
Research Article
Application of Stochastic Automata Networks for
Creation of Continuous Time Markov Chain Models of
Voltage Gating of Gap Junction Channels

Mindaugas Snipas,1,2 Henrikas Pranevicius,3,4 Mindaugas Pranevicius,5

Osvaldas Pranevicius,6 Nerijus Paulauskas,4,7 and Feliksas F. Bukauskas8

1Department of Mathematical Modelling, Kaunas University of Technology, StudentJ Street 50, 51368 Kaunas, Lithuania
2Laboratory of Systems Control and Automation, Lithuanian Energy Institute, Breslaujos Street 3, 44403 Kaunas, Lithuania
3Department of Applied Informatics, Vytautas Magnus University, Vileikos Street 8-409, 44404 Kaunas, Lithuania
4Department of Business Informatics Research in Systems, Kaunas University of Technology, StudentJ Street 56,
5142 Kaunas, Lithuania
5Department of Anesthesiology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
6Department of Anesthesiology, New York Hospital Queens, 56-45 Main Street, Flushing, NY 11355, USA
7Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Street 17, 50009 Kaunas, Lithuania
8Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

Correspondence should be addressed to Henrikas Pranevicius; henrikas.pranevicius@ktu.lt

Received 4 July 2014; Revised 7 December 2014; Accepted 8 December 2014

Academic Editor: Carlo Cattani

Copyright © 2015 Mindaugas Snipas et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov
chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished
by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient
building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct
block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This
allowed us to accelerate CPU time, which is necessary to solve CTMCmodels, ∼20 times.

1. Introduction

Gap-junctional communication plays an important role in
many processes, such as impulse propagation in the heart,
communication between neurons and glia, organ formation
during early development, regulation of cell proliferation, and
metabolic exchange between cells of various tissues, includ-
ing the lens that lack blood circulation. Gap junction (GJ)
channels are formed of connexin (Cx) proteins, which belong
to a family of integral membrane proteins exhibiting a tissue
specific expression pattern. GJs provide a direct pathway for
electrical and metabolic signalling between the cells [1]. In
humans, twenty-one isoforms of Cxs form GJ channels [2].
Each GJ channel is composed of two hemichannels (HCs),
both oligomerized of six Cxs. Cxs have four alpha helical

transmembrane domains (M1 to M4), intracellular N- and
C-termini (NT and CT), two extracellular loops (E1 and
E2), and a cytoplasmic loop (CL) [3]. Docking of two HCs
from neighbouring cells leads to formation of the GJ channel
composed of 12 Cxs.

However, despite such complexity, all GJ channels share
the same common property—sensitivity to transjunctional
voltage (𝑉𝑗), called voltage gating. Junctional conductance
(𝑔𝑗) measured under steady-state conditions decays sym-
metrically in response to 𝑉𝑗 of either polarity, which have
been explained by the presence of a 𝑉𝑗-sensitive gate in
each opposed HC [4]. Such property, being inherently quan-
titative, is amenable to the investigation by computational
methods.

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 936295, 13 pages
http://dx.doi.org/10.1155/2015/936295

http://dx.doi.org/10.1155/2015/936295


2 BioMed Research International

Earlier, we developed stochastic 4- and 16-state models
of voltage gating, containing 2 and 4 gates in series in each
GJ channel. In order to demonstrate that the proposed 𝑉𝑗-
gating model is adequate, it is necessary to compare its
output to experimental results. For example, the proposed
stochastic 4- and 16-state models of 𝑉𝑗-gating contained a
sizable number (>10) of parameters and for their estimation
global optimization (GO) algorithms were successfully used
[5, 6]. The simulation of 𝑉𝑗-gating was performed with
different sets of parameters. However, for the estimation of
a global minimum, it typically requires running thousands of
iterations, each lasting for up to 10 seconds, and consequently
GO takes tens of hours or days. Thus, the reduction of the
computation time that is needed for GO of experimental data
is a critical task.

In previous work a discrete time Markov chain (DTMC)
model was used [7]. This model described the GJ channel
containing 12 gates. In suchmodel, differently from the 4- and
16-statemodels, it was assumed that eachCxof theGJ channel
contains the gate. Since all 12 gates operate at the same
time, construction of the transition matrix is not a trivial
task. Therefore, transition matrix P is dense and when direct
methods, that is, Gaussian elimination, are applied, the run-
time complexity of steady-state probabilities is in the neigh-
bourhood of 𝑂(𝑛3). Numerical experiments showed that the
use of DTMCmodel, as opposed to simulation, reduced CPU
time ∼18- and ∼7-fold for 4- and 16-state models, respectively.

When using Markov chain models one needs to build
the probability transition matrix and to estimate steady-state
probabilities at different𝑉𝑗s at ∼1000 different time moments
during a single iteration. Typically, GO of experimental data
require to use 500–5000 iterations to find a global minimum.
Altogether, this will require to perform ∼2 500 000 simula-
tions using Markov model. Thus, it is evident that modeling
requires fast construction of the matrix of transition proba-
bilities (transition rates) and fast solution of the steady-state
probabilities because the amount of central processing unit
(CPU) time is high even at relatively small number of states.
In our prior studies [8], we already used continuous time
Markov chain (CTMC) model of GJs gating. A transforma-
tion of the transition probabilities into transition rates is nec-
essary to generate CTMC model with the same steady-state
probabilities, but infinitesimal generator matrix of CTMC
model is sparse. For example, infinitesimal generator of GJ
model presented in [8] was a tridiagonal matrix. Therefore,
generation ofmatrix andmodeling of GJs under steady-states
conditions using the CTMCmodel require smaller amount of
CPU time compared to using the DTMCmodel.

In the present study, we used CTMC for the modeling of
GJs containing two voltage-sensitive gates, each of which is
composed of six subgates attributed to each Cx; in stochastic
4- and 16-state gating models each gate is regarded as one
unit. We also used a stochastic automata network (SAN)
formalism for the Markov model specification. SAN formal-
ism allowed accelerating generation of the transition-rate
matrices.

In previous study [8] we used piece linear aggregate
(PLA) formalism for CTMCmodel creation. PLA formalism
allows building and storing infinitesimal generator ofMarkov
chain model automatically, but matrix structure cannot be
easily deduced, especially in more complex models. On the
other hand, SAN formalism is a method that is based on
using tensor algebra matrix operations. Consequentially,
infinitesimal generators have the distinct structure allowing
for very efficient application of the numerical methods. Here,
we present SAN description of CTMC models of three
different GJ models and analyze the efficiency of numerical
solution. Since CPU time depends on software and its imple-
mentation, we focused on more universal evaluation of a
complexity of algorithms. It is based on the exact number
of mathematical operations, which is necessary to perform
steady-state probabilities calculation.

Our studies showed that if a proper numerical method is
applied, then a steady-state solution of the proposed CTMC
model of GJs requires 10–20-fold less CPU time compared to
DTMC models. We suggest that the use of iterative methods
might be especially beneficial in estimation of gating param-
eters, since it requires repetitive simulations with different
sets of parameters. We showed that using a previous solution
for evaluating continuous one, when 𝑉𝑗 changes are small
(<1mV), allows reducing the number of iterations for at least
30 percent.

2. Methods

2.1. Markov Chain Modeling. We assume the stationary anal-
ysis of a homogenous irreducible Markov chain with a finite
number of system states, denoted by 𝑛. Markov chain model-
ing consists of two stages: (1) construction of transition-rates
matrix called an infinitesimal generator and (2) calculation of
steady-state probabilities.

The first stage is a model specification. For a GJ gating
model this could mean defining the states of a single gate
and possible transitions among them, the number of gates
in the GJ, and so forth. Basically, it results in formation of a
transition matrix P, if one assumes a DTMC, or infinitesimal
generator matrix Q, if one assumes CTMC. In this paper we
consider mainly the CTMCmodels.

Formation of P and Q can be performed manually if the
size of state space (𝑛) is relatively small. For larger models the
special software can be used, for example, methods based on
events language [9], Petri nets [10], and stochastic automata
networks [11].

One of the main problems in Markov chain modeling of
real systems is a rapid growth of the number of states. The
number of states of the Markov chain grows exponentially,
when the number of system components grows linearly.
Therefore the use of efficientmodel creation tools and numer-
ical methods is crucial [12].

