
cancers

Review

TP53 in Myelodysplastic Syndromes

Yan Jiang 1,2 , Su-Jun Gao 1, Benoit Soubise 2, Nathalie Douet-Guilbert 2,3 , Zi-Ling Liu 4,*
and Marie-Bérengère Troadec 2,3,*

����������
�������

Citation: Jiang, Y.; Gao, S.-J.; Soubise,

B.; Douet-Guilbert, N.; Liu, Z.-L.;

Troadec, M.-B. TP53 in

Myelodysplastic Syndromes. Cancers

2021, 13, 5392. https://doi.org/

10.3390/cancers13215392

Academic Editor: Heinz Sill

Received: 13 September 2021

Accepted: 21 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China;
jiangyanjdyy@jlu.edu.cn (Y.J.); sjgao@jlu.edu.cn (S.-J.G.)

2 Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; benoit.soubise@hotmail.fr (B.S.);
nathalie.douet-guilbert@chu-brest.fr (N.D.-G.)

3 CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
4 Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
* Correspondence: ziling@jlu.edu.cn (Z.-L.L.); marie-berengere.troadec@univ-brest.fr (M.-B.T.);

Tel.: +86-139-43-00-16-00 (Z.-L.L.); +33-2-98-01-64-55 (M.-B.T.)

Simple Summary: The importance of gene variants in the prognosis of myelodysplastic syndromes
(MDSs) has been repeatedly reported in recent years. Especially, TP53 mutations are independently
associated with a higher risk category, resistance to conventional therapies, rapid transformation to
leukemia, and a poor outcome. In the review, we discuss the features of monoallelic and biallelic
TP53 mutations within MDS, the carcinogenic mechanisms, and the predictive value of TP53 variants
in current standard treatments including hypomethylating agents, allogeneic hematopoietic stem cell
transplantation, and lenalidomide, as well as the latest progress in TP53-targeted therapy strategies
in MDS.

Abstract: Myelodysplastic syndromes (MDSs) are heterogeneous for their morphology, clinical
characteristics, survival of patients, and evolution to acute myeloid leukemia. Different prognostic
scoring systems including the International Prognostic Scoring System (IPSS), the Revised IPSS, the
WHO Typed Prognostic Scoring System, and the Lower-Risk Prognostic Scoring System have been
introduced for categorizing the highly variable clinical outcomes. However, not considered by current
MDS prognosis classification systems, gene variants have been identified for their contribution to
the clinical heterogeneity of the disease and their impact on the prognosis. Notably, TP53 mutation
is independently associated with a higher risk category, resistance to conventional therapies, rapid
transformation to leukemia, and a poor outcome. Herein, we discuss the features of monoallelic and
biallelic TP53 mutations within MDS, their corresponding carcinogenic mechanisms, their predictive
value in current standard treatments including hypomethylating agents, allogeneic hematopoietic
stem cell transplantation, and lenalidomide, together with the latest progress in TP53-targeted
therapy strategies, especially MDS clinical trial data.

Keywords: TP53; myelodysplastic syndromes; mutation; monoallelic; biallelic; target therapy; MDM2

1. Introduction

Since its identification in 1979 and the revelation of its role as a tumor suppressor
gene in 1989, TP53 (also known as p53) has always been a shining star in the field of cancer
research [1,2]. In the past 40 years, researchers have described the protein structure, func-
tions, and regulation mechanism of wild-type TP53. The usage of alternate promoters and
alternative splicing of introns result in multiple transcript variants in a tissue-dependent
manner. Meanwhile, as the most frequently mutated gene, the frequency of TP53 mu-
tations is highly variable in different types and different stages of cancers. In addition,
the dominant-negative (DN) and gain-of-function (GOF) effects are associated with spe-
cific mutations. Hence, ascertaining the tumorigenic mechanism of TP53 is essential for
developing a precise treatment regimen in specific tumors [3].
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Myelodysplastic syndromes (MDSs) are a group of acquired clonal stem cell disorders,
which are very heterogeneous for their morphology, clinical features, survival of patients,
and evolution to acute myeloid leukemia (AML). Several prognostic scoring systems includ-
ing the International Prognostic Scoring System (IPSS), the WHO Typed Prognostic Scoring
System (WPSS), the Revised-IPSS (IPSS-R), and the Lower-Risk Prognostic Scoring Sys-
tem (LR-PSS) have been introduced for categorizing the highly variable clinical outcomes
(based on survival time and time to AML evolution) within each subgroup; the predictive
value of them were validated in a number of independent studies [4–8]. Currently, all
the most widely used MDS prognostic scoring systems score bone marrow (BM) blast
percentage, depth of cytopenia (hemoglobin, platelet, and absolute neutrophil count), and
cytogenetics, and these three major features have been proven to have significant effects
on the survival and risk of AML transformation. Other parameters, such as age, lactate
dehydrogenase (LDH), ferritin, beta-2 microglobulin, BM fibrosis, and performance status,
were also shown to have a less significant prognostic impact on MDS [9]. However, as for
all classification systems, variables outside the current parameters prompt further refine-
ments in prognostic scoring systems, in which gene variants have been identified in recent
studies, contributing to the clinical heterogeneity of the disease course and influencing
the prognosis of patients [10,11]. Notably, TP53 mutations, with an overall incidence of
about 10% in de novo MDS and 40% in therapy-related MDS (t-MDS patients) [12,13], is
independently associated with resistance to conventional therapies, rapid transformation
to AML, and a poor outcome [14]. Of note, in MDS cases with five or more karyotype
abnormalities, the absence of TP53 mutations is associated with a much better survival
compared to those with TP53 mutations [15].

Herein, we discuss the features of TP53 mutations within MDS, their corresponding
carcinogenic mechanisms, their predictive value in current standard treatments includ-
ing hypomethylating agents (HMAs), allogeneic hematopoietic stem cell transplantation
(HSCT), and lenalidomide, together with the latest progress in TP53-targeted therapy
strategies, especially MDS clinical trial data.

