To verify the effectiveness of the proposed method on the ankle joint angle, a two-tailed paired t-test was 
used to compare the MAE obtained by OP with the MAE obtained by the proposed method. The Friedman and 
Wilcoxon signed-rank tests were used to compare data without normality. Furthermore, CCC between these 
methods was used to evaluate the similarity of angles during the gait cycle. The CCC values were interpreted as 
weak or no coupling (−0.3 < CCC < 0.3), moderate coupling (0.3 ≤ CCC < 0.70 or −0.7 < CCC ≤ −0.3), and strong 
coupling (CCC > 0.7 or CCC < −0.7)39. Statistical significance was set at p < 0.05.

(2)θfoot [t] = Bθa[t]+ C
(

θfoot [t −�t]+ ω[t]�t
)

+ (1− B− C)θOP[t]

Figure 2.   The proposed method fusing RGB camera-based pose estimation by OP and an IMU sensor on the 
foot segment to measure ankle joint angle. Foot segment angle was calculated from the acceleration, angular 
velocity, and OP data. LPF: low-pass filter; HPF: high-pass filter. A complementary filter was used to fuse the 
data based on each filter coefficients. Ankle joint angle was calculated using the fused foot segment angle and 
the shank segment angle from the OP.
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Results
The mean ± standard deviation (SD) of temporo-spatial parameters, hip kinematic parameters, and knee kine-
matic parameters under the four conditions are listed in Tables 1 and 2. The OP and proposed methods employed 
the same calculations for these parameters and so only OP results are shown in Tables 1 and 2. The ankle joint 
angles of the 3DMC, OP, and proposed methods under the four conditions are listed in Tables 3 and 4. MAE 
were averaged after calculating the absolute value of the difference between each participant’s data measured by 
3DMC and OP or the proposed methods. MAE of lower limb joint angle between the methods was shown in 
Fig. s1 to s3 (see supplementary material).

The MAE in gait speed and stride length under the four conditions were up to 0.02 m/s and 0.06 m, respec-
tively. The MAE in stance and swing times were up to 0.02 s (two motion capture frames). Most of the MAE 
values for these parameters were less than 5% of the 3DMC values. The MAE of gait speed, stride length, stance 
time, and swing time were not significantly different among the four conditions (p = 0.290, p = 0.248, p = 0.547, 
and p = 0.432, respectively).

The hip and knee joint angles in the sagittal plane of temporal changes during gait under the four conditions 
are shown in Figs. 3 and 4. Most of the MAE for hip and knee peak kinematic parameters in each condition 
were less than 5° (Table 2). The MAE of the peak hip flexion angle and TLA differed significantly among the 
four conditions (both p = 0.040). Nevertheless, the post-hoc test results did not vary significantly. The MAE of 
the peak hip extension angle was not significantly different among the four conditions (p = 0.475). In addition, 
CCC of the hip and knee joint angles between the 3DMC and OP methods were strongly coupled in each condi-
tion (Figs. 3 and 4).

Ankle joint angles in the sagittal plane of temporal changes during gait calculated by 3DMC, OP, and the 
proposed method are shown in Figs. 5. The OP method had substantial peak ankle angle errors under large FPA 
conditions. In obtaining the MAE between the 3DMC and OP methods, the peak dorsiflexion and plantarflexion 

Table 1.   Temporo-spatial parameters in the four gait conditions (mean ± SD). In large FPA conditions, 
participants were instructed to walk with an FPA of 50°. OP and proposed methods used the same calculation. 
MAE was averaged after calculating the absolute value of the difference between each participant’s data 
measured by two methods.