2.2. Calculation of Steady-State Probabilities. The most diffi-
cult and time consuming part of Markov chain modeling is
calculation of steady-state probabilities.



BioMed Research International 3

Computation of steady-state probabilities of DTMC,
which are stored as a row-vector 𝜋, is the solution of a system
of linear equations:

𝜋 ⋅ P = 𝜋. (1)

Similarly, computation of steady-state probabilities of
DTMC, which are stored as a row-vector 𝜋, is the solution
of a system of linear equations:

𝜋 ⋅Q = 0, (2)

where 0 denotes a zero row-vector of size 𝑛.
Equations (1)-(2) can also be interpreted as computations

of left side eigenvector corresponding to eigenvalue 1 (in case
of DTMC) or eigenvalue 0 (in case of CTMC). Since P andQ
are singular, an additional condition∑𝑛𝑖=1 𝜋𝑖 = 1 is used in all
cases.

There are three big classes of algorithms allowing evalu-
ation of steady state probabilities: direct methods, iteration
methods, and projection methods. More about numerical
methods for solution of general linear systems can be found
in [13]; more about application of numerical methods specif-
ically for Markov chains is in [14].

2.3. Stochastic Automata Networks. SAN formalism [15] is
one of the most efficient methods used to solve state-space
explosion problem, which is very detrimental in Markov
chain modeling. SAN allows very efficient construction and
storage of infinitesimal generator Q by using tensor (Kro-
necker) algebra operations.

Though SAN formalism originally was developed for the
modeling of computer networks and communication systems
[16, 17], there aremultiple examples of SANuse in biology. For
example, DeRemigio et al. [18] and Hao et al. [19] used SANs
formalism to model calcium channels; Wolf [20] used SANs
to describe kinetics of biochemical reactions.

The main idea of SAN formalism is based on the division
of a system into smaller subsystems, which can interact
among themselves.Those subsystems are described by differ-
ent stochastic automata. A single automaton is represented
by a Markov chain, that is, by the set of subsystem states and
possible transitions among them. If two (or more) automata
somehow interact among themselves, then transition in one
automaton may depend on the state of another one.

The state of the whole system, so called global state,
is a compositional state of all automata. An infinitesimal
generator matrix of the whole system, so called global gen-
erator matrix, can be expressed by infinitesimal generators of
individual automata and Kronecker algebra operations. We
recall basic definitions below.

Kronecker product A ⊗ B of two matrices A ∈ R𝑚×𝑛 and
B ∈ R𝑝×𝑞 is given by

A ⊗ B = (
𝑎11B ⋅ ⋅ ⋅ 𝑎1𝑛B
.

.

. d
.

.

.

𝑎𝑚1B ⋅ ⋅ ⋅ 𝑎𝑚𝑛B
) ∈ R

𝑚𝑝×𝑛𝑞
. (3)

Kronecker sumA⊕B of two squared matricesA ∈ R𝑚×𝑚
and B ∈ R𝑛×𝑛 is given by

A ⊕ B = A ⊗ I𝑛 + I𝑚 ⊗ B ∈ R
𝑚𝑛×𝑚𝑛
, (4)

where I𝑛, I𝑚 are identity matrices of sizes 𝑛 and 𝑚, respec-
tively. The Kronecker sum of more than two square matrices
is also well defined [21].

If the network consists of 𝑘 independent stochastic
automata𝐴(𝑖), each governed by infinitesimal generatorsQ(𝑖),
𝑖 = 1 ⋅ ⋅ ⋅ 𝑘, then the global infinitesimal generator Q can be
expressed as a tensor sum:

Q=
𝑘

⨁

𝑖=1

Q(𝑖). (5)

Expression (5) is also called the SAN descriptor of the
system. For a SAN of independent automata steady-state
probability, the vector 𝜋 of the whole system is given by

𝜋 =

𝑘

⨂

𝑖=1

𝜋
(𝑖)
, (6)

where 𝜋(𝑖) is a steady-state probability vector of an individual
automaton 𝐴(𝑖).

If we are to consider a network, describing two inde-
pendent gates that operate between open and closed states
with transition rates 𝜆𝑜𝑐 and 𝜆𝑐𝑜, then automata 𝐴(1) and
𝐴

(2) model each hemichannel/gate, and each of them can be
described using the infinitesimal generator:

Q(1) = Q(2) = (−𝜆𝑜𝑐 𝜆𝑜𝑐
𝜆𝑐𝑜 −𝜆𝑐𝑜

) . (7)

Thus, the SAN descriptor of the network of two indepen-
dent gates is given by

Q = Q(1) ⊕Q(2) = Q(1) ⊗ I2 + I2 ⊗Q
(2)

= (

−2𝜆𝑜𝑐 𝜆𝑜𝑐 𝜆𝑜𝑐 0

𝜆𝑐𝑜 −𝜆𝑐𝑜 − 𝜆𝑜𝑐 0 𝜆𝑜𝑐

𝜆𝑐𝑜 0 −𝜆𝑐𝑜 − 𝜆𝑜𝑐 𝜆𝑜𝑐

0 𝜆𝑐𝑜 𝜆𝑐𝑜 −2𝜆𝑐𝑜

).

(8)

If automata in SAN are not completely independent, the
interaction among them can also be expressed by the use of
Kronecker algebra operations. Plateau expressed two differ-
ent ways [15] to describe the interaction among automata.

(1) Functional Transition Rates. A transition rate in a single
automaton may depend on the state of the other automata,
that is, on the global system state. Transition rates, which are
independent on the global system state, are called constant
transition rates.

If we are to consider a network composed of 2 automata
and suppose that the transition rates of each connexin depend
on the number of connexins/subgates in the open state
(denoted by 𝑛𝑜), then transition rates are functions: 𝜆𝑜𝑐 =
𝜆𝑜𝑐(𝑛𝑜) and 𝜆𝑐𝑜 = 𝜆𝑐𝑜(𝑛𝑜). Consequently, the SAN descriptor
of the system is as follows:



4 BioMed Research International

Q = Q(1) ⊕
𝑔
Q(2) = (

−2𝜆𝑜𝑐 (2) 𝜆𝑜𝑐 (2) 𝜆𝑜𝑐 (2) 0

𝜆𝑐𝑜 (1) −𝜆𝑐𝑜 (1) − 𝜆𝑜𝑐 (1) 0 𝜆𝑜𝑐 (1)

𝜆𝑐𝑜 (1) 0 −𝜆𝑐𝑜 (1) − 𝜆𝑜𝑐 (1) 𝜆𝑜𝑐 (1)

0 𝜆𝑐𝑜 (0) 𝜆𝑐𝑜 (0) −2𝜆𝑐𝑜 (0)

) , (9)

where ⊕𝑔 denotes the generalized Kronecker product, which
deals with functional transition rates [22].

(2) Synchronizing Events. Transition in one automaton can
cause transitions in other automata. Transition rates are called
local, if they are not transition rates of synchronizing events.
Synchronizing transitions may also be functional. In this
paper, we do not use synchronizing events for the creation
of gap junction models.

Plateau and Atif showed that the SAN descriptor of a
network consisting of 𝑘 automata and having 𝑙 synchronizing
events can be expressed as follows:

Q =
𝑘+2𝑙

∑

𝑗=1

𝑘

⨂

𝑖=1
𝑔

Q(𝑖)𝑗 . (10)

The use of SAN formalism basically solves matrix con-
struction problems, since even largematrices can be built and
stored (assuming there is enough storage space in operative
memory) in a very short time.

The main problem that arises when dealing with SANs of
interacting automata is that the steady-state solution cannot
be expressed as a simple product form (6). In this case,
steady-state probabilities can be found either from solving
(2) after Q is built from the SAN descriptor or directly
from the descriptor. That is, building and storing of Q is
not necessary, if special numerical methods are applied. It is
possible not to buildQ, since vector SAN descriptor product
𝜋(∑
𝑇
𝑗=1 ⊗
𝑁
𝑖=1Q
(𝑖)
𝑗 ) can be implemented efficiently, for example,

by using shuffle algorithm.These problems are considered in
detail in [23].

