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Abstract

Seasonal rhythm in sex hormones has been extensively studied in birds, as well as its relationship with the type of mating
system. The Greater Rhea (Rhea americana), a South American ratite species, reproduces seasonally and has a complex
mating system: female-defense polygyny and sequential polyandry. The present study aimed at analyzing the endocrine
basis of reproduction in this species and its relationship with its mating system. We used HPLC and electrochemilumines-
cence techniques to identify and measure plasma testosterone and estradiol levels. Annual oscillations in sex hormones,
testosterone and estradiol, in adult males and females were observed. Lower levels of these hormones were exhibited
during the non reproductive season (February to July), whereas their maximum values were reached in September for males
and November-December for females. These fluctuations reflect the seasonal changes in gonadal function. By contrast, no
significant sex hormones oscillations were observed in juvenile males and females (negative control of seasonal changes).
Greater rheas maintain high testosterone and estradiol levels throughout the reproductive period. The high testosterone
levels during incubation and chick rearing did not inhibit parental behavior in males, which appears not to conform to the
‘‘Challenge Hypothesis’’. In females, the high estradiol levels throughout the reproductive season would be needed to
sustain their long egg-laying period.
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Introduction

The occurrence of seasonal oscillations in both plasma and fecal

levels of sex hormones (testosterone and estradiol) has been widely

reported in birds. During the non-reproductive season sex

hormone levels are low, becoming high in the reproductive season

and leading to changes in courtship behavior in both males and

females. This hormonal pattern has been observed in a long list of

species with different mating systems [1,2].

The seasonal pattern of testosterone in males has been related to

mating systems for different species in the context of ‘‘The

Challenge Hypothesis’’ [3], which postulates that high testosterone

levels throughout the breeding season inhibit parental behavior in

polygamous birds. This hormonal pattern allows polygamous

males to copulate with all receptive females during the entire

reproductive period. Monogamous species on the other hand

exhibit high testosterone levels only during territorial establish-

ment and mate selection, with low testosterone levels during

incubation and parental care. The complex mating system of the

Greater Rhea (Rhea americana), combining polygyny and sequential

polyandry [4,5], makes it an interesting avian model for the study

of seasonal patterns of sex hormones and their relation to mating

systems. This ratite reproduces seasonally from August to January

and the breeding season commences with fights among the males,

followed by courtship and copulation [6,7]. Later, males build the

nest scrape in the ground, incubate the eggs and take care of the

chicks for months after the end of the breeding season [8,9]. In

addition, females move in non-cohesive groups (Martella et al.

unpubl. data) and copulate and lay eggs in communal nests

throughout the entire reproductive season [10,11].

Although seasonal variations in sex hormones have been studied

in other ratite species, such as the Ostrich, Emu and Kiwi [12–15],

the endocrine basis underlying the mating system of the Greater

Rhea remains unexplored, probably because of the difficulties

involved in performing such studies in this species: on the one

hand, the wild Greater Rhea populations are found in low

densities [16,17] and are currently considered to be near

threatened [18]; and on the other, their successive capture for

marking, blood sampling and subsequent behavior monitoring are

extremely difficult to carry out in the wild. For these reasons, and

given that the reproductive behavior of captive Greater Rhea

males and females does not differ from that observed in the wild

[6,19,20], we decided to carry out this study under controlled

conditions of captivity as a first approach.
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Based on the complex mating system of Greater Rheas, and

under the assumption that rheas present seasonal changes in their

plasma levels of sex hormones that reflect changes in gonadal

function and reproductive behavior, we expect that testosterone

and estradiol will start to increase at the beginning of the

reproductive season, will remain high and then decline at the end

of the reproductive season. By contrast, we suppose that male and

female rhea juveniles (younger than one year old) will not show

seasonal changes in sex steroids throughout the year due to their

sexual immaturity.

The relationship between plasma testosterone levels and the

reproductive and parental behavior in adult males will be

discussed within the context of ‘‘The Challenge Hypothesis’’.

Materials and Methods

This study was carried out in strict accordance with the Guide

for Ethical Research on Laboratory, Farm and Obtained from

Nature Animals. It was approved by the ethics committee of the

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas

(CONICET) (Resolution No. 1047 ANNEX II, 2005) before its

implementation, as part of the author’s postdoctoral fellowship

project.