2. Brief Presentation of Wild-Type TP53
2.1. TP53 Gene and mRNA

The TP53 gene is located on the short arm of chromosome 17 (band 17p13.1); it spans
20kb and contains 11 exons and two cryptic exons (9β and 9γ) [16,17]. Multiple transcript
isoforms expressed in a tissue-dependent manner result from alternative splicing of this
gene and the use of alternate promoters. So far, nine TP53 mRNAs encoding 12 different
TP53 protein isoforms have been reported in humans. They result from the usage of
two alternative promoters (the proximal promoter P1 and the internal promoter P2) and
alternative splicing of intron 2 and intron 9. The translation is initiated at codon 1 or
40 for mRNAs transcribed from P1. Translation starts at codon 133 or 160 for mRNAs
transcribed from P2. Hence, the isoforms are named as p53α, p53β, p53γ, ∆40p53α,
∆40p53β, ∆40p53γ, ∆133p53α, ∆133p53β, ∆133p53γ, ∆160p53α, ∆160p53β, and ∆160p53γ,
among which, p53α (also known as canonical TP53) is the fully spliced TP53 transcript
encoding 393 amino acids. Normally, several TP53 isoforms are concomitantly co-expressed
in a tissue-specific way, and none of the TP53 isoforms, including canonical p53α, can
annihilate the expression or activity of the other co-expressed TP53 isoforms. Therefore, the
cell response mediated by TP53 results from the cumulative effect of all the TP53 isoforms
expressed within the same cell. The balance of expression among different TP53 isoforms
is crucial in predicting cell fate outcome [17]. To date, the precise level of expression, tissue
distribution, and biological function of each isoform is still poorly understood [18].
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2.2. The Full-Length Structure of TP53 Protein and the Major Functions within Each Domain

The canonical TP53 protein contains an acidic N-terminus transactivation domain
(TAD) (amino acids 1–62), a proline-rich domain (PRD) (amino acids 63–94), a central
DNA-binding domain (DBD) (residues 94–292), a tetramerization domain (TD) (amino
acids 325–356), and a carboxy-terminal negative regulatory domain (CTD) (amino
acids 356–393) [19,20]. The TAD interacts with regulatory factors, including the nega-
tive regulator MDM2 and histone acetyltransferase CBP/p300. The PRD plays a role in
TP53 instability and TP53-mediated apoptosis [21]. The DBD binds specifically to double-
strand target DNAs and performs cell cycle arrest and tumor suppression function [22].
The highly conserved features within this domain during evolution indicates its impor-
tance in TP53 function [23]. The TD regulates the oligomerization state and modulates
thermodynamic stability of TP53, and it is also required for the gain of function by TP53
mutants [24]. The CTD is a domain with negative regulatory function, and participates to
induce cell death [20].

2.3. The Function and Regulation Mechanism of TP53

The TP53 protein is produced in the cytoplasm. It can then be transported into the
nucleus where it plays its tumor-suppression role, in particular for prevention of inappro-
priate cell proliferation and maintenance of genome integrity after genotoxic stress. In
some cases, TP53 can be excluded from the nucleus as a result of cytoplasmic sequestration,
or hyperactive nuclear export; the aberrant retention of TP53 in the cytoplasm is less
responsive to genotoxic stress. In addition, a portion of TP53 localized in the mitochondria
induces apoptosis in a transcription-independent manner [25]. In response to stress, TP53
is post-translationally modified by acetylation, phosphorylation, ADP-ribosylation, ubiqui-
tylation, sumoylation, neddylation, and cytoplasmic sequestration. Those modifications
participate in its stabilization and nuclear accumulation, and activation as a transcription
factor. Activated TP53 functions in a tetramer conformation and promotes the transcription
of hundreds of downstream target genes to exert its tumor suppression effectiveness. For
example, when the nuclear DNA is damaged by intracellular and/or extracellular stimuli
(e.g., toxic chemicals, infectious virus, ionizing or UV radiations, heat shock, hypoxia, or
oncogene overexpression), TP53 will enter and accumulate in the nucleus, bind directly
to the DNA, and determine the fate of the cell [20]. During this process, the MRE11-
RAD50-NBS1 (MRN) complex acts as the sensor of DNA damage: RAD50 recognizes
the DNA, NBS1 recruits other DNA repair proteins to double-strand break lesions, and
MRE11 processes the DNA ends with its DNA nuclease activity; altogether this activates
Ataxia Telangiectasia Mutated (ATM). Activated ATM initiates the TP53-MDM2 oscillator
to produce TP53 pulses. In the feedback loop, activated ATM induces a conversion of
TP53 from the inactive state to the active state by phosphorylation on serine 15, then active
TP53 promotes production of MDM2 in the cytoplasm, which then enters the nucleus to
induce degradation of active TP53. Meanwhile, cytoplasmic MDM2 promotes the trans-
lation of TP53 mRNA to produce inactive TP53. The number of TP53 pulses induced by
the oscillator depending on the extent of DNA damage determines the cell fate. If there
are low levels of DNA damage, few TP53 pulses induce transient cell cycle arrest and
recruit other proteins to fix the damage. If there are high levels of DNA damage, sustained
TP53 pulses suppress DNA repair and induce apoptosis [26,27]. Similarly, cytoplasmic
TP53 is transported into the mitochondria under stress conditions and interacts with pro-
and anti-apoptotic members of the B cell lymphoma 2 (BCL2) family. This triggers the
release of mitochondrial factors driving apoptosis or autophagy [28]. Through the ways
described above, TP53 prevents DNA damage accumulation in cells, which could lead to
the formation of tumors if such cells continue to divide in an uncontrolled way.

Naturally, in unstressed cells, a low level of short-lived TP53 is expressed, localized
in both the nucleus and cytoplasm, and is mainly maintained in an inactive form through
transcriptional inhibition; it is usually undetectable by standard immunohistochemistry
and immunocytochemistry. However, the half-life of TP53 can be rapidly prolonged from
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minutes to hours under stress [20,29]. Once the stress is resolved, TP53 can be proteasomally
degraded by a number of E3 ubiquitin ligases. Among which, the ubiquitously expressed
proto-oncogene MDM2 and its close homolog MDMX are the major E3 ubiquitin ligases
involved in this process, and they are critical for regulating TP53 homeostasis. In addition,
TP53 can be continuously degraded by the 20S core catalytic chamber of the proteasome,
which is independent of ubiquitin. The constant cycle between production and then
degradation of TP53 is pivotal for rapid response to oncogenic stress signals, which ensure
cell growth under normal conditions [30].