3. Results and Discussion

In this section, we present CTMC models of GJs, created
by using SAN formalism. The structure of infinitesimal
generators and efficient application of numerical methods for
steady-state solutions are considered in detail.

3.1. CTMC Model of the GJ Channel Containing the 12
Two-State Subgates. Gap junctions form clusters (junctional
plaques) of individual channels arranged in parallel in the
junctional membrane of two adjacent cells. The GJ channel
is composed of 2 hemichannels (left and right) arranged in
series. Each hemichannel is composed/oligomerized from six
Cxs forming a hexamer with the pore inside.We envision that
each hemichannel forms the gate, which is composed of six
subgates arranged in parallel; that is, to each connexin the
subgate is attributed and the GJ channel ultimately contains
two gates composed of 12 subgates (see Figure 1).

In this section, we will consider a model, in which each
subgate operates between open (𝑜) and closed (𝑐) states (see
Figure 2), with transition rates 𝜆𝑜𝑐 (from 𝑜 to 𝑐) and 𝜆𝑐𝑜 (from
𝑐 to 𝑜).

One of the most important steps of SAN model creation
is to decide which part of a system to model by an individual
automaton. In this case it is possible to describe each subgate
as an individual automaton with two states.This would result
in SAN of 12 automata with 212 = 4096 states.

However, it is unnecessary to track each subgate individ-
ually; since all subgates are identical then 𝑉𝑗-gating depends
on the number of open and closed gates in each hemichannel.
Thus, much more convenient way is to describe the whole
hemichannel as an individual automaton,whose states denote
the number of closed (or open) subgates in hemichannel.

Thus we model the GJ channel by two automata—an
automaton 𝐴(𝑙)2 , which describes the left hemichannel, and
𝐴

(𝑟)
2 , which describes the right hemichannel (number 2 in the

subscript denotes the fact, that each subgate has two possible
states).

We assume that both automata have 7 possible states,
which denote the number of closed subgates in each hem-
ichannel (i.e., it can be denoted by 0, 1, . . . , 6).

Thus, automaton 𝐴(𝑙)2 can leave a state 𝑛𝑙 (𝑛𝑙 = 1, 6) and
enter a state 𝑛𝑙 − 1 with transition rate 𝑛𝑙 ⋅ 𝜆𝑐𝑜. Similarly, it
can leave state 𝑛𝑙 (𝑛𝑙 = 0, 5) and go to the state 𝑛𝑙 + 1 with
transition rate (6 − 𝑛𝑙) ⋅ 𝜆𝑜𝑐.

Thus an infinitesimal generator Q(𝑙)2 of automaton 𝐴(𝑙)2 is
as follows:

Q(𝑙)
(2)
=

(

(

(

(

∗ 6𝜆𝑜𝑐 0 0 0 0 0

𝜆𝑐𝑜 ∗ 5𝜆𝑜𝑐 0 0 0 0

0 2𝜆𝑐𝑜 ∗ 4𝜆𝑜𝑐 0 0 0

0 0 3𝜆𝑐𝑜 ∗ 3𝜆𝑜𝑐 0 0

0 0 0 4𝜆𝑐𝑜 ∗ 2𝜆𝑜𝑐 0

0 0 0 0 5𝜆𝑐𝑜 ∗ 𝜆𝑜𝑐

0 0 0 0 0 6𝜆𝑐𝑜 ∗

)

)

)

)

, (11)

where diagonal entries (denoted by ∗) are equal to the
negated sum of the nondiagonal entries in that row.

It is crucial to emphasize that transition rates of thematrix
Q(𝑙)
(2)

in (11) depend on the voltage across the left and right
hemichannels, which accordingly depends on the number of
closed (open) gates:

𝜆𝑜𝑐 = 𝜆𝑜𝑐 (𝑉left (𝑛𝑙) , 𝑉right (𝑛𝑟)) ,

𝜆𝑐𝑜 = 𝜆𝑐𝑜 (𝑉left (𝑛𝑙) , 𝑉right (𝑛𝑟)) .
(12)

Since both hemichannels are identical, an infinitesimal
generator of the right hemichannel is the same; that is,



BioMed Research International 5

V

Figure 1: Electrical scheme of the GJ channel composed of two
hemichannels each formed of 6 connexins. Transjunctional voltage
(𝑉𝑗) controls both hemichannels and all Cxs can operate between
open and closed (and deep closed) states.

𝜆oc

𝜆co

o c

Figure 2: Two-state transition graph of a subgate.

Q(𝑙)
(2)
= Q(𝑟)
(2)
. In this case, global infinitesimal generator of the

GJ, which we denote by Q(12)2 , may be written as

Q(12)
(2)
= Q(𝑙)2 ⊕𝑔 Q

(𝑟)
2 = Q

(𝑙)
2 ⊗𝑔

I7 + I7 ⊗𝑔 Q
(𝑟)
2 . (13)

Since bothQ(𝑙)2 andQ
(𝑟)
2 are tridiagonalmatrices, it follows

from (13) thatQ(12)2 is a block tridiagonal matrix. It consists of
49 square blocks, each of size 7 and can be written as follows:

Q(12)
(2)
=

(

(

(

(

Q11 Q12 0 0 0 0 0
Q21 Q22 Q23 0 0 0 0
0 Q32 Q33 Q34 0 0 0
0 0 Q43 Q44 Q45 0 0
0 0 0 Q54 Q55 Q56 0
0 0 0 0 Q65 Q66 Q76
0 0 0 0 0 Q76 Q77

)

)

)

)

. (14)

Here 0 denote square zero matrix blocks of size 7.
Since Q(𝑙)

(2)
and Q(𝑟)

(2)
are tridiagonal matrices, then from

(14) it follows that diagonal blocks Q𝑖𝑖 are the following trid-
iagonal matrices:

Q𝑖𝑖 = − ((𝑖 − 1) 𝜆𝑐𝑜 + (7 − 𝑖) 𝜆𝑜𝑐) I7 +Q
(𝑟)
2 , 𝑖 = 1, 7.

(15)

Here 𝜆𝑐𝑜 = 𝜆𝑐𝑜(𝑉left(7 − 𝑖), 𝑉right(𝑗)) and 𝑗 is the row in
a block Q𝑖𝑖, in which transition rate 𝜆𝑐𝑜 appears. Similarly,

𝜆𝑜𝑐 = 𝜆𝑜𝑐(𝑉left(7 − 𝑖), 𝑉right(𝑗)) and 𝑗 is the row in a blockQ𝑖𝑖,
in which 𝜆𝑜𝑐 appears.

Similarly, upper subdiagonal blocks in Q𝑖+1,𝑖 may be
written as follows:

Q𝑖,𝑖+1 = (7 − 𝑖) 𝜆𝑜𝑐I7, 𝑖 = 1, 6, (16)

where𝜆𝑜𝑐 = 𝜆𝑜𝑐(𝑉left(7−𝑖), 𝑉right(𝑗)) and 𝑗 is the row in a block
Q𝑖,𝑖+1, in which 𝜆𝑜𝑐 appears.

And finally, lower subdiagonal blocks in (14) are as fol-
lows:

Q𝑖+1,𝑖 = (𝑖 − 1) 𝜆𝑐𝑜I7, 𝑖 = 2, 7, (17)

where 𝜆𝑐𝑜 = 𝜆𝑐𝑜(𝑉left(𝑖 + 1), 𝑉right(𝑗)) and 𝑗 is the row in a
block Q𝑖,𝑖+1, in which 𝜆𝑐𝑜 appears.

3.2. Evaluation of Functional Transition Rates. As we men-
tioned in a previous chapter, all transition rates in GJ volt-
age gating model are functional. Therefore, each transition
changes the number of closed (open) gates, which changes the
conductance and voltage across the channel accordingly, thus
changing the values of transition rates.These changes depend
on gating parameters of subgates; in homotypic GJ channels
they are identical for all 12 subgates.

Even though these formulaswere published earlier [6], we
present them here, since they demonstrate the complexity of
functional transition rates using SAN modeling of GJ.