Animals
We used 21 adult Greater Rheas (6 males and 15 females above

2 years of age) and 10 juvenile Greater Rheas (5 males and 5

females, all below 1 year old bred in captivity at an experimental

farm in Córdoba Zoo, Argentina (31u25’31.79"S, 64u10’29.92"W).

Adult Greater Rheas were housed in three pens (600 m2 each)

with natural soil floor. In each pen, 2 males and 5 females

(resembling the sex ratio of reproductive groups observed in the

wild) were provided with food (VasquettoH) and water ad libitum.

All adult birds were exposed to natural light and temperature

conditions and had access to a 10-m2 roofed shelter.

Juvenile Greater Rheas (sexually immature individuals used as a

negative control of seasonal hormone changes) were housed

separately from adults in a 50 m2-pen with natural soil floor and

were provided with processed chicken food (VasquettoH) and

water ad libitum. They were exposed to natural light and

temperature conditions and had free access to a shelter with heat

lamps. Before this study, all birds were sexed and identified

following the method (DNA test) described by Rossi Fraire and

Martella (2006) [21].

Experimental design and blood sample collection
Adults and juveniles were sampled once a month by two zoo

veterinarians during the non-reproductive season (April, May and

July 2011 and February 2012) and the reproductive season (August

2011 to January 2012).

The animals were captured and immobilized by two experi-

enced zoo assistants following experimental protocols that conform

to international ethical standards [22].

Blood samples (3 mL in adults and 1.5 mL in juveniles) were

obtained between 9:00 and 11:00 am and within 3 min of capture

(to avoid an increase in glucocorticoid concentrations) from the

right jugular vein using heparinized syringes [23,24]. Samples

were centrifuged (2500 G) for 15 min and the resulting plasma

was collected and stored at 220uC until assayed.

Behavioral sampling
In order to corroborate that the Greater Rheas in captivity

exhibit the same behavior as the wild life, we filmed their

reproductive behavior.

We focused mainly on reproductive behavior of males because

that of females has no distinguishable characteristics, except for

egg laying [25]. In the same week, but before blood sample

collection (four samples during the non-reproductive season and

six during the reproductive season), behavior was recorded

according to Sales et al. (2000) [20]. Greater Rheas were video-

recorded with a SAMSUNG smart camcorder equipped with a

526 of optical zoom. Videos were recorded during three time

intervals were taken throughout the day (first: 10 to 12 am; second:

12 to 14 pm and third: 14 to 16 pm). Also, in each interval time

three video recordings were made (10 min each) and observations

were carried out on a particular pen and all birds were filmed

simultaneously. Adult birds were observed individually, totaling

90 min (5400 seconds) of observation per month.

We focused on the following male reproductive behaviors:

Courtship (wing display, vertical and lateral swinging movements

of the neck), Incubation (male sitting on eggs) and Nest building

(qualitative observation, male digging the ground with legs). The

duration of each behavior was recorded in seconds.

Hormone assay
We used high performance liquid chromatography (HPLC)

technique to determine whether the antibodies included in the

immunoassay kits were capable of tracking testosterone and 17b-

estradiol in plasma of Greater Rhea.

We determined the testosterone and 17b-estradiol concentra-

tions in plasma of Greater Rhea and in HPLC fractions, following

procedures described in the commercial electrochemilumines-

cence immunoassay kits (Elecsys Testosterone II and Elecsys Estradiol II

from ROCHE- it should be noted that kit does not require prior

extraction). Both hormones were analyzed in cobas 6000 equip-

ment, with a module for immunoassay e 601 (HITACHI High

Technology Corporation-ROCHE Diagnostic GmbH).

Manufacturer cross-reactivity in the testosterone kit was:

Androstenedione (#2.5%), Cortisol (#0.01%), Estradiol (#

0.16%), Estrone (#0.004%), Testosterone propionate (#2.46%),

5-a-Androstene-3b, 17b-diol (#2.11%), 5-a-dihydro-testosterone

(#0.86%). Manufacturer cross-reactivity in the 17b-estradiol kit

was: Aldosterone (0.006%), Estriol (0.077%), Progesterone

(0.009%), Estrone (0.0515%), 17b-estradiol-3,17-sulfate

(0.411%), 17b-estradiol-17-sulfate (0.002%), 17-Hydroxyproges-

terone (0.010%), Pregnenolone (0.008%).