3. The Anomalous Function of Mutant TP53

Normally, the quantity and active state of wild-type TP53 protein can be precisely
regulated following an appropriate stimulus. Following the stimulus, cells sense a state of
‘relative’ TP53 deficiency and reduce TP53 degradation. When the state of TP53 deficiency
results from a mutation, the TP53 mutant is not able to regulate the downstream genes,
and the cells still reduce TP53 degradation. Importantly, the stabilization of TP53 protein is
a major hallmark of loss of function secondary to a mutation in the absence of a stimulus.
The increase in TP53 mutant levels does not restore wild-type TP53 function, resulting in a
limitation of TP53 degradation. Consequently, no additional inhibition of degradation is
possible after DNA damage in TP53 mutant cells [31]. In addition, TP53 functions as the
transcription factor on hundreds of downstream genes through a tetramer conformation,
TP53 mutant proteins can heterodimerize with wild-type TP53 proteins, and the tetrameric
complex causes conformational shifts or inhibits the DNA-binding activity of wild-type
TP53. While, post-translational modifications and protein-protein interactions alter TP53
tetramerization, then affect transcription, stability, and localization of TP53 [32,33]. Aside
from the DN effects described above, GOF functions for some mutations in TP53 are also
reported. In those cases, TP53 behaves rather as an oncogene [34,35]. Due to the difference
in the biological functions for each TP53 mutant, the mechanisms of GOF still remain
poorly described. Currently, results indicate that the oncogenic function of TP53 mutant is
mainly caused by the alteration of the binding between TP53 mutant and other oncogenic
or tumor suppressive proteins. The stabilization of mutant TP53 is crucial for its GOF
activity [36] (Figure 1).
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Figure 1. The anomalous function of mutant TP53 compared to the wild-type TP53. Regular
degradation of TP53 is fine-tuned in the cell in order to modulate the steady-state level of TP53.
Degradation of wild-type TP53 is orchestrated by MDM2 and controls the level of activation of
different TP53 target genes. Mutant TP53 proteins are not appropriately degraded by MDM2 and
exert a dominant negative effect by preventing wild-type P53 from binding to the regulatory regions of
TP53 target genes. Mutant TP53 proteins also play a gain-of-function role that is considered oncogenic.
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4. TP53 Mutation Features within MDS
4.1. Hotspot Missense Mutation on DBD in Diverse Cancers and MDS

Frameshift or nonsense mutations commonly inactivate tumor suppressors. How-
ever, an analysis of 24,785 TP53 mutations in human cancers showed that 73.4% of TP53
mutations are missense mutations, while nonsense only represent 7.67% and frameshift
represent 9.02% [37]. Especially in MDS patients, 78% of missense, 7% of nonsense, 9% of
frameshift insertions or deletions, and 5% of splice-site mutations were detected among
a total of 396 T53 mutations [38]. The frequency of each major TP53 mutation type in
MDS is consistent with the counterpart in total human cancers. Furthermore, 86% of
TP53 mutations cluster mainly in the DBD, which is the most highly conserved region
among species, and most mutations in this domain are missense (87.9%). In contrast,
missense mutations represent only about 40% outside the DBD domain; most mutations
are frameshift or nonsense [37]. A crystal structure of a TP53-DNA complex containing the
DBD of human TP53 and a DNA binding site helps us to understand why some special
sites on DBD are the hotspots of missense mutations. The TP53 DBD serves as a scaffold for
two large loops and a loop-sheet-helix motif. A zinc atom keeps the two loops together by
tetrahedral links. The DNA binding surface of TP53 is formed by the loop-sheet-helix motif.
Hotspot mutations are located at residues implicated either in contact with DNA or in the
structure of the DBD [39]. Consequently, the mutations R273C/H, R248Q/W, and R282W
are grouped as contact mutations, and render TP53 incompetent for DNA binding. The
mutations R175H, Y220C, and G245S are grouped as structural mutations, characterized
by the lower thermodynamic stability and unfolded structure compared to the wild-type
TP53 [40]. Loss of sequence-specific DNA binding activity caused by hotspot mutations on
DBD is a critical reason for TP53 inactivation.

The location and nucleotide substitution of the mutations as well as its frequencies pos-
sess histological specificity. For example, the variant R175H is the most frequent missense
mutation observed in colorectal cancer, esophagus and stomach adenocarcinoma, breast
cancer, and lymphoid leukemia. The variant R248Q is most frequent in oral squamous cell
carcinoma (SCC), bladder transitional cell carcinoma, cervix cancer, and myeloid leukemia.
C176F is specific to esophagus SCC, R249S is specific to hepatocellular carcinoma, and
H179Y is dominant in skin basal cell carcinoma [41]. Each mutation has a specific impact
on survival. In high-grade serous ovarian cancer, for instance, G266, Y163C, and R282,
when together, are associated with a worsened overall and recurrence-free survival (RFS)
compared with other hotspot mutations [42]. The association of specific hotspot mutations
with different protein expression patterns followed with different functions may account
for the discrepancy of prognosis. Focusing on the spectrum of TP53 mutations makes it
possible to identify mutation patterns associated with etiology, cancer type, therapeutic
response, and even target drug selection.

In MDS patients, Montalban-Bravo et al. reported that the most prevalent muta-
tion was R273H (5%) followed by R248W (4%), Y220C (4%), and R175H (3%) [38]. In
Bernard et al.’s study, they also revealed that R273H/C/G, R248Q/W/P/L, Y220C/H/S,
and R175H/G/L present higher mutational frequencies [14]. We analyzed the TP53 muta-
tion pattern of 66 MDS patients in WHO’s International Agency for Research on Cancer
(IARC) TP53 Database [43], and a similar mutant pattern of R248Q (9.1%), R273H (6.1%),
Y220C (6.1%), and R175H (1.5%) was found (Figure 2A). We generated a 3-D structure using
the JSmol software in the IARC TP53 database, which highlighted the hotspot residues
above (Figure 2B). In this 3-D model, we can clearly see that residues 248 and 273 can
directly bind to DNA, while residues 175 and 220 work as core parts of the structure.
In addition, correlation of these hotspot mutations and prognosis in MDS has been re-
ported too. The presence of monoallelic mutations at residues R175 and R248 increases
the risk of death compared to non-mutated patients [14]. In vivo proof has demonstrated
that R175H and R248Q perform an oncogenic GOF in leukemogenesis, which promotes
chemoresistance, invasiveness, and an epithelial-to-mesenchymal transition through di-
verse mechanisms [44,45].
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Figure 2. Hotspot TP53 mutations in MDS and the corresponding 3-D structure. (A) Distribution of
identified TP53 mutations in MDS. The frequency of each mutation was calculated upon pooled data
extracted from the IARC TP53 Database (2019) and Bernard et al.’s study. Hotspot mutations with a
frequency higher than 2% are labeled [14,43]. (B). Three-dimensional view of TP53 binding to DNA.
This structure was generated by JSmol software in IARC TP53 database. Residue 175: blue, Residue
220: yellow, Residue 272: cyan, Residue 273: green, Residue 248: red. Zinc: purple.

4.2. Biallelic TP53 Dysfunction Predicts Poor Prognosis in MDS

MDS occurs mainly in the elderly. At diagnosis, the median age is ~76 years old in
Europe and almost 10 years younger in Asian MDS patients [12]. About 44% of healthy
individuals at 50 years of age may have at least one hematopoietic stem/progenitor cell
(HSPC) that carries a randomly generated functional TP53 mutation. Upon exposure
to cytotoxic therapy, these mutations can undergo Darwinian selection [46], which may
result in the expansion of HSPCs carrying these mutations. However, the high frequency
of elderly individuals with heterozygous TP53 mutations in their circulating leukocytes
exceeds the prevalence of MDS or AML in the same age group. Additional mutations
and/or chromosomal abnormalities, including mutation or deletion of the second TP53
allele, are needed for MDS or AML transformation [13].