In the DTMCmodel, probabilities of two-state gate tran-
sitions can be described as follows:

𝑝𝑜𝑐 (𝐴, 𝑃, 𝑉left(right), 𝑉0) =
𝐾 ⋅ 𝑘 (𝐴, 𝑃, 𝑉left(right), 𝑉0)

1 + 𝑘 (𝐴, 𝑃, 𝑉left(right), 𝑉0)
,

𝑝𝑐𝑜 (𝐴, 𝑃, 𝑉left(righ)𝑡, 𝑉0) =
𝐾

1 + 𝑘 (𝐴, 𝑃, 𝑉left(right), 𝑉0)
.

(18)

In (18), 𝑘 is

𝑘 (𝑃, 𝑉left(right), 𝑉0) = 𝑒
𝐴⋅(𝑃⋅𝑉left(right)−𝑉0)

, (19)

where𝑃 is a gating polarity (+1 or−1);𝐴 (1/mV) is a coefficient
characterizing gating sensitivity to voltage; 𝐾 is a constant
used to change kinetics of 𝑐 ↔ 𝑜 transitions (𝐾 can
accelerate or decelerate 𝑐 ↔ 𝑜 transitions but does not affect
conditions of the steady-state); 𝑉𝑜 (mV) is a voltage across
the hemichannel/connexin at which probabilities for 𝑜 and
𝑐 states are equal;𝑉left/right is variable voltage across the left or
right subgate (mV).

DTMC probabilities can be transformed into transition
rates of CTMC by the following equation:

𝜆𝑜𝑐 =
𝑝𝑜𝑐

𝜏

, 𝜆𝑐𝑜 =
𝑝𝑐𝑜

𝜏

, (20)

where 𝜏 is a short period of time, in which the probability to
observe multiple transitions is negligible; that is, for 𝑖 ̸= 𝑗,
𝑝𝑖𝑗(𝜏) → 0 if 𝜏 → 0.

Each subgate, depending on a voltage across it (𝑉left/right),
can gate/operate by changing stepwise between the open state



6 BioMed Research International

with conductance 𝑔𝑜 and the closed state with conductance
𝑔𝑐. It was assumed that 𝑔𝑜 and 𝑔𝑐 values exhibit rectification,
that is, depend on 𝑉left/right exponentially:

𝑔𝑜 (𝑉left(right), 𝑃) = 2 ⋅ exp{
𝑃 ⋅ 𝑉left(right)

𝑅𝑜

} ,

𝑔𝑐 (𝑉left(right), 𝑃) = 0.25 ⋅ exp{
𝑃 ⋅ 𝑉left(right)

𝑅𝑐

} ,

(21)

where 𝑉left/right is a voltage across the left or right hemichan-
nel, while 𝑅𝑜 and 𝑅𝑐 are rectification constants.

The conductance of the left hemichannel, when 𝑛𝑙 Cxs are
closed, can be described as follows:

𝑔left (𝑛𝑙) = 𝑛𝑙𝑔𝑐 (𝑉left (𝑛𝑙) , 𝑃) + (6 − 𝑛𝑙) 𝑔𝑜 (𝑉left (𝑛𝑙) , 𝑃) .
(22)

Similarly, the conductance of the right hemichannel,
when 𝑛𝑟 Cxs are closed, is

𝑔right (𝑛) = 𝑛𝑟𝑔𝑐 (𝑉right (𝑛) , 𝑃) + (6 − 𝑛𝑟) 𝑔𝑜 (𝑉right (𝑛) , 𝑃) .

(23)

During gating, conductance of subgates ranges between
𝑔𝑜(𝑉left(right), 𝑃) and 𝑔𝑐(𝑉left(right), 𝑃), and the total conduc-
tance of the GJ channel can be found using steady-state
probabilities of Markov-chain model:

𝑔 = ∑

𝑖

𝜋𝑖

𝑔left (𝑉left (𝑛𝑙)) ⋅ 𝑔right (𝑉right (𝑛𝑟))

𝑔left (𝑉left (𝑛𝑙)) + 𝑔right (𝑉right (𝑛𝑟))
, (24)

where 𝜋𝑖 is a steady-state probability for 𝑛𝑙 Cxs in the left
hemichannel and 𝑛𝑟 Cxs in the left hemichannel to be closed.

Conductance of the GJ channel depends on the voltage;
that is, the circuit is nonlinear. In order to calculate voltage
across each Cx, we used an iterative procedure [7]. We
assumed that the value of voltage is settled, if a difference
between voltage values, calculated at two consecutive itera-
tions, is less than 0.1 percent. Calculation showed that at least
5 iterations were needed to achieve the aforesaid precision.

As one can see, the evaluation of functional transition
rates of SAN model is not a trivial task in this case. SAN for-
malism allows estimating steady-state probabilities directly
from SAN descriptor but not building and storing infinites-
imal generator, for example, by using shuffle algorithm.
However, there would be a necessity to evaluate functional
transition rates during each iteration for evaluation of steady-
state probabilities. Thus, it would require too much CPU
time in case of GJ models. Moreover, the number of system
states of GJ models presented in this paper is relatively
small; therefore we use the different approach. We apply
SAN formalism to specify the system behaviour and to
create equivalent Markov chain model. The use of Kronecker
algebra representation of global infinitesimal generator helps
to get the insight of matrix structure and to apply numerical
methods for evaluation of a steady-state solution.

3.3. Numerical Solution of Two-State CTMC Models of the
GJ Channel Containing 12 Two-State Subgates. It follows
from (16)-(17) that subdiagonal blocks in (14) are diagonal
matrices.These properties allowusing numericalmethods for
the calculation of steady-state probabilities and we consider
three algorithms for steady-state solution in detail: banded
Gaussian elimination, direct solution by recursion, and block
Gauss-Seidel methods.

3.3.1. Banded Gaussian Elimination for Steady-State Solution
of the CTMC Model of GJ Channel Containing 12 Two-State
Subgates. A square matrix Q = (𝑞𝑖𝑗) is called banded if
its entries are zero outside of the diagonally bordered band,
which can be described by the following equation:

𝑞𝑖𝑗 = 0, if 𝑗 < 𝑖 − 𝑘1 or 𝑗 > 𝑖 + 𝑘2. (25)

In (25), numbers 𝑘1 and 𝑘2 are called left and right half-
bandwidths, respectively. The bandwidth of the matrix 𝑚 is
equal to (𝑘1 + 𝑘2 + 1). For example, a matrix with 𝑘1 = 𝑘2 = 1
is tridiagonal matrix, that is, matrix with bandwidth 3.

Complexity. If a matrix has bandwidth 𝑚, a more efficient
implementation of Gaussian elimination exists than the
standard one, which has a complexity of 𝑂(𝑛3). The solution
of the linear system with bandwidth 𝑚 has an approximate
complexity of𝑂(𝑚2𝑛). To be exact, the complexity of banded
Gaussian elimination is 𝑛(𝑚 + 1)2/4, while it is (4𝑛3 + 9𝑛2 −
13𝑛)/6 for standard Gaussian elimination [24].

From (14) it follows that Q has bandwidth 𝑚 = 15. Thus,
it requires approximately 13 times less CPU time to apply
banded Gaussian elimination to solve an equivalent DTMC
model, which has a dense transition probability matrix.

3.3.2. Recursive Method for Steady-State Solution of CTMC
Model of GJ Channel Containing 12 Two-State Subgates. An
algorithm similar to the Thomas algorithm for tridiagonal
matrices can be used to calculate steady-state probabilities of
the GJ model. We use the matrix form of solution technique
as presented in [14]. Infinitesimal generatorQ can be divided
into four blocks as follows:

V(𝑙) = (Q11 Q21 0 0 0 0)
𝑇
,

X = (0) , Y = (0 0 0 0 Q76 Q77) ,

W =(

(

Q12 0 0 0 0 0
Q22 Q23 0 0 0 0
Q32 Q33 Q34 0 0 0
0 Q43 Q44 Q45 0 0
0 0 Q54 Q55 Q56 0
0 0 0 Q65 Q66 Q67

)

)

.

(26)

Dividing vector 𝜋 into segments, solution of

(𝜋∗ 𝜋7) (
V W
X Y) = 0 (27)

can be implemented by solving 𝜋7YW−1V = 0 in two steps.
At first, solving WZ = V for Z gives W−1V, while YZ gives



BioMed Research International 7

Table 1: Evaluation of the number of arithmetic operations neces-
sary to implement the recursive procedure forGJmodel with 12 two-
state subgates.