Self-selected speed Slow speed

3DMC OP MAE 3DMC OP MAE

Gait speed (m/s)
Normal 1.05 ± 0.16 1.06 ± 0.17 0.02 ± 0.03 0.67 ± 0.12 0.67 ± 0.12 0.01 ± 0.01

Large FPA 0.89 ± 0.16 0.91 ± 0.17 0.02 ± 0.02 0.62 ± 0.12 0.63 ± 0.12 0.02 ± 0.02

Stride length (m)
Normal 1.22 ± 0.10 1.24 ± 0.11 0.03 ± 0.04 0.94 ± 0.14 0.94 ± 0.14 0.04 ± 0.05

Large FPA 1.09 ± 0.16 1.11 ± 0.16 0.06 ± 0.06 0.88 ± 0.16 0.91 ± 0.17 0.04 ± 0.04

Stance time (s)
Normal 0.76 ± 0.11 0.77 ± 0.11 0.01 ± 0.02 0.98 ± 0.18 0.98 ± 0.19 0.01 ± 0.02

Large FPA 0.80 ± 0.12 0.80 ± 0.12 0.01 ± 0.01 0.97 ± 0.19 0.96 ± 0.20 0.01 ± 0.01

Swing time (s)
Normal 0.40 ± 0.04 0.40 ± 0.04 0.01 ± 0.01 0.45 ± 0.06 0.43 ± 0.07 0.02 ± 0.03

Large FPA 0.42 ± 0.04 0.41 ± 0.06 0.02 ± 0.03 0.45 ± 0.06 0.45 ± 0.06 0.02 ± 0.02

Table 2.   Peak hip and knee joint angles during a gait cycle in the four gait conditions (mean ± SD). In large 
FPA condition, participants were instructed to walk with an FPA of 50°. OP and proposed methods used 
the same calculation. MAE was averaged after calculating the absolute value of the difference between each 
participant’s data measured by two methods.

(deg)

Self-selected speed Slow speed

3DMC OP MAE 3DMC OP MAE

Hip flexion
Normal 22.4 ± 3.6 23.4 ± 2.8 3.1 ± 1.7 19.4 ± 3.2 20.1 ± 2.9 2.4 ± 1.8

Large FPA 21.7 ± 5.1 25.1 ± 4.7 4.5 ± 3.1 19.1 ± 6.4 21.9 ± 4.3 4.0 ± 3.5

Hip extension
Normal 19.3 ± 5.0 18.1 ± 2.7 4.1 ± 2.4 14.1 ± 4.2 15.2 ± 3.6 3.5 ± 2.3

Large FPA 18.5 ± 4.8 14.3 ± 4.8 4.8 ± 3.3 14.3 ± 4.9 11.8 ± 4.8 4.2 ± 3.4

TLA
Normal 29.9 ± 2.8 29.4 ± 2.4 1.6 ± 1.3 26.5 ± 2.7 26.0 ± 2.9 1.9 ± 1.5

Large FPA 25.3 ± 3.6 27.0 ± 3.4 3.0 ± 1.6 22.9 ± 4.3 24.5 ± 4.3 2.5 ± 1.5

Knee flexion (1st)
Normal 24.7 ± 5.1 21.6 ± 5.4 4.7 ± 2.3 19.6 ± 6.9 17.4 ± 4.7 4.4 ± 2.6

Large FPA 22.6 ± 8.4 20.2 ± 6.8 4.9 ± 2.9 18.3 ± 9.6 16.7 ± 6.9 5.0 ± 3.1

Knee flexion (2nd)
Normal 68.1 ± 4.3 66.6 ± 5.2 2.4 ± 1.9 62.7 ± 4.3 61.6 ± 4.3 2.2 ± 1.7

Large FPA 55.4 ± 7.9 54.1 ± 7.6 2.3 ± 1.8 48.2 ± 9.6 46.8 ± 9.4 3.5 ± 2.4

Knee extension
Normal 9.2 ± 4.3 7.5 ± 2.3 3.7 ± 2.3 8.5 ± 4.7 7.7 ± 2.6 3.3 ± 2.2

Large FPA 8.4 ± 6.2 9.0 ± 4.1 3.9 ± 2.3 7.6 ± 6.2 9.1 ± 4.8 4.1 ± 2.5
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angles significantly differed among the four conditions (both p < 0.001). The post hoc test identified that the 
peak dorsiflexion angle in the self-selected and slow speeds with normal FPA condition significantly decreased 
compared to that of the self-selected and slow speeds with large FPA condition (Tables 3 and 4). The MAE 
between the 3DMC and OP methods of the peak plantarflexion angle in self-selected and slow speeds with 
normal FPA conditions also significantly decreased compared to that of the self-selected and slow speeds with 
large FPA conditions.