Donehower et al. carried out an analysis of TP53 mutations in 32 cancer types and
10,225 patients from The Cancer Genome Atlas (TCGA) and found that more than 91% of
cancers with TP53 mutations show bi-allelic loss of functional TP53 [47]. Besides, Bernard
et al. analyzed 3324 MDS patients with TP53 mutations, and showed that monoallelic
mutations are found in one-third of TP53-mutated patients whereas two-thirds present
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multiple TP53 hits (multi-hit), most of them proven to be biallelic. Excluding TP53, driver
mutations were more frequent in the monoallelic state compared to the multi-hit TP53
subgroups. Notably, no identifiable driver mutations other than TP53 were found in 40% of
multi-hit patients, while 90% and 50% of monoallelic patients presented at least one other
driver mutation and at least three, respectively. The authors concluded that monoallelic
TP53 mutations are not independently responsible for MDS or AML transformation and
predictive of adverse risk. Associations with complex karyotype, few co-occurring muta-
tions, high-risk presentation, and poor outcomes were specific to multi-hit patients, and
only multiple TP53 hits was shown to predict the risk of death and leukemic transformation
independently of the IPSS-R. Surprisingly, outcomes and response to therapy were not
different between monoallelic patients and wild-type TP53 patients. The co-occurring
mutations additional to the monoallelic TP53 mutation shape disease pathogenesis and
outcomes [14].

In conclusion, monoallelic TP53 mutation itself is insufficient to give rise to MDS, and
additional other driver mutations or the second TP53 dysfunction are required to sustain
malignancy. Among them, the loss of functional TP53 protein by loss of both TP53 alleles
is associated with a poor outcome for MDS patients with TP53 mutations.

4.3. TP53 Mutations Are Associated with Higher Risk Cytogenetics in MDS

MDS patients carrying TP53 mutations present a higher frequency of karyotype ab-
normalities compared to patients without the TP53 mutation [48]. Among these, abnormal
karyotypes; monosomal karyotype, such as -5 and -7, i(17q)/17p-, 5q-; and complex kary-
otypes possess notable associations with TP53 mutations [13,15,48–51]. According to the
New Comprehensive Cytogenetic Scoring System for MDS, -7 and complex karyotypes
were categorized into poor and very poor prognosis subgroups, which indicate a shorter
overall survival (OS) and higher risk of AML transformation [52]. On the contrary, an
absence of TP53 mutations in high complex karyotype (>4 chromosomal aberrations) is
associated with an IPSS-R intermediate-like risk [15]. i(17q) and 17p- accompanied by a
TP53 mutation results in a loss of heterozygosity (LOH) of TP53. The 5q deletion detected
in MDS patients with TP53 mutations, which more frequently presented a larger deletion
size [53], were associated with clonal evolution into complex karyotypes [51,54] and an
increased risk of leukemic evolution [55]. The treatment of lenalidomide in MDS patients
with isolated del(5q) harboring TP53 mutations is at a high risk of treatment failure and
disease progression; this heterogeneity caused by TP53 mutations may significantly affect
clinical decision making for MDS-del(5q) [56]. The genomic instability caused by TP53
inactivation was considered the pivotal reason for the accumulated chromosomal rear-
rangements [38,57], and the karyotype complexity is highly related to the variant allele
frequency (VAF) of TP53 [58], which is an independent adverse prognostic factor for OS in
MDS patients with TP53 mutations [59].

4.4. The Concurrent Driver Mutations of TP53 Mutation in MDS

Additional driver mutations except for TP53 are needed for MDS genesis and pro-
gression, especially in TP53 monoallelic patients [14]. Hence, digging out the concurrent
mutations is essential for understanding the pathogenesis of MDS. Meanwhile, with the
development of next-generation sequencing (NGS) and gene targeting therapy, TP53-
targeted therapy in combination with drugs aimed at concurrent driver mutations may
be a potential treatment approach in the future. The sequencing spectra of molecular
aberrations in the presence of TP53 mutations were inconsistent in different reports, due
to the heterogeneity of the panel of genes used for each study, and the fact that some
studies integrated the bi-allelic TP53 state. Co-occurring somatic mutations were found in
48% of MDS patients harboring TP53 mutations in Cluzeau et al.’s study, in which TET2,
DNMT3A, JAK2, ASXL1, U2AF1, PPM1D, SF3B1, and NF1 account for the most frequently
concurrent gene mutations, which is similar to Haase et al.’s results [15,60]. Compared
to MDS patients without TP53 mutations, ASXL1, RUNX1, U2AF1, JAK2, and SF3B1 are
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less detectable in TP53 mutant cases, in contrast to TET2, which is more frequent in TP53
mutation patients [15]. Analysis of the frequency of driver mutations within the TP53 state
showed that TET2, SF3B1, JAK2, ASXL1, SRSF2, CBL, RUNX1, and BCOR are significantly
higher in monoallelic compared to biallelic TP53-mutated patients [14]. Mutations of TET2
and TP53 predict poor survival in MDS patients receiving HMTs or HSCT [61,62]. TET-
selective small molecule inhibitor suppresses the clonal evolution of TET2 mutant murine
cells, as well as human TET2-mutated leukemia xenografts without affecting the normal
hematopoietic precursor cells in vitro and in vivo. Indeed, TET2 encodes a methylcytosine
dioxygenase essential for myelopoiesis. The survival and proliferation of cells with TET2
mutations are critically dependent on residual TET activity derived mostly from TET3 and
TET1. The TET inhibitor transiently suppresses the residual methylcytosine dioxygenase
activity and eventually eliminates the tumor initiating clones with TET2 mutations [63].
This result suggests that the combination of specific TET and TP53 target drugs could be
considered as a new therapeutic strategy for MDS patients presenting these two concurrent
mutant genes.

5. The Predictive Power of TP53 Mutations in the Current Standard Therapy of MDS

Most of the TP53-mutated MDSs belong to the higher risk subtypes, and almost
two third are MDS with excess of blasts (MDS-EB) [64,65]. Therapeutic approaches for
higher-risk patients aim to change the course of the disease, improving OS, and attempt to
postpone disease progression. Currently, allogeneic transplantation remains the only poten-
tially curative option if the patients are eligible, and HMAs are proposed as cytoreduction
before transplant and for nontransplant patients [66]. However, accumulated evidence
indicates that TP53 mutations, especially the multi-hit TP53 mutations, are crucial negative
markers for the treatment outcomes of these two key therapeutic strategies [65].