Part of an algorithm Number of
times

Number of arithmetic
operations

Matrix + matrix 11 𝑛

2

Matrix ∗matrix 6 𝑛

3
− 𝑛

2

Matrix ∗ diagonal matrix 13 𝑛

2

Vector ∗ diagonal matrix 6 𝑛

Vector ∗ tridiagonal matrix 7 5𝑛

Solve dense system 1 (4𝑛3 + 9𝑛3 − 13𝑛3)/6

coefficient matrix for solving 𝜋7. After that, the remaining
part 𝜋∗ of steady-state vector 𝜋 can be found from 𝜋∗W =
𝜋7Y.

Complexity.The procedure for obtaining a recursive solution
can be implemented very efficiently due to the structure of the
infinitesimal generator Q. For example, computation of Z is
basically a backward substitution, sinceW is lower triangular.
Also, finding the inverse of subdiagonal blocks is a trivial task,
since these blocks are diagonal matrices.

Since the size of state-space 𝑛 is not large for this Markov
model, an approximate complexity evaluation by using big𝑂
notationmight be too general in this case.Therefore, we eval-
uated the amount of operations necessary to implement the
recursive procedure inmore detailed way.We distinguished 6
types of distinct operations (e.g., matrix summation, matrix
multiplication, etc.) adapted to different types of operands,
such as dense matrix and tridiagonal matrix. A conservative
estimation of number of arithmetic operations is presented in
Table 1. We assume that these operations are implemented in
the most basic way (e.g., we use (𝑐𝑖𝑗) = ∑

𝑛
𝑖=1 𝑎𝑖𝑘𝑏𝑘𝑗 for matrix

multiplication C = AB).
Detailed evaluation showed that recursive solution re-

quires about 1.8 times less CPU time than banded Gaussian
elimination and at least 23 times less than standard Gaussian
elimination.

Stability. The main problem of the block recursive procedure
is numerical stability, due to rounding errors [14]. However,
these problems are mitigated by the fact that matrix entries
are relatively small (in the range of 0.001–0.01).

We compared the solution provided by the recursive
procedure with the solution calculated using a stable numer-
ical method. Experimental data showed that steady-state
probabilities obtained by the recursive procedure differ less
than 10−12 from an exact solution for this particularGJmodel.

3.3.3. Block Gauss-Seidel Method for Steady-State Solution
of CTMC Model of GJ Channels Containing 12 Two-State
Subgates. The block Gauss-Seidel method is an iterative
technique and thus eliminates stability concerns completely
[14]. It can also be implemented very efficiently for block
tridiagonal matrices.

Table 2: Number of arithmetic operations necessary to implement a
single outer iteration of block Gauss-Seidel algorithm for GJ model
with 12 two-state subgates.

Part of an algorithm Number of
times

Number of arithmetic
operations

Vector + vector 5 n
Vector ∗ tridiagonal matrix 12 5n
Solve tridiagonal system 7 8n
Check for convergence 1 𝑛

If solution vector 𝜋 is divided according to the block
structure of Q, then at 𝑘 + 1 outer iteration it is required to
solve 7 inner iterations, which may be written as follows:

𝜋
(𝑘+1)
1 = − (𝜋

(𝑘)
2 Q21)Q

−1
11 ;

𝜋
(𝑘+1)
𝑖 = − (𝜋

(𝑘+1)
𝑖−1 Q𝑖−1,1 + 𝜋

(𝑘)
𝑖+1Q𝑖+1,1)Q

−1
11 , 𝑖 = 2, 6;

𝜋
(𝑘+1)
7 = − (𝜋

(𝑘+1)
6 Q67)Q

−1
77 .

(28)

Complexity. In this case, diagonal blocks are tridiagonal
matrices and the linear system solution has a complexity
of 𝑂(𝑛). The number of operations (including a proof for
convergence) necessary to perform a single outer iteration is
presented in Table 2.

The efficiency of the whole algorithm depends on con-
vergence speed. That is, block Gauss-Seidel method would
be more efficient than the recursive procedure if it required
4 or less iterations. Similarly, it would be more efficient
than banded Gaussian elimination if the number of outer
iterations was less than 7, and, finally, it would be more
efficient than standard Gaussian elimination if block Gauss-
Seidel required less than 96 outer iterations.

We evaluated the number of outer iterations necessary to
find a steady-state solution of theGJmodel containing 12 two-
state gates at𝑉𝑗 = 40mV. Each time an initial iteration vector
was chosen as a standard vector with equal entries, that is,
each entry equal to 1/𝑛. We assumed that necessary precision
𝜀 is achieved if the following condition was satisfied:

max
𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝜋
(𝑘+1)
𝑖 − 𝜋

(𝑘)
𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

< 𝜀. (29)

Inequality (29) means that all entries of consecutive
iterations differ less than 𝜀 in absolute value. The results of
a convergence are presented in Table 3.

Thus, for this particular GJ model the block Gauss-Seidel
method is more efficient than standard Gaussian elimination
at any precision level. However it is less efficient than the
direct methods, for example, banded Gaussian algorithm or
the recursive procedure presented in Section 3.3.2.

In addition,modification of the blockGauss-Seidelmeth-
od outperformed other standard iterative algorithms (Jacobi,
Gauss-Seidel) as well as projection methods (Arnoldi,
GMRES, and BiCGSTAB). While the convergence of the
fastest of projection methods, BiCGSTAB, was slightly better
than that of block Gauss-Seidel, overall CPU time was longer
(about 18 percent), since it required more time to perform a
single iteration.



8 BioMed Research International

Table 3: Number of outer iterations necessary to achieve the
required precision by using block Gauss-Seidel algorithm for GJ
model with 12 two-state subgates.

Precision Number of iterations
10

−4
15

10

−5
18

10

−6
20

10

−7
23

10

−8
25

10

−9
28

10

−10
31

10

−11
33

10

−12
36

10

−13
39

10

−14
41

10

−15
44

(1)Q(1) ← FormInfinitesimalGenerator(𝑉1);
(2) 𝑖𝑡 ← SetInitialIterationVector();
(3) 𝜋(1) ← SteadyStateSolution(Q(1), 𝑖𝑡);
(4) 𝐶1 ← EstimateGJConductance(𝜋(1));
(5) for 𝑖 = 2 to 𝑘 do

Q(𝑖) ← FormInfinitesimalGenerator(𝑉𝑖);
𝜋
(𝑖)
← SteadyStateSolution(Q(𝑖), 𝜋(𝑖−1));

𝐶1 ← EstimateGJConductance(𝜋(𝑖));
end for.

Pseudocode 1

3.3.4. Repetitive Model Solution. Moreover, since the block
Gauss-Seidel method is an iterative technique, it can be
implemented more efficiently for repetitive solutions, which
are especially important in the search for optimal model
parameters. Iterative methods have an advantage over direct
methods, since the previous solution vector can be used as a
starting point for the solution of model with different set of
parameters.

A solution of the model at different 𝑉𝑗 values can be
described using Pseudocode 1.

A similar procedure can be applied not only at different
𝑉𝑗s, but also with other gating parameters as well.

It is known [25] that the difference between steady-state
solutions of two linear systems,Q ⋅𝜋 = 0 and (Q+ΔQ) ⋅ (𝜋+
Δ𝜋) = 0, is constrained by the following relationship between
norms of matrices and vectors:

‖Δ𝜋‖

‖𝜋‖

≤

󵄩

󵄩

󵄩

󵄩

󵄩

Q#󵄩
󵄩

󵄩

󵄩

󵄩

⋅ ‖ΔQ‖ ; (30)

Q# is group inverse of infinitesimal generatorQ.
Thus, steady-state vectors 𝜋(𝑖) are relatively close to each

other if matrices Q and (Q + ΔQ) are close and ‖Q#
‖ is not

large.
Simulation of𝑉𝑗-gating partially satisfies aforementioned

conditions, since changes of entries of Q are in the range of
0.0001–0.001 due to the voltage change from 40mV to 41mV,
while the norm ‖Q#

‖ is equal to 213.73 at 40mV level.

Table 4: Number of outer iterations for repetitive model solution by
using block Gauss-Seidel algorithm for GJ model with 12 two-state
subgates.