Comparison of the ankle joint angle MAE using the OP and using the proposed methods are shown in Fig. 5. 
The proposed method significantly decreased the MAE of peak dorsiflexion angle compared with the OP method 
under all conditions (lowest p < 0.001). The MAE of peak plantarflexion angles was significantly decreased in the 
proposed method under all conditions, except for the self-selected speed with the normal FPA condition (lowest 
p < 0.001). Moreover, the CCC of the ankle joint angles to 3DMC in OP and the proposed method showed strong 
coupling under all conditions (Fig. 4). In the MAE between 3DMC and the proposed method, although the peak 
dorsiflexion angle significantly differed among the four conditions (p = 0.009), no statistically significant differ-
ence was obtained by the post hoc test (lowest p = 0.118). The peak plantarflexion angle in MAE between the 
3DMC and the proposed method significantly differed among the four conditions (p < 0.001). The post hoc test 
identified that the peak plantarflexion angle in the slow speed with normal FPA condition significantly decreased 
compared to the self-selected and slow speed with large FPA condition (Tables 3 and 4).

Discussion
The primary aim of this study was to clarify the capability of the gait analysis method fusing RGB camera-based 
pose estimation and an IMU sensor on the foot segment to measure ankle joint angle during gait. In addition, 
this study compared temporo-spatial parameters and lower limb joint angles during overground gait under 
various conditions, as measured by the 3DMC and RGB camera-based pose estimation system. The participants 
walked under four conditions with different gait speeds and FPA. Temporo-spatial parameters and peak lower 
limb joint angles during the four gait conditions were measured using 3DMC and OP. The peak ankle joint angles 
were compared among the three methods, including the proposed method. In the proposed method, an IMU 
sensor was attached to the foot segment, and its acceleration and angular velocity data were fused to the OP to 
decrease the ankle angle error.

Table 3.   Peak ankle joint angles during a gait cycle calculated by 3DMC, OP, and proposed methods in self-
selected speed conditions (mean ± SD). In large FPA condition, participants were instructed to walk with an 
FPA of 50°. MAE was averaged after calculating the absolute value of the difference between each participant’s 
data measured by two methods. *Indicates a significant difference compared to self-selected speed with large 
FPA condition on same MAE (p < 0.05). † indicates a significant difference compared to slow speed with large 
FPA condition on same MAE (p < 0.05).

(deg) 3DMC OP Proposed
MAE
|3DMC—OP|

MAE
|3DMC—Proposed|

Dorsiflexion
Normal 18.9 ± 3.6 11.7 ± 3.5 19.3 ± 3.7

7.4 ± 3.7
* p < 0.001
† p = 0.005

3.2 ± 2.7

Large FPA 19.8 ± 3.2 7.9 ± 5.9 24.7 ± 4.5 12.3 ± 5.2 5.5 ± 3.9

Plantarflexion
Normal 8.0 ± 5.9 10.9 ± 4.4 10.8 ± 4.4

5.2 ± 3.8
* p < 0.001
† p < 0.001

5.1 ± 3.6
* p < 0.001

Large FPA −2.1 ± 3.1 15.2 ± 6.3 8.9 ± 6.1 17.3 ± 6.1 11.1 ± 5.7

Table 4.   Peak ankle joint angles during a gait cycle calculated by 3DMC, OP, and proposed methods in slow 
speed conditions (mean ± SD). In large FPA condition, participants were instructed to walk with an FPA of 
50°. MAE was averaged after calculating the absolute value of the difference between each participant’s data 
measured by two methods. *Indicates a significant difference compared to self-selected speed with large FPA 
condition on same MAE (p < 0.05). † indicates a significant difference compared to slow speed with large FPA 
condition on same MAE (p < 0.05).