To avoid any misinterpretation due to the transformation of the

ln ng/mL data (since values lower than 1 become negative in

logarithms), the testosterone concentration was expressed as ln

nanograms of hormone per deciliter of plasma (ln ng/dL). 17b-

estradiol was expressed as ln picograms of hormone per milliliter

of plasma (ln pg/mL).

High pressure liquid chromatography (HPLC):
Testosterone and 17b-Estradiol

We used HPLC equipment with an autosampler and two

detectors connected in series –DAD for estradiol and FD for

testosterone– (AGILENT 1100) to identify testosterone and 17b-

estradiol present in the plasma of male and female Greater Rheas,

respectively. The elution positions of reference external standards

of testosterone and 17b-estradiol (SIGMA) were determined by

HPLC and then compared with the rhea samples. Both male and

female plasma samples (September and December, respectively)

were used to create a pool of presumably high testosterone and

17b-estradiol concentrations, respectively. Sex steroids from these

pools (0.5 mL each) were extracted with a PHENOMENEX

Strata C-18-E column for testosterone (<70% recovery) and

VARIAN Bond Elut C-18 column for 17b-estradiol (<81%
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recovery). In both cases, steroids were eluted with 1 mL of ethyl

acetate following the protocol of Koren et al. (2012) [26]. The

solvent was evaporated with N2 (AIR LIQUID, Argentina) and

the dry extracts were reconstituted in 100 mL of mobile phase.

For chromatographic runs of samples, 100 mL of plasma extract

was injected onto a reversed-phase column (LiChrospher 100/RP-

18/5 mm; 4.66250 mm; Merk, Germany), with a mobile phase

(1 mL/min) composed of 28% acetonitrile, 29% methanol and

43% water.

Furthermore, 31 HPLC fractions were also collected to

determine the immunoreactive sex hormone component in

Greater Rhea plasma in the validated immunoassay kits. All the

HPLC fractions were dried and reconstituted in 500 mL steroid

diluent provided in the kit. Finally, immunoreactivity profiles were

obtained from the analysis of the collected eluates.

Egg-laying period
The egg-laying period was assessed by counting eggs daily in the

nests (in each pen) from September to January, to obtain the mean

6 standard error of egg number laid in each month per pen.

Statistical analyses
Statistical analyses were performed using the Infostat statistical

software package [27]. The plasma testosterone and estradiol were

ln-transformed for normality of residuals. We performed the

following mixed models:

Two models to evaluate the effect of month (photoperiod) on

testosterone levels in adult males (Mod 1) and juveniles (Mod 2),

considering the dependent variable hormone concentration, the fixed

factor month (10 months in adults and 6 months in juveniles), and

the identity of the animal as the random factor.

A model to evaluate the effect of month and reproductive status

of the animal (juvenile vs. adult) on testosterone levels, considering

the dependent variable hormone concentration, fixed factors month (6

months in which data were available for both adults and juveniles),

reproductive status and interaction month-reproductive status, and the

animal as random factor (Mod 3).

Two models to evaluate the effect of month on estradiol levels in

adult females (Mod 4) and juveniles (Mod 5), considering the

dependent variable hormone concentration, the fixed factor month (10

months in adults and 9 months in juveniles) and the animal as

random factor.

A model to evaluate the effect of month and reproductive status

of the animal (juvenile vs. adult) on estradiol levels, considering the

dependent variable hormone concentration, fixed factors month (9

months in which data were available for both adults and juveniles),

reproductive status and interaction month-reproductive status, and the

animal as random factor (Mod 6).

The contrast test was used for post-hoc analysis. Transformed

values were expressed as the mean 6 standard error (SEM) and

the significance level was set at 0.05.

Results

High performance liquid chromatography (HPLC)
Chromatographic separation of pools of Greater Rhea plasma

samples revealed that a peak co-eluted with the reference external

standards of testosterone and 17b-estradiol, respectively. The

immunoreactivity of the fractions obtained after HPLC show that

the fraction corresponding to peaks of plasmatic testosterone and

estradiol have maximum immunoreactivity values and the same

retention time as external standards.

Testosterone levels
Adult plasma testosterone levels varied significantly among

months (F9, 43 = 9.40, p,0.01, Mod 1, Fig. 1). We observed

maximum testosterone levels from August to January, which were

significantly higher (p,0.02) than those observed in February,

April and May (non-reproductive period or baseline levels).