Voltage, mV Number of iterations
Method I Method II

20 15 6

40 20 10

60 26 16

80 19 11

100 11 5

V

Figure 3: Electrical scheme of the GJ channel composed of two
hemichannels each formed of 6 connexins/subgates. 𝑉𝑗 influence
both hemichannels but only Cxs on the left operate between open,
closed, and deep closed states, while Cxs on the right are always
open.

In order to evaluate an effect of iterative methods for
the repetitive model solution, more detailed experimental
research was performed. We changed voltage across GJ
channel from 0 to 100mV by 0.1mV intervals. Thus, 1000
different infinitesimal generators were built and the steady-
state solution was calculated according to a scheme presented
in Pseudocode 1. Firstly, we used standard iteration vector
with equal entries each time (we will refer to it as “Method
I”), while for the second round of calculation a previous
steady-state solution was used each time, as presented in
Pseudocode 1 (we will refer to it as “Method II”). We evalu-
ated the number of outer iterations necessary to achieve 10−6
precision for both cases. The results are presented in Table 4.

A positive effect of “Method II” is obvious. The number
of outer iterations decreases from about 30 to 60 percent
depending on 𝑉𝑗 level. Overall, it required about 38 percent
less CPU time to perform calculations by using “Method II”
instead of “Method I.” CPU time in this case was comparable
to that of banded Gaussian elimination.

3.4. CTMCModel of the GJ Channel Containing 6 Three-State
Gates. We assume that in this GJ model only subgates in
the left hemichannel operate [4], while subgates in the right
hemichannel are always open (see Figure 3).



BioMed Research International 9

o dc

𝜆oc

𝜆co

𝜆cd

𝜆dc

Figure 4: Three-state transition graph of a subgate.

We also assume that each subgate operates between open
(𝑜), closed (𝑐), and deep-closed (𝑑) states. The transition
among these states is presented in Figure 4.

In this case our SANmodel consists of a single automaton
𝐴

(𝑙)
3 (subscript value 3 denotes that each subgate has 3 possible

states), which describes the left hemichannel. If we assume
that states of the left hemichannel are numbers of open and
closed gates, denoted by 𝑛𝑜 and 𝑛𝑐, respectively, then the state-
space of a system consists of 2-tuples (𝑛𝑜, 𝑛𝑐) satisfying the
following inequality:

𝑛𝑜 + 𝑛𝑐 ≤ 6. (31)

It follows from (31) that the state-space has the size of 28.
From a state (𝑛𝑜, 𝑛𝑐) automaton can go to the state (𝑛𝑜+1, 𝑛𝑐−
1) with transition rate 𝑛𝑐 ⋅ 𝜆𝑐𝑜; to the state (𝑛𝑜 − 1, 𝑛𝑐 + 1) with
transition rate 𝑛𝑜 ⋅ 𝜆𝑜𝑐; to the state (𝑛𝑜, 𝑛𝑐 + 1) with transition
rate (6 − 𝑛𝑜 − 𝑛𝑐) ⋅ 𝜆𝑑𝑐; and finally to the state (𝑛𝑜, 𝑛𝑐 − 1) with
transition rate 𝑛𝑐 ⋅ 𝜆𝑐𝑑.

An infinitesimal generatorQ(𝑙)
(3)

of the lefthemichannel (as
well as the global system generator, i.e., Q(𝑙)

(3)
= Q(6)
(3)
) has the

same block tridiagonal structure as in (14):

Q(6)
(3)
=

(

(

(

(

Q11 Q12 0 0 0 0 0
Q21 Q22 Q23 0 0 0 0
0 Q32 Q33 Q34 0 0 0
0 0 Q43 Q44 Q45 0 0
0 0 0 Q54 Q55 Q56 0
0 0 0 0 Q65 Q66 Q76
0 0 0 0 0 Q76 Q77

)

)

)

)

. (32)

However, all the blocks in (32) including zero-entry
blocks are of varying sizes. In general, block entry 𝑖𝑗 of the
infinitesimal generator is of size (8 − 𝑖) × (8 − 𝑗). For example,
diagonal blocksQ𝑖𝑖 are squarematrices of size (8−𝑖) each and
have the following tridiagonal form:

Q𝑖𝑖 =

(

(

(

(

(

(

(

(

(

(

(

(

(

∗ (7 − 𝑖) 𝜆𝑑𝑐

.

.

. 0 0

𝜆𝑐𝑑 ∗

.

.

. 0 0

0 2𝜆𝑐𝑑

.

.

. 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ d ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0
.

.

. 2𝜆𝑑𝑐 0

0 0
.

.

. ∗ 𝜆𝑑𝑐

0 0
.

.

. (7 − 𝑖) 𝜆𝑐𝑑 ∗

)

)

)

)

)

)

)

)

)

)

)

)

)

, (33)

where 𝜆𝑑𝑐 = 𝜆𝑑𝑐(𝑉left(𝑛𝑜, 𝑛𝑐)) = 𝜆𝑑𝑐(𝑉left(𝑖, 𝑗)) and 𝜆𝑐𝑑 =
𝜆𝑐𝑑(𝑉left(𝑛𝑜, 𝑛𝑐)) = 𝜆𝑐𝑑(𝑉left(𝑖, 𝑗)) and 𝑗 is the row in a block
Q𝑖𝑖 where 𝜆𝑑𝑐 or 𝜆𝑐𝑑 appears.

All upper diagonal blocksQ𝑖,𝑖+1 have the following struc-
ture (zero-entries row vector augmented with diagonal
matrix):

Q𝑖,𝑖+1 =
(

(

(

(

(

(

0 0

.

.

. 0

𝜆𝑐𝑜 0

.

.

. 0

0 2𝜆𝑐𝑜 ⋅ ⋅ ⋅ 0

.

.

.

.

.

.

.

.

. 0

0 0

.

.

. (7 − 𝑖) 𝜆𝑐𝑜

)

)

)

)

)

)

, (34)

where 𝜆𝑐𝑜 = 𝜆𝑐𝑜(𝑉left(𝑛𝑜, 𝑛𝑐)) = 𝜆𝑐𝑜(𝑉left(𝑖 − 1, 𝑗 − 1)) and 𝑗 is
the row in a block Q𝑖,𝑖+1 where 𝜆𝑐𝑜 appears.

Similarly, lower diagonal blocksQ𝑖+1,𝑖 are diagonal matri-
ces augmented with a zero-entry column and may be written
as follows:

Q𝑖+1,𝑖 =
(

(

(

0 (𝑖 − 1) 𝜆𝑜𝑐 0

.

.

. 0

0 0 (𝑖 − 1) 𝜆𝑜𝑐

.

.

. 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ d ⋅ ⋅ ⋅

0 0 0

.

.

. (𝑖 − 1) 𝜆𝑜𝑐

)

)

)

,

(35)

where 𝜆𝑜𝑐 = 𝜆𝑜𝑐(𝑉left(𝑛𝑜, 𝑛𝑐)) = 𝜆𝑜𝑐(𝑉left(𝑖 − 1, 𝑗 − 1)) and 𝑗 is
the row in a block Q𝑖+1,𝑖, where 𝜆𝑐𝑜 appears.

The first problem arising in steady-state calculation is that
the blocks are of different sizes. It means that the recursive
procedure, which was most efficient for GJ models with 12
two-state Cxs, cannot be applied in this case. This leaves
only banded Gaussian elimination and block Gauss-Seidel
methods for further detailed consideration.

3.4.1. Banded Gaussian Elimination for Steady-State Solution
of CTMC Model of GJ Channel Containing 6 Three-State
Subgates. It is easy to see from (32) that Q(6)

(3)
has the same

bandwidth 𝑚 = 15 as Q(12)
(2)

but the size of state-space 𝑛 =
28 is different, in this case. So, according to the complexity
evaluation presented in [24], the steady-state solution by
using banded Gaussian elimination requires only about 4-
fold less CPU time than standard Gaussian elimination for
dense linear system.Thus, the difference is not as pronounced
as in the previous example.