(deg) 3DMC OP Proposed
MAE
|3DMC—OP|

MAE
|3DMC—Proposed|

Dorsiflexio
Normal 19.5 ± 3.4 11.6 ± 3.5 19.9 ± 3.5

7.9 ± 4.3
* p = 0.005
† p = 0.016

3.5 ± 2.5

Large FPA 18.7 ± 3.7 6.3 ± 4.9 21.7 ± 5.2 12.4 ± 5.8 5.3 ± 3.9

Plantarflexion
Normal 2.7 ± 4.7 9.3 ± 4.2 7.1 ± 4.8

6.7 ± 4.1
* p < 0.001
† p < 0.001

4.5 ± 3.6
* p < 0.001
† p = 0.008

Large FPA −0.4 ± 5.6 15.8 ± 7.3 7.5 ± 6.9 16.5 ± 7.9 8.7 ± 6.3
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Figure 3.   Hip angle by the two measurement methods. Self-selected speed with normal (a) and large FPA (b) 
condition. Slow speed with normal (c) and large FPA (d) condition. The shade is presented as 1 SD. Flexion is 
defined as positive.

Figure 4.   Knee angle by the two measurement methods. Self-selected speed with normal (a) and large FPA (b) 
condition. Slow speed with normal (c) and large FPA (d) condition. The shade is presented as 1 SD. Flexion is 
defined as positive.
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Figure 5.   Ankle dorsiflexion-plantarflexion angle by the three measurement methods and MAE of peak joint 
angles in each condition. Left side figures show ankle joint angles of temporal changes during gait under the four 
conditions. Self-selected speed with normal (a) and large FPA (b) condition. Slow speed with normal (c) and 
large FPA (d) condition. The shade is presented as 1 SD. Flexion is defined as positive. The right side box plots 
show MAE between 3DMC and other methods. Red and green box plots mean MAE using OP and proposed 
method, respectively. Boxes and horizontal lines represent ranges of Q1–Q3 and median values. × and + indicates 
mean and outlier, respectively. *Indicates that proposed method significantly decreased MAE compared with 
MAE using OP (p < 0.05).
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The MAE of temporo-spatial parameters, such as gait speed, stride length, stance time, and swing time, were 
not statistically significant among the four overground gait conditions. In this study, we examined large FPA gait 
conditions because these conditions, including out of 2D image plane excessive motion, affect the measurement 
of temporo-spatial parameters and joint angle by OP. The results showed that the MAE between 3DMC and 
OP of these parameters under all conditions was less than 5% of the 3DMC values. The highest MAE values of 
gait speed, stride length, stance time, and swing time among the four conditions were 0.02 m/s, 0.06 m, 0.01 s, 
and 0.02 s, respectively. The MAE of temporo-spatial parameters was less than the minimal detectable change 
in healthy and post-stroke gait using 3DMC in test-retest experiments40,41. In addition, these temporo-spatial 
parameters obtained using OP among the four conditions were similar or improved compared to those observed 
in previous studies conducted using the markerless gait analysis system13,42. These results might be attributed to 
the high sampling rate. The sampling rate of this study was 100 Hz, which is comparable to that of the optoelec-
tronic 3DMC. Therefore, OP could accurately measure the temporo-spatial parameters under various overground 
gait conditions by detecting heel contact and toe-off accurately.

The MAE of the peak hip and knee joint angles in the sagittal plane was also not statistically significant among 
the four overground gait conditions. All the MAE between the 3DMC and OP of the peak hip and knee joint 
angles were less than 5° of the 3DMC values except for 1st peak knee flexion angle in slow speed with large FPA 
condition. The highest MAE of the peak hip joint angles, TLA, and peak knee joint angles were 4.8°, 3.0°, and 
5.0°, respectively. Although the MAE of the hip, knee, and TLA tended to increase under large FPA conditions, 
the MAE was less than the minimal detectable change in healthy and post-stroke gait using 3DMC in test-retest 
experiments40,41. These errors in hip and knee joint kinematics parameters between 3DMC and OP in all condi-
tions were similar or less than those in previous studies using OP on normal FPA gait conditions20,36. Moreover, 
the CCC of the hip and knee joint angles on the sagittal plane of temporal changes in between 3DMC and OP 
were strongly coupled (CCC > 0.70) in all conditions. These results might be attributed to the high sampling rate 
(100 Hz). Furthermore, accurate body keypoint detection of OP using two multistage CNN might contribute to 
these results15. Therefore, OP has the potential to measure hip and knee joint angle parameters under various 
overground gait conditions, as well as 3DMC. However, note that OP might not accurately measure these angles, 
such as gait with larger FPA or more excessive rotation compared with this study, because of excessive motion 
affection in the 2D image plane.