5.1. The Impact of TP53 Mutations on Allogeneic-HSCT (a-HSCT)

TP53 mutations are significantly associated with a higher risk of relapse and shorter
progression-free survival (PFS) and OS after transplantation independent of the age and
Karnofsky performance status score and IPSS-R [67–70]. Meanwhile, patients who received
reduced intensity conditioning regimens presented similar adverse effects to those who
received myeloablative conditioning regimens. This suggests that the escalation of the
intensity of the conditioning regimen is ineffective in improving the outcomes of TP53-
mutated MDS patients [69]. However, controversial results were also reported, in which
no significant difference in prognosis was found after transplantation between the MDS
with or without TP53 mutations [71]. Yoshizato et al. compared the prognosis of TP53-
mutant MDS in combination with complex karyotypes to patients with TP53 mutations
but without complex karyotypes, and showed that the TP53 mutation-alone patients
had a significantly better OS compared to those with both TP53 mutation and complex
karyotypes [72]. The allelic state of TP53 and co-occurrent additional mutations may be
the root of the discrepancy among different studies, as a cohort study enrolling small-
sized samples indicated that TP53 monoallelic hit patients presented favorable survival
compared to multi-hit patients following HSCT, but a larger cohort is warranted to verify
this finding [14].

5.2. The Predictive Power of TP53 Mutations in Hypomethylating Therapy (HMT)

The prediction of the therapeutic response of HMAs in MDS patients by TP53 mu-
tations is still controversial. TP53 mutations had no clear significant impact on response
or complete response to azacitidine (AZA) according to several studies [73–76]. How-
ever, both 5-day and 10-day courses of decitabine regimens administered at a dose of
20 mg per square meter of body-surface area per day presented a higher response rates in
TP53-mutated patients compared to patients with wild-type TP53 [77,78]. The predictive
value of TP53 mutations to the outcomes of HMT in MDS patients was investigated in a
meta-analysis including 22 published articles and 2020 participants. This study showed
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that the presence of TP53 mutations predicted an increased overall response rate with HMA
treatment [79]. However, the duration of response usually lasted less than a year, which
was shorter than that of the wild-type patients, and TP53 mutations were almost always
found at times of disease progression after HMT. The short durations of remission were
due to incomplete clearance of malignant clones still presenting driver mutations [75,77,78].
Furthermore, the therapeutic response of HMAs was not associated with an improved
survival, the median OS of TP53 mutation patients was merely half of that in the wild-type
TP53 counterparts, and the dismal outcomes of TP53 mutations cannot be remedied by
HMAs [73,75–77].

5.3. The Impact of TP53 Mutations on Lenalidomide Treatment in MDS-5q-Patients

Lenalidomide, with about a 70% erythroid response rate, sustained independence
from transfusion and longer median survival within the responders, and is currently
considered the standard frontline treatment strategy for MDS with isolated del(5q) [56,80].
However, a minority of patients within this lower-risk subgroup still do not respond and
progress to leukemia, in whom TP53 mutations prove to be a strong predictor for the poor
outcomes [81].

The only genomic differences between lenalidomide-responsive and non-responsive
patients were TP53 mutations, which were also associated with an absence of hematological
or complete cytogenetics response [55,82]. Meanwhile, the TP53 mutations, harbored by the
patients that are less sensitive to lenalidomide, are present years before disease progression
or acquired over the course of the disease, and prevail during treatment, leading finally to
progression. The inherent genomic instability of subclones with TP53 mutations makes
them more probable to acquiring additional molecular alterations, which are considered
the root of lenalidomide resistance [55,83,84].

Of particular importance, MDS-del(5q) harbors unique pathological mechanisms
owning to the 5q deletion. The ribosomal protein S-14 (RPS14) gene, which is located
within the commonly deleted region (CDR) of 5q, encodes a component of the 40S ribosomal
subunit. Ribosomal insufficiency caused by haploinsufficiency of RPS14 disrupts ribosome
integrity, and triggers degradation of the human homolog of the mouse double minute
2 protein (MDM2), which ultimately stabilizes TP53. Then, TP53 acts as an antagonist of
GATA-1, an erythroid-specific transcription factor required for erythroid differentiation
and survival. Sustained stabilization of TP53 in erythroid precursors is therefore a crucial
effector of the hypoplastic anemia. Suppression of TP53 with dexamethasone or Cenersen,
a TP53 antisense oligonucleotide targeting TP53 mRNA, results in a reduction of apoptosis
and restoration of erythropoiesis in del(5q) MDS progenitors [85]. Given the unique
pathological mechanism of MDS-del(5q), the TP53-targeting strategy within this subtype
should be comprehensively organized.

6. Novel TP53-Targeted Therapy Strategies

The variant allelic frequency burden (VAF) is concordant with outcomes and, more
importantly, recent data specifically highlight the importance of the TP53 allelic state on
complexity, prognosis, and clinical presentations. Considering the allelic state of TP53 is
thus important for MDS management (Figure 3). The evaluation of the biallelic state is not
trivial with routine genetic techniques. In line with Bernard E et al. 2020, a more realistic
alternative is to consider multi-hit (rather than bi-allelic) TP53 including multiple mutations,
TP53 deletion, and copy neutral loss of heterozygosity (cnLOH). A combination of different
techniques can be used to achieve this evaluation, such as conventional chromosome
banding (karyotyping) with targeted sequencing of TP53 exons, FISH, gene panel NGS,
or SNP-array. Bernard E et al. 2020 proposed a combination of conventional chromosome
banding with NGS because it can also detect allelic imbalance (gains, deletions, cnLOH)
when analyzed with specific pipelines.
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Figure 3. Proposed diagnosis strategies and current TP53-targeting strategies reported in various
cancers and that could be applied to MDS patients in IPSS-R intermediate, high, very high risk, and
non-responsive patients in very low and low risk. # NGS, Next-Generation Sequencing; * FISH,
Fluorescent in situ hybridization. FISH is advised under the following conditions: <20 metaphases or
unresolved metaphases or one abnormal metaphase or balanced changes involving breakpoint at
17p13. Specific pipelines of NGS analysis allow assessment of allelic imbalances (gains, deletions,
cnLOH) in addition to identifying variants.

TP53 evaluation will be particularly valuable for intermediate, high, and very high
IPSS-R group of risk MDS and non-responsive patients in very low- and low-risk MDS.

Considering the involvement of monoallelic or biallelic TP53 together with the func-
tional complexity of TP53 mutants including loss of function (LOF), dominant-negative
(DN), and gain of function (GOF), the current approaches targeting TP53 can be divided
into two programs: either restoring the normal TP53 function or abrogating the effect of
the anomalous TP53 mutant (Figure 3).

6.1. Restoring the Normal TP53 Function

Loss of homologous TP53 or biallelic inactivation through loss of heterozygosity
(LOH) of the remaining normal TP53 allele can cause a complete loss of function. Apart
from aberrations in TP53 itself, overexpression of the negative regulators of TP53, such as
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MDM2 and MDMX, can also decrease the TP53 function. Gene therapy and disruption of
the binding between TP53 and the downstream negative regulators are the main strategies
to restoring the TP53 function.