3.4.2. Block Gauss-Seidel Elimination for Steady-State Solution
of CTMC Model of GJ Channel Containing 6 Three-State
Gates. The application of block Gauss-Seidel is very similar
to that for GJmodel with 12 two-state Cxs. Basically, the same
iterative procedure (28) can be applied; however blocks are of
different sizes in this case. Thus, even though the same basic
operations with the same complexity as presented in Table 2
are used for this model, one must evaluate varying sizes of



10 BioMed Research International

Table 5: Number of outer iterations necessary to achieve the
required precision by using block Gauss-Seidel algorithm for GJ
model with 6 three-state subgates.

Precision Number of iterations
10

−4
14

10

−5
20

10

−6
25

10

−7
30

10

−8
35

10

−9
40

10

−10
45

10

−11
50

10

−12
56

10

−13
61

10

−14
66

10

−15
71

Table 6: Number of outer iterations for repetitive model solution by
using block Gauss-Seidel algorithm for GJ model with 6 three-state
subgates.

Voltage, mV Number of iterations
Method I Method II

20 12 7

40 18 15

60 20 9

80 14 4

100 12 3

blocks in the matrix Q(6)
(3)
. For example, instead of solving 7

tridiagonal systems, each of size 7, one needs only to solve
one system of size 7, one of size 6, and so forth.

This gives an estimated complexity of 196 per single outer
iteration with the block Gauss-Seidel method. Thus, block
Gauss-Seidel outperforms standard Gaussian elimination if
less than 80 outer iterations are needed. It also outperforms
banded Gaussian elimination if less than 18 outer iterations
are needed.

As for the 12 two-state Cxs GJ model, we evaluated the
number of outer iterations necessary to achieve required
precision. The convergence speed is presented in Table 5.

Thus, it is less feasible to use block Gauss-Seidel method
than banded Gaussian elimination if higher than 10−5 preci-
sion is used, though it is more efficient than standard Gaus-
sian elimination even with 10−15 precision.

However, the efficiency of block Gauss-Seidel becomes
higher if the repetitivemodel solution is performed. A similar
experiment aswith the 12 two-stateCxsmodelwas performed
for 6 three-state subgates GJ model. The results are presented
in Table 6.

The results showed that block Gauss-Seidel becomes
more efficient than banded Gaussian elimination under rea-
sonable 10−6 precision if repetitive calculations are per-
formed.

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 5488

Figure 5: Nonzero entry structure of global system generator Q(12)
(3)

ofGJ channel composed of twohemichannels formed of 6 connexins
with 3 states.

3.5. CTMCModel of the GJ Channel Containing 12Three-State
Subgates. Here, we consider that in themodel each subgate of
both hemichannels operates between open (𝑜), closed (𝑐), and
deep closed (𝑑) states. Thus, its electrical scheme is the same
as presented in Figure 1, while the state graph of the subgate
is as presented in Figure 3.

We model this type of GJ by SAN, containing two
automata.We assume that𝐴(𝑙)3 describes the left hemichannel,
while 𝐴(𝑟)3 describes the right one (again, subscript values 3
denote the fact that each subgate has 3 possible states). The
states of both automata 𝐴(𝑙)3 and 𝐴(𝑟)3 are 2-tuples (𝑛(𝑙)𝑜 , 𝑛

(𝑙)
𝑐 )

and (𝑛(𝑟)𝑜 , 𝑛
(𝑟)
𝑐 ), respectively. Here 𝑛

(𝑙)
𝑜 and 𝑛(𝑙)𝑐 denote the

number of open and closed subgates on the left hemichannel,
while 𝑛(𝑟)𝑜 and 𝑛(𝑟)𝑐 denote the number of closed and open
gates on the right one. They also must satisfy the following
inequalities:

𝑛

(𝑙)
𝑜 + 𝑛

(𝑙)
𝑐 ≤ 6, 𝑛

(𝑟)
𝑜 + 𝑛

(𝑟)
𝑐 ≤ 6.

(36)

Transitions among states in each hemichannel are analo-
gous to those of the previous model. Similarly, infinitesimal
generatorsQ(𝑙)3 andQ(𝑟)3 can be written as in (32).Thus global
infinitesimal generatorQ(12)3 may be expressed as

Q(12)
(3)
= Q(𝑙)
(3)
⊗

𝑔
I28 + I28 ⊗𝑔 Q

(𝑟)

(3)
. (37)

It is easy to see from (37) that Q(12)
(3)

has the size of 748;
thus it is a much larger model than in previous examples. It
is not possible due to the size of the matrix to present its full
block structure. However, its nonzero entry structure, which
was obtained by using spy() function fromMATLABpackage,
is presented in Figure 5.



BioMed Research International 11

Table 7: Number of operations necessary to perform a single outer
iteration of blockGauss-Seidel algorithm forGJmodelwith 12 three-
state subgates.

Part of an algorithm Number of
times

Number of arithmetic
operations

Vector + vector
56 𝑛

Vector ∗ diagonal matrix
84 𝑛

Solve tridiagonal system
28 8𝑛

Check for convergence
1 𝑛

It is also possible to analyze its structure based on the
Kronecker representation of system descriptor (37). As can
be seen from Figure 5, it consists of 5 layers of blocks, all
of which are square matrices of size 28. Diagonal blocks Q𝑖𝑖
are all block tridiagonal matrices, which may be written as
follows:

Q𝑖𝑖 = 𝑞𝑖𝑖 ⊗ I7 +Q
(6)

(3)
. (38)

Here 𝑞𝑖𝑖 denotes the 𝑖th diagonal entry of the matrixQ(6)
(3)
.

It follows from (38) thatQ𝑖𝑖 has the same nonzero entries
structure as Q(6)

(3)
. Matrix Q(12)

(3)
also has two layers of blocks

in lower and upper parts. For simplicity, we call them inside-
lower (inside-upper) and outside-lower (outside-upper) lay-
ers. All of these blocks are diagonal matrices and can be
written as

Q𝑖𝑗 = 𝑞𝑖𝑗 ⊗ I28, (39)

where 𝑞𝑖𝑗 denotes the 𝑖𝑗th entry of matrixQ(6)
(3)
.

Since matrix Q(12)
(3)

is not tridiagonal, it leaves banded
Gaussian elimination and block Gauss-Seidel methods for
more detailed consideration.

3.5.1. Banded Gaussian Elimination for Steady-State Solution
of CTMC Model of GJ Channels Containing 12 Three-State
Subgates. Even though matrix (38) is banded, its bandwidth
393 is much bigger in both absolute and relative (𝑚 exceeds
half of the size of 𝑛) values than that of 12 two-state Cxs GJ
model. It requires about 5 times less CPU time than standard
Gaussian elimination to calculate steady-state probabilities.

3.5.2. Block Gauss-Seidel Algorithm for Steady-State Solution
of CTMC Model of GJ Channels Containing 12 Three-State
Subgates. Analyzing the zero-entries structure of (38) allows
for adaptation of the block Gauss-Seidel algorithm for Q(12)

(3)

model. Basically, in one outer iteration step one needs to solve
28 inner iterations—each of them is a linear system of size 28:

𝜋
(𝑘+1)
𝑖 = bQ

−1
𝑖𝑖 , 𝑖 = 1, 28,

(40)

where row vector bmight consist of up to four vectors of form
𝜋
(𝑘+1)
𝑟 Q𝑙,𝑚 or 𝜋(𝑘)𝑟 Q𝑙,𝑚. In general, the number of arithmetic

operations necessary to perform one outer iteration of the
block Gauss-Seidel algorithm for Q(12)

(3)
model is presented in

Table 7 (size 𝑛 in this case is equal to 28).

Table 8: Number of outer iterations necessary to achieve the
required precision by using block Gauss-Seidel algorithm for GJ
model with 12 three-state subgates.

Precision Number of iterations
10

−4
14

10

−5
23

10

−6
32

10

−7
40

10

−8
49

10

−9
58

10

−10
66

10

−11
75

10

−12
83

10

−13
92

10

−14
101

10

−15
109

Table 9: Number of outer iterations for repetitive model solution by
using block Gauss-Seidel algorithm for GJ model with 6 three-state
subgates.

Voltage, mV Number of iterations
Method I Method II

20 24 15

40 32 25

60 30 23

80 18 8

100 12 3

Thus, the block Gauss-Seidel algorithm becomes more
efficient than standard Gaussian elimination if it requires
less than 5954 outer iterations. Actual numbers of outer
iterations necessary to achieve the required precision at
40mV transjunctional voltage level are presented in Table 8.