Juvenile plasma testosterone levels were not different among

months (F5, 4 = 0.78, p.0.05, Mod 2, Fig. 1).

The observed changes in plasma testosterone levels among

months showed an interaction with the breeding status (F5,

27 = 3.98, p = 0.01, Mod 3, Fig. 1). The testosterone levels in adults

were different (p,0.05) than that of juveniles in April and

September.

The coefficients of variation for nontransformed testosterone

concentration (September, pool n = 6) was 3.6% (intra-assay) and

0.42% (inter-assay).

Reproductive behaviors and individual patterns of
testosterone

All the rhea males showed reproductive behaviors (courtship,

nest building, incubation) only during the reproductive period for

this species (August to January) (Fig. 2). Our results indicate that,

as expected, reproductive behavior of Greater rhea males in

captivity coincide with those reported in the wildlife [5,6,28]. In all

the studied males, testosterone levels remained high throughout

the reproductive period (August through January vs. April and

May). Four of the 6 males (M 1, 3, 5, 6) showed courtship and

incubation behaviors simultaneously (arrows). Males 1, 2, 4, 6 had

incubating behavior over a month, or more (clover mark) and

these behaviors were always accompanied by high testosterone

levels (Fig. 2).

17b-Estradiol levels
Adult female plasma 17b-estradiol levels varied significantly

among months (F9, 90 = 5.98, p,0.01, Mod 4, Fig. 3). We observed

Figure 1. Annual changes in testosterone plasma levels of
adult Greater Rhea males (solid line-filled circles) compared
with juvenile rhea males (dashed line-empty circles), showing
the differences between April and September (*). # Shows
differences between April-May and August-January in Greater Rhea
adult males. Results are expressed as mean 6 standard error. Adult
males n = 6, juvenile males (April n = 3) and (September n = 2); * and #
denote p,0.01.
doi:10.1371/journal.pone.0097334.g001
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the maximum 17b-estradiol levels in November and December;

these levels were significantly higher (p,0.01) than those observed

in April, May, July and February (non-reproductive period or

baseline levels). From July to October, levels were intermediate

between the highest and the baseline values.

Juvenile plasma 17b-estradiol levels did not change among

months (F8, 18 = 2.44, p.0.05, Mod 5, Fig. 1).

Figure 2. Individual profiles of testosterone and reproductive behaviors in Greater Rhea adult males. Annual changes in testosterone
plasma levels of adult males 1 to 6 (black squares-dotted line). The reproductive behaviors: courtship (black circles-dashed line) and incubation (grey
circles-grey solid line) were only observed during the reproductive period (August to January). Nest building is indicated with #, whereas the first
egg detected in each pen is indicated by ¤. Arrows (Q) indicate the presence of two reproductive behaviors (courtship and incubation) on the same
day. Incubation behavior for one month or more is indicated with clovers (§).
doi:10.1371/journal.pone.0097334.g002

Seasonal Changes in Sex Hormones in Rhea americana

PLOS ONE | www.plosone.org 4 May 2014 | Volume 9 | Issue 5 | e97334



The variations in plasma 17b-estradiol levels among months

showed an interaction with breeding status (F8, 98 = 3.49, p,0.01,

Mod 6, Fig. 3). The plasma 17b-estradiol level in adults was greater

(p,0.05) than that of juveniles in November.

The coefficients of variation for nontransformed 17b-estradiol

concentration (December, pool n = 15) were 1.76% (intra-assay)

and 14.92% (inter-assay).

Egg laying period
Egg laying was observed throughout the reproductive season

and always just after midday, as it occurs in the wild. It began in

September (1.361.33), increased in October (14.3366.33) and

November (10.6663.66), and decreased in December and January

(3.3363.33; 563.21).

Discussion

In this paper we report the first findings on the endocrine profile

underlying the expression of the mating system of the Greater

Rhea. Both male and female adults showed the highest levels of

sex hormones all throughout the reproductive season and the

lowest ones during the non-reproductive season, in agreement with

our hypothesis. These fluctuations reveal the seasonal changes in

gonadal function in accordance with their promiscuous mating

system. Moreover, and in agreement with our predictions, no

significant fluctuations were observed in the sex hormones of

juvenile males and females.