6.1.1. Adding TP53 or Modifying a Mutant into Wild-Type TP53 by Gene Therapy

Adenovirus gene therapy is the major proposed TP53 gene therapy strategy till now.
Gendicine, approved by the China Food and Drug Administration (CFDA) in 2003 as a
first-in-class gene therapy product for the treatment of head and neck cancer, exhibited
a significantly higher response rate than standard therapies alone when combined with
chemotherapy and/or radiotherapy. Clinical trial data in several other cancer types,
including liver cancer, lung cancer, digestive tract cancer, female reproductive cancer, brain
cancer, and soft-tissue cancer, yielded favorable progression-free survival [86]. However,
no equivalent clinical trial in MDS has been reported yet.

CRISPR/Cas gene editing is a promising technology for treating cancer, with versa-
tile approaches, such as homology-directed repair (HDR), base editing, and prime edit-
ing. CRISPR/Cas can potentially target the entire mutated TP53 locus, replace it with a
functional cDNA copy of TP53 by homologous recombination, or target various hotspot
mutations in a more precise way, leading to a single nucleotide substitution or precise
gene editing [87]. CRISPR/Cas9 gene-editing therapies for the treatment of hematological
diseases including sickle cell disease, β-Thalassemia, leukemia, lymphoma, and multiple
myeloma have been tested in clinical trials, and recent results indicate that one patient
with sickle cell disease and two patients with thalassemia no longer required blood trans-
fusions [88]. No data for this technique for treating MDS has been reported till now. As the
mutation distribution in TP53 is highly heterogenous and the length of the TP53 locus is
shorter than the limit of the genomic fragment in the CRISPR/Cas technique, replacing the
entire TP53 locus would increase the applicability of the CRISPR/Cas therapeutic system
for MDS [89]. Furthermore, dCas9 (dead Cas9) fused to transcriptional modulators or
histone-modifying enzymes could regulate the TP53 pathway genes. The inherent func-
tions of wild-type TP53 for DNA damage repair may affect the efficacy of CRISPR/Cas9
gene edition. A deeper understanding of the impact of TP53 status on the efficacy of
CRISPR/Cas9 machinery will facilitate the development of gene-editing therapies [88].
The CRISPR/Cas targeting therapeutic system continues to evolve to improve accuracy
and reduce off-target or side effects. However, accurate and effective vectorization of
CRISPR/Cas tools into the targeted cells will also have to be achieved.

6.1.2. Decreasing the Effects of Negative Regulators of TP53 to Stabilize Wild-Type TP53

Human double minute 2 (MDM2) is the key negative regulator of TP53, which can
perform ubiquitin-dependent degradation of TP53, and inhibit the transcription regulatory
function of TP53 by blocking TAD of TP53 [90]. MDM2 can also export TP53 out of the cell
nucleus, preventing TP53 from targeting DNA [91]. Thus, disrupting MDM2 and TP53
interaction ultimately leads to wild-type TP53 stabilization. This is deemed an important
step forward in cancer therapy.

Three hydrophobic and aromatic TP53 amino acids (F19, W23, and L26) form a
structure that is complementary to and fills up a surface hydrophobic pocket at the N-
terminus of MDM2 [90]. This crystal structure provides a framework for the discovery of
compounds that may prevent the inactivation of TP53 by MDM2 in cancers.

The understanding of the functions of the nutlins by Vassilev et al. in 2004 and
antitumor effect verified in preclinical studies paved the way for molecule inhibitors
of the MDM2-TP53 interaction [92]. Following nutlins, several molecules, including:
RG7112 (RO5045337), idasanutlin (RG7388), AMG-232 (KRT-232), APG-115, BI-907828,
CGM097, siremadlin (HDM201), and milademetan (DS-3032b), have come into clinical
practices [93]. Two phase 1 studies of the MDM2 inhibitor AMG-232 or Idasanutlin
in combination with or without trametinib or cytarabine for treating AML reported a
31–35.6% response rate in combination groups [94,95]. Clinical investigations of high-risk
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MDS, such as APG-115 in combination with Azacitidine or Cytarabine (ClinicalTrials.gov
identifier: NCT04275518), Milademetan ± 5-Azacitidine (NCT02319369), and Siremadlin in
combination with MBG453 or venetoclax (NCT03940352), are ongoing. Furthermore, dual
inhibition of MDMX and MDM2 with a stapled α-helical peptide (ALRN-6924) exhibited
marked antileukemic effects in vitro and in vivo, which support further testing of the dual
inhibitor as a therapeutic approach in cancers with wild-type TP53 [96,97]. It is worth
noting that acquired TP53 mutations emerge during treatment with MDM2 inhibitors,
which contribute to the acquired resistance to MDM2 inhibition. The selective pressure
induced by the MDM2 inhibitor is considered to be the reason for the rapid emergence
of resistance mutations. The combination therapy of mutant TP53-activating drugs with
MDM2 inhibitors was proposed to improve the clinical activity of MDM2 inhibitors [98].

6.2. Abrogating the Effect of Anomalous Mutant TP53

The TP53 mutant not only loses the tumor suppressor effect, but also affects the normal
activity of wild-type TP53 through heterodimerization and gains oncogenic function.
Therefore, mutant TP53 targeting has prompted great interest in cancer therapy. Abrogation
of the effect of anomalous mutant TP53 can be achieved in two strategic approaches: the
first and best is reactivating a wild-type function from a mutant TP53, and the second is
the degradation of anomalous mutant TP53.

6.2.1. Wild-Type TP53 Function Reactivation from a TP53 Mutant

Most TP53 mutations are missense targeting DBD and usually result in one amino
acid change. The change destabilizes the DBD folding at physiological temperatures, pre-
cluding the proper orientation of loops and helixes present at the DNA-binding interface,
or disrupting DNA binding directly by the DNA-binding residue change. It is structurally
possible to restore wild-type TP53 functions from TP53 mutant [99]. The proof of concept
was done in 1993, when Hupp et al. achieved restoration of the DNA binding of TP53
mutant by modifying phosphorylation or by antibody binding [100]. Subsequently, accu-
mulated investigations from different laboratories have yet to put mutant TP53 reactivation
into preclinical and clinical practices.

Several compounds that can reactivate proper TP53 function by converting TP53
mutant into the wild-type conformation or increase the thermal stability of TP53 mutant
have been reported [101]. These compounds, including PRIMA-1, APR-246, COTI-2,
PK11007, PK7088, Phikan083, Chetomin, NSC319726, P53R3, CP-31398, ZMC1, and 3-AP,
can be either specific to certain mutations, such as R175H, R273H, Y220C etc., or more
broadly target various mutants of TP53. Among them, APR-246 and COTI-2 present
remarkable anticancer activities, and have progressed to clinical trials. Herein, we will
present the latest progress for APR-246 clinical trials on MDS.