Basically the convergence speed of block Gauss-Seidel for
solving steady-state probabilities of the 12 three-state subgates
GJ model is comparable to that of previous models. Also,
block Gauss-Seidel is much more efficient than even banded
Gaussian elimination with any precision. As in previous
cases, it outperformed other standard iterative and projection
methods.

For example, it required less than 40milliseconds of CPU
time to calculate steady-state probabilities with 10−6 precision
with MATLAB while its implementation in C++ required
about 18 milliseconds.

The repetitive model solution showed the same effect
of iterative algorithms on convergence speed as in previous
examples. The results are presented in Table 9.

Overall, about 40 percent less CPU time was required
to estimate steady-state probabilities in the whole range of
transjunctional voltage by using, if previous solutions were
used as the first iteration vector.



12 BioMed Research International

4. Conclusion

SAN formalism is efficient for the creation of models of GJ
voltage gating, because systemdescription is relatively simple,
and the building and storing of the infinitesimal generator is
very rapid. We used SAN to create equivalent CTMC model
due to the complexity of estimation of functional transition
rates. Unlike a PLA approach, which we have used earlier
for CTMCmodelling of GJs [8], SAN and Kronecker algebra
operations help to get more insight into the structure of
infinitesimal generator matrix.

Infinitesimal generators of GJ models have a distinct
block structure that allows selecting most efficient numeri-
cal methods. For example, application of banded Gaussian
method lowers CPU time at least 4-fold as compared to
standard Gaussian elimination, which typically is applied for
estimation of steady-state probabilities ofDTMCmodelswith
dense matrices.

Iterative methods are very suitable for GO of gating
parameters, since it requires numerous simulations at differ-
ent 𝑉𝑗s. In particular, the block Gauss-Seidel method can be
applied very successfully, since it also benefits from the block
structure of the infinitesimal generator.The implementations
proposed in this study outperformed even direct methods
used in calculation of steady-state probabilities.

We assume that implementation of different numerical
methods, for example, using the most advanced numerical
techniques in SAN modelling, could lead to even better
results. This could help to reduce computational time in
search of most adequate mathematical models in describing
voltage gating of GJs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Research Council of Lithua-
nia for collaboration of Lithuanian and USA scientists under
the Grant no. MIT-074/2012 to Henrikas Pranevicius and by
the NIH Grant no. R01NS 072238 to Feliksas F. Bukauskas.

References

[1] J. F. Ek-Vitorin, T. J. King, N. S. Heyman, P. D. Lampe, and
J. M. Burt, “Selectivity of connexin 43 channels is regulated
through protein kinase C-dependent phosphorylation,” Circu-
lation Research, vol. 98, no. 12, pp. 1498–1505, 2006.

[2] G. Söhl and K. Willecke, “Gap junctions and the connexin
protein family,” Cardiovascular Research, vol. 62, no. 2, pp. 228–
232, 2004.

[3] G. E. Sosinsky and B. J. Nicholson, “Structural organization of
gap junction channels,” Biochimica et Biophysica Acta (BBA)—
Biomembranes, vol. 1711, no. 2, pp. 99–125, 2005.

[4] F. F. Bukauskas and V. K. Verselis, “Gap junction channel
gating,” Biochimica et Biophysica Acta: Biomembranes, vol. 1662,
no. 1-2, pp. 42–60, 2004.

[5] N. Paulauskas, H. Pranevicius, J. Mockus, and F. F. Bukauskas,
“Stochastic 16-state model of voltage gating of gap-junction
channels enclosing fast and slow gates,” Biophysical Journal, vol.
102, no. 11, pp. 2471–2480, 2012.

[6] N. Paulauskas, M. Pranevicius, H. Pranevicius, and F. F.
Bukauskas, “A stochastic four-state model of contingent gating
of gap junction channels containing two “fast” gates sensitive to
transjunctional voltage,” Biophysical Journal, vol. 96, no. 10, pp.
3936–3948, 2009.

[7] A. Sakalauskaite, H. Pranevicius, M. Pranevicius, and F.
Bukauskas, “Markovian model of the voltage gating of con-
nexin-based gap junction channels,” Elektronika ir Elektrotech-
nika, no. 5, pp. 103–106, 2011.

[8] H. Pranevicius, M. Pranevicius, O. Pranevicius, and et al,
“Continuous timeMarkov chainmodels of voltage gating of gap
junction channels,” Information Technology and Control, vol. 43,
no. 2, pp. 133–142, 2014.

[9] W. J. Stewart, MARCA—Markov-Chain Analyzer: A Software
Package for Markov Modeling, Marcel Dekker, New York, NY,
USA, 1991.

[10] N. Yang, H. Yu, Z. Qian, and H. Sun, “Modeling and quanti-
tatively predicting software security based on stochastic Petri
nets,”Mathematical andComputerModelling, vol. 55, no. 1-2, pp.
102–112, 2012.

[11] L. Brenner, P. Fernandes, B. Plateau et al., PEPS2007—Stochastic
Automata Networks Software Tool, IEEE Computer Society, Los
Alamitos, Calif, USA, 2007.

[12] P. Buchholz and T. Dayar, “Block SOR preconditioned projec-
tion methods for Kronecker structured Markovian representa-
tions,” SIAM Journal on Scientific Computing, vol. 26, no. 4, pp.
1289–1313, 2005.

[13] Y. Saad, “IterativeMethods for Sparse Linear Systems,” in Society
for Industrial and Applied Mathematics, 2003.

[14] W. J. Stewart, Introduction to the Numerical Solution of Markov
Chains, Princeton University Press, Princeton, NJ, USA, 1994.

[15] B. Plateau and K. Atif, “Stochastic automata network for
modeling parallel systems,” IEEETransactions on Software Engi-
neering, vol. 17, no. 10, pp. 1093–1108, 1991.

[16] L.Mokdad and J. Ben-Othman, “Admission control mechanism
and performance analysis based on stochastic automata net-
works formalism,” Journal of Parallel and Distributed Comput-
ing, vol. 71, no. 4, pp. 594–602, 2011.

[17] K. R. Braghetto, J. E. Ferreira, and J.-M. Vincent, “Performance
evaluation of re source-aware business processes using stochas-
tic automata networks,” International Journal of Innovative
Computing, Information and Control, vol. 8, no. 7B, pp. 5295–
5316, 2012.

[18] H. DeRemigio, M. D. LaMar, P. Kemper, and G. D. Smith,
“Markov chain models of coupled calcium channels: Kronecker
representations and iterative solution methods,” Physical Biol-
ogy, vol. 5, no. 3, Article ID 036003, 2008.

[19] Y. Hao, P. Kemper, and G. D. Smith, “Reduction of calcium
release site models via fast/slow analysis and iterative aggre-
gation/disaggregation,” Chaos, vol. 19, no. 3, Article ID 037107,
2009.

[20] V. Wolf, “Modelling of biochemical reactions by stochastic
automata networks,” Electronic Notes in Theoretical Computer
Science, vol. 171, no. 2, pp. 197–208, 2007.

[21] A. N. Langville and W. J. Stewart, “The Kronecker product and
stochastic automata networks,” Journal of Computational and
Applied Mathematics, vol. 167, no. 2, pp. 429–447, 2004.



BioMed Research International 13

[22] A. Benoit, P. Fernandes, B. Plateau, and W. J. Stewart, “On the
benefits of using functional transitions and Kronecker algebra,”
Performance Evaluation, vol. 58, no. 4, pp. 367–390, 2004.

[23] A. Benoit, B. Plateau, and W. J. Stewart, “Memory-efficient
Kronecker algorithms with applications to the modelling of
parallel systems,” Future Generation Computer Systems, vol. 22,
no. 7, pp. 838–847, 2006.

[24] J. Thorson, Gaussian Elimination on a Banded Matrix, Stanford
University, Stanford, Calif, USA, 1982.

[25] G. E. Cho and C. D. Meyer, “Comparison of perturbation
bounds for the stationary distribution of a Markov chain,”
Linear Algebra and Its Applications, vol. 335, no. 1–3, pp. 137–150,
2001.