An important result of this study is that all Greater Rhea males

without exception had high testosterone levels throughout the

entire breeding period (September to January), even while they

were incubating. According to Martella et al. (1998) [11] and a

recent genetic analysis of communal nests in Greater Rheas

(Martella et al. unpubl. data), the mating system seems to be

promiscuous. This reproductive strategy implies that even while

incubating, Greater Rhea males may still be able to copulate with

females approaching the nest, thus requiring testosterone levels to

remain high.

Another explanation may be that as nests of this species are

highly exposed to other conspecific males, reproductive males

require high testosterone levels to trigger defensive behavior for

protecting either their clutch or their brood [4,28].

The high testosterone levels during the incubation and rearing

periods observed in Greater Rhea males seems to be a common

feature in ratites that have communal nests and complex mating

systems [29,30], where males are responsible for the full

incubation of eggs, such as the emu [5,14], or partial incubation,

such as the ostrich [2,5,13]. The exception within the group is the

kiwi (a monogamous species), in which testosterone levels drop

when incubation begins [15]. This relationship between high

testosterone levels and reproductive behavior (incubation and

chick rearing) observed in males of these three species (rhea, emu

and ostrich) appears not to conform to the ‘‘Challenge Hypoth-

esis’’ proposed by Winfield in 1990 [3]. Indeed, these species

exhibit hormonal profiles similar to those of polygynous species

but have monogamous reproductive behaviors (incubation and

chick rearing) throughout the breeding period [1,2,13,14]. At

variance with the predictions of ‘‘The Challenge Hypothesis" as

verified in most birds, in ratites there is apparently no trade-off

between parental behavior (incubation) and reproductive behav-

ior. High testosterone levels are beneficial to the defense of the nest

against conspecific males, courtship behavior, copulation but does

not inhibit the incubation behavior. However, the physiological

costs of maintaining high testosterone levels for prolonged periods

have been widely reported. Among other consequences this

hormonal profile causes decreased immune function [31,32] and

decreased muscle mass [33]. Thus, the cost-benefit of maintaining

constantly elevated levels of testosterone throughout the breeding

period should be further evaluated in Rhea americana.

As we predicted, the highest estradiol levels in Greater Rhea

females coincided with the period of maximum number of eggs

laid. Interestingly, from October to December estradiol levels

remained high and steady, but most eggs were laid in October.

This phenomenon might be due to the lack of synchronization

among the females; they move in groups that are neither stable nor

cohesive, they copulate with different males and successively lay

eggs in different nests [34,35] and thus maintain high estradiol

levels throughout the entire reproductive season. This observation

is in accordance with findings reported for the female ostrich [13]

but not for the female kiwi [15] or other non-ratite monogamous

birds, whose estradiol level decreases after the first egg is laid [36–

38]. Similarly to observations reported in the wild, in captivity

rhea females egg-laying behavior always occurred just after

midday [6,19].

As expected, the constant levels of testosterone and estradiol in

juvenile male and female Greater Rheas, respectively, indicate a

lack of seasonal control over gonadal function due to their sexual

immaturity [39–45]. It was very interesting to find high levels of

sex hormones (testosterone and estradiol) in juvenile males and

females since we had expected the levels to be similar or lower

than the baseline levels of adult (non-reproductive period April-

May). One possible source of these hormones is extra gonadal

structures such as the adrenal gland or the transformation of

steroid precursors in the fat tissue [46,47]. More studies should be

conducted to elucidate the role of high levels of sex hormones in

juvenile rheas.

Overall, our findings show seasonal changes in testosterone and

estradiol plasma levels in adult Greater Rheas and indicate that

contrary to ‘‘The Challenge Hypothesis’’ [3], testosterone might

not inhibit parental behavior in males during the breeding period.

Figure 3. Annual changes in 17b-estradiol plasma levels of
Greater Rhea adult females (solid line-filled circle) compared
with juvenile rhea females (dashed line-empty circle), showing
the differences in November (*). # shows differences between
April-July and September-January in Greater rhea adult females. Results
are expressed as mean 6 standard error; adult females n = 11, chick
females n = 4; * and # denote p,0.01.
doi:10.1371/journal.pone.0097334.g003
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We also suggest that rhea females might require high levels of

estradiol throughout the entire reproductive season in order to be

able to copulate with differents males and lay eggs successively in

different nests, in accordance with the complex reproductive

system exhibited by this species.
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