APR-246 (aka PRIMA-1MET or Eprenetapopt) has received breakthrough therapy,
orphan drug, and fast track designations from the FDA for MDS treatment, and orphan
drug designation from the European Medicines Agency for MDS. APR-246 is a prodrug that
is converted to the active electrophile methylene quinuclidinone (MQ) under physiological
conditions, which covalently binds C124 and C277 of TP53 DBD, restores its wild-type
conformation, and mediates thermostabilization of the TP53 mutant. In addition, MQ
inhibits the selenoprotein thioredoxin reductase 1 and converts it to an active oxidase,
depletes glutathione, and induces reactive oxygen species [102]. A recent study also found
that APR-246 induces early cell death by ferroptosis [103]. Two studies have evaluated
the efficacy and safety of APR-246 in combination with azacitidine in MDS patients with
TP53 mutations (Table 1). HMA-naive MDS patients with higher IPSS-R risk were included
in both studies, with more than 85% of the cases carrying complex karyotype and a
median TP53 VAF of 20%. The overall response rate (ORR) was 62 and 73%, and the
complete remission rate was 47 and 50%, respectively. In total, 58% achieved a cytogenetic
response and 43% yielded a molecular response [60,104–106]. From the reported data,
the combination of AZA and APR-246 seems to have therapeutic superiority compared
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to the previously reported single-agent HMAs in MDS patients with TP53 mutations.
The latter represents the standard treatment regimen for higher risk MDS patients at
present [107,108]. Maslah et al. found that the synergistic effects of APR-246 with 5-
azacitidine in TP53-mutated MDS and AML were mediated by downregulation of the
FLT3 pathway in drug-treated cells [109]. To investiagte the therapeutic effect, a pivotal
phase III, multicenter, randomized study of APR-246 in combination with azacitidine
versus azacitidine alone in patients with TP53-mutant MDS is ongoing (NCT03745716).
Furthermore, another multi-center, open label, phase II clinical trial to assess the safety and
efficacy of APR-246 in combination with azacitidine as maintenance therapy after allogeneic
HSCT for patients with TP53 mutant AML or MDS is also ongoing (NCT03931291) (Table 2).

Next, we will present a brief review of PhiKan7088, which targets Y220C, a hotspot
TP53 mutation in MDS. The Y220C mutation is located in the DBD of TP53, which can
create a unique surface cavity that destabilizes TP53 protein. The small drugs PhiKan7088
specifically bind to this cavity and interact with Y220C TP53. In vitro, PhiKan7088 corrects
the folding of Y220C TP53; restores transactivation abilities; induces growth inhibition,
cell-cycle arrest, apoptosis, p21, and NOXA expression; and triggers nuclear export of
the pro-apoptotic BAX protein to mitochondria [110]. Research on improving the binding
affinity of these small-molecule stabilizers of Y220C TP53 is ongoing [111].

6.2.2. Degradation of Anomalous TP53 Mutant

Increased protein stability of TP53 mutant is involved in several pathways implicated
in cancer development, which regulates many cellular processes, including proliferation,
survival, invasion, migration, metabolism, chemoresistance, and tissue architecture, to
promote tumor progression [112]. TP53 mutants can accumulate to high levels in tumors,
which promotes GOF in tumorigenesis [113]. Owing to the GOF effect of mutant TP53,
degradation of anomalous mutant TP53 has prompted great interest in cancer therapy. In
addition, since the survival advantage conferred by TP53 mutant results in cancer cells
being addicted to mutant TP53, anomalous TP53-targeted immunotherapy tends to be a
promising anticancer strategy.

Inhibitors targeting the heat shock protein 90 (HSP90) and histone deacetylase
6 (HDAC6) represent viable clinical strategies for anomalous TP53 mutant degrada-
tion [114]. The HSP90/HDAC6 chaperone machinery is significantly upregulated in
many types of cancers including MDS compared to normal tissues [115], where HDAC
regulates HSP90. HSP90 forms stable complex with TP53 mutant, inhibits E3 ligases MDM2
and carboxyl terminus of HSC70-interacting protein (CHIP), stabilizes TP53 mutant, and
supports proper folding of TP53 mutant [116]. Then, the TP53 mutant affects the function
of wild-type TP53 through a dominant negative effect (refer to Section 3) and members of
its family [117].

A few HSP90 inhibitors are currently available, including geldanamycin and a series
of derivatives, such as tanespimycin (17-AGG), alvespimycin (17-DMAG), and IPI504.
HDAC inhibitors like vorinosat (SAHA) and romidepsin (istodax) have been approved by
FDA for T cell lymphoma. HSP90/HDAC inhibitors can indirectly decrease the stability
of TP53 mutant, and consequently induce the wild-type TP53 function. Phase I-II clinical
trials have evaluated the pharmacokinetics, safety, and efficacy of these inhibitors both as
a single agent or in combination with other anticancer medicines for solid tumors, and
some hematological malignancies like lymphoma and multiple myeloma [116,118–123].
No study on MDS has been reported yet.
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Table 1. Two studies evaluating the efficacy and safety of APR-246 in combination with azacitidine in MDS patients with TP53 mutations.

Reference Phase
NCT Case IPSS-R Risk

Stratification Karyotype

TP53 Mutation
per

Patient Median
(Range)

TP53 VAF %
Median
(Range)

Intervention Response Rate

Duration of
CR,

Months,
Median
(95% CI)

Median OS
(Months)

Sallman et al.
JCO,

2021 [104]

Ib/II
NCT03072043 40

intermediate:
10%,

high: 20%,
very high: 70%

Complex 90% 1 (1–3) 20 (1–72)

APR-246 (50, 75,
100 mg/kg/d

IV(day-14—-11) or
APR-246(4500 mg/d)

(days 1–4) + AZA
75 mg/m2/d (day 4–10 or

4–5 and 8–12), 28 days/cycle

ORR 73%,
CR 50%,

CGR 58%

7.3 [5.8
to NE]

10.4
(7.6–13.3)

Cluzeau et al.
JCO, 2021 [60]

II
NCT03588078 34

intermediate:
12%, high: 15%,
very high: 74%

Complex 85%,
monosomal 79% 1 (1–3) 20 (0.1–83)

APR-246 4500 mg /d
IV(days 1–4) + AZA

75 mg/m2/d (days 4–10),
28 days/cycle

ORR 62%,
CR 47%

11.4 (6.5
to 16.8) 12.1

ORR: ORR, overall response rate; CR, complete remission; CGR, cytogenetic response; NE, not evaluable.

Table 2. The ongoing clinical trials in TP53 mutant MDS.