In the MAE between the 3DMC and OP methods, peak dorsiflexion and plantarflexion angles of the sagittal 
plane were statistically significant among the four overground gait conditions, although the CCC of ankle joint 
angles of temporal changes showed strong coupling (CCC > 0.70) in all conditions. The MAE between 3DMC 
and OP of peak joint angles was large compared with hip and knee joint angles. The MAE of peak joint angles 
under large FPA conditions was more than 10°. These results are consistent with those of previous studies that 
used a markerless gait analysis system36,43. The large error in the ankle joint angle might have been caused by the 
smaller foot segment and faster ankle angular velocity.

The proposed method significantly decreased the MAE of peak dorsiflexion and plantarflexion angle com-
pared with the OP method under all conditions, except for the MAE of plantarflexion at a self-selected speed 
with the normal FPA condition (Fig. 5). Moreover, most of MAE between 3DMC and the proposed method on 
the peak ankle joint angle were less than the minimal detectable change in post-stroke gait using 3DMC in test-
retest experiments40,41. CCC of ankle joint angles in the proposed method showed strong coupling (CCC > 0.70) 
in all conditions. Because the proposed method is fused to the OP and an IMU sensor on the foot segment, this 
method seemingly improves foot segment angle by compensating for the acceleration and angular velocity data 
of the IMU. However, only peak plantarflexion angles of the sagittal plane were statistically significant among the 
four overground gait conditions in MAE between the 3DMC and the proposed method. This difference may be 
caused by the large MAE under large FPA conditions. The results of our study showed that the peak plantarflex-
ion angle by the OP method had a substantial error compared with 3DMC, especially in large FPA conditions. 
Although the proposed method significantly decreased the MAE of the peak plantarflexion angle, the MAE at 
a slow speed with a large FPA condition was still 8.7°. Even markerless gait analysis systems with multiple RGB 
cameras have substantial errors in the plantarflexion angle23. The complementary filter used in this study might 
not have been sufficiently compensated because the plantarflexion angle calculated by pose estimation had a 
large error under large FPA conditions. Therefore, although the proposed method can measure the ankle angle 
during gait, we should note that a large FPA condition causes an increase in plantarflexion angle error.

This study has a few limitations. First, the participants were young, healthy adults. Although we measured 
various gait conditions in this study, future studies should include participants with gait disabilities. Second, we 
did not evaluate the effect of keypoint estimation accuracy on wearing loose clothing, using assistive devices 
or shoes, and changes in lighting. These changes may affect the accuracy of body keypoint estimation. Finally, 
pose estimation is based on musculoskeletal alignment. Wearing large assist devices or prostheses may result 
in misestimation of keypoints. Despite these limitations, the proposed method fusing OP and an IMU sensor 
has the potential to measure temporo-spatial parameters and lower limb joint kinematics in the sagittal plane 
in various gait patterns.

In conclusion, we aimed to clarify the capability of the gait analysis method fusing RGB camera-based pose 
estimation by OP and an IMU sensor on the foot segment to measure ankle joint kinematics during various 
gait conditions. We compared temporo-spatial parameters and lower limb joint angles during overground gait 
under various conditions, as measured by the 3DMC and OP. The results indicated that the proposed methods 
could measure temporo-spatial parameters and lower limb joint angles in the sagittal plane under various gait 
conditions. Future studies should include measurements of patients with gait disabilities to verify the practicality 
of this method in clinical settings.
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The data generated during this study are not publicly available due to ethical restriction regarding subjects’ per-
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