Number Identifier Title Case Intervention

1 NCT03745716 A Phase III Multicenter, Randomized, Open Label Study of APR-246 in Combination with Azacitidine Versus
Azacitidine Alone for the Treatment of TP53 Mutant MDS 154 Experimental arm: APR-246 + Azacitidine;

Control arm: Azacitidine

2 NCT04638309 Phase 1 Study to Evaluate Safety and Efficacy of APR-548 in Combination with Azacitidine for the Treatment of
TP53-Mutant MDS 46 APR-548 monotherapy

followed by APR-548 + Azacitidine

3 NCT03931291 Phase II Trial of APR-246 in Combination with Azacitidine as Maintenance Therapy for TP53 Mutated AML or MDS
Following Allogeneic Stem Cell Transplant 33 APR-246 + Azacitidine

4 NCT02909972 A Phase 1/1b Open-Label Study to Determine the Safety and Tolerability of ALRN-6924 Alone and in Combination
with Cytarabine in Patients with Relapsed/Refractory AML or Advanced MDS With Wild-Type TP53 55 ALRN-6924 alone;

or Cytarabine followed by ALRN-6924

5 NCT04358393 A Phase Ib/II Study of APG-115 Alone or in Combination with Azacitidine in Patients with Relapse/Refractory
AML, CMML or MDS 69 APG-115 alone;

or APG-115 + 5-AZA

6 NCT03940352 A Phase Ib, Multi-arm, Open-label, Study of HDM201 in Combination with MBG453 or Venetoclax in Adult Subjects
with AML or High-risk MDS 80 HDM201+MBG453;

or HDM201 + Venetoclax

7 NCT03855371 Combination of Decitabine and Arsenic Trioxide to Treat AML/MDS Expressing a Classified Type of Mutant p53
(Phase 1) 5 Decitabine + Arsenic trioxide

8 NCT03377725 Decitabine and Arsenic Trioxide in the Treatment of MDS (Phase 3) 200 Experimental arm: Decitabine + Arsenic
trioxide;Control arm: Decitabine alone

9 NCT03772925 A Phase 1 Study of MLN4924 (Pevonedistat) and Belinostat in Relapsed/Refractory AML or MDS 30 Belinostat + Pevonedistat
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Allele-specific small-interfering-RNAs (siRNAs) are specific enough to discriminate
mutant from wild-type TP53 transcripts in cells where both wild-type and mutant TP53
are present, silence the expression of the mutant transcripts without affecting wild-type
TP53 mRNA, and consequently restore wild-type protein function. This ultimately in-
duces cell death by abrogating both the addiction to mutant TP53 and its DN effect, and
retards tumor growth [124,125]. Furthermore, depletion of TP53 mutant mRNA by its
specific siRNA was validated in the absence or presence of wild-type TP53. In cancer cells
expressing TP53 mutant alone, downregulation of TP53 mutant significantly resulted in
decreased cell proliferation and migration. In cancer cells expressing both wild-type TP53
and TP53 mutant, cell proliferation and migration were also reduced. In those cells, loss of
the TP53 mutant DN effect and subsequent restoration of wild-type TP53 activity induced
the expression of TP53 downstream target genes. A synergistic effect was found after
adding an MDM2 inhibitor or a chemotherapeutic agent [126]. Three siRNA therapeutics,
patisiran, givosiran, and lumasiran, have been approved by the FDA from 2018 to 2020 for
the treatment of peripheral nerve disease secondary to hereditary transthyretin-mediated
amyloidosis, acute hepatic porphyria, and primary hyperoxaluria type 1, respectively. With
the refinement of N-acetylgalactosamine and the development of other novel strategies
for the targeting and delivery of siRNAs, TP53 mutant-specific siRNAs targeting hotspots
mutations are sure to follow in the coming years [127].

As cancer cells are addicted to TP53 mutant, anomalous TP53-targeted killing therapy
is promising, especially TP53 mutant-targeted immunotherapy. Researchers from Johns
Hopkins University School of Medicine described a bispecific single-chain diabody, which
can effectively activate T cells to lyse cancer cells that presented a neoantigen derived
from the TP53R175H mutation. The intracellular R175H mutant TP53 is degraded into
peptides by the proteasome, then a fraction of these peptides, HMTEVVRHC (mutant
amino acid underlined), is presented by the human leukocyte antigen (HLA) on the cell
surface, making it a neoantigen. The diabody binds bispecifically with high affinity to this
neoantigen and the T cell receptor-CD3 complex on T cells, leading to the activation of T
cells to secrete cytokines and kill target cancer cells. The precise killing has been confirmed
both in vitro and in vivo without affecting the wild-type TP53 counterpart [128].

The precise pathogenetic mechanisms underlying the poor outcomes of MDS patients
with TP53 mutations are still unclear. Sallman et al. described the immunological char-
acteristics of the malignant clone and the alterations of the immune microenvironment
in patients with TP53 mutations and wild-type MDS or sAML. Importantly, the expres-
sion of PDL1 is significantly increased and highly immunosuppressive regulatory T cells
(Tregs) as well as myeloid-derived suppressor cells are expanded in hematopoietic stem
cells of TP53-mutated patients. However, bone marrow-infiltrating OX40+ cytotoxic T
cells, helper T cells, and natural killer cells are significantly reduced in cases with TP53
mutations. The immune privilege and evasive features within TP53 mutant MDS and
the sAML microenvironment may be a primary driver of dismal outcomes. Therefore,
immunomodulatory therapeutic strategies may be viewed as beneficial for this molecularly
defined subpopulation [129].

7. Conclusions

TP53 mutations have been proven to be an adverse marker in the prognosis of MDS
patients. They are associated with excess bone marrow blast proportion, thrombocytopenia,
complex karyotypes, resistance and early relapse to lenalidomide, HMAs, and aHSCT, all of
which result in miserable outcomes for MDS cases with TP53 mutations. Due to the recent
findings that the allelic state of TP53 is important for MDS prognosis and management,
the evaluation of the biallelic state or, at least, multi-hit TP53 will be relevant in future
studies. This evaluation can be done by a combination of karyotyping and NGS. With
in-depth research on the pathogenic mechanism of the TP53 mutant and the development
of pharmaceutical technology, novel drugs, such as APR-246, may illuminate the future of
MDS treatment. Intermediate-, high-, and very high-risk MDS and non-responsive patients
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in very low- and low-risk MDS would be the first to benefit from these strategies. Given
the complexity of TP53 mutations, the implementation of standard diagnostic tests that
accurately determine the monoallelic or biallelic status of TP53 is crucial for making tailored
therapeutic strategies. MDS could benefit from the different therapeutic approaches that
are explored for other cancers, including the stabilization of wild-type TP53, degradation of
TP53 mutant, restoration of wild-type TP53 from mutant TP53, and addition of wild-type
TP53 (Figure 3). The development of more highly effective TP53 target medicines with
fewer side effects is still a challenge.
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