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Sepsis, a life-threatening organ dysfunction, is not caused by direct damage of pathogens
and their toxins but by the host’s severe immune and metabolic dysfunction caused by the
damage when the host confronts infection. Previous views focused on the damage-
associated molecular patterns (DAMPs) and pathogen-associated molecular patterns
(PAMPs), including metabolic proinflammatory factors in sepsis. Recently, new concepts
have been proposed to group free fatty acids (FFAs), glucose, advanced glycation end
products (AGEs), cholesterol, mitochondrial DNA (mtDNA), oxidized phospholipids
(OxPLs), ceramides, and uric acid into metabolism-associated molecular patterns
(MAMPs). The concept of MAMPs will bring new guidance to the research and
potential treatments of sepsis. Nowadays, sepsis is regarded as closely related to
metabolic disorders, and MAMPs play an important role in the pathogenesis and
development of sepsis. According to this view, we have explained MAMPs and their
possible roles in the pathogenesis of sepsis. Next, we have further explained the specific
functions of different types of MAMPs in the metabolic process and their interactional
relationship with sepsis. Finally, the therapeutic prospects of MAMPs in sepsis have
been summarized.

Keywords: sepsis, metabolism-associated molecular patterns, free fatty acids, glucose, AGEs
OVERVIEW: METABOLIC DISORDERS IN SEPSIS

Sepsis is a highly heterogeneous and systemic inflammatory syndrome caused by an unbalanced
host response to infection. The new definition of sepsis is a life-threatening organ dysfunction
caused by a dysregulated host response to infection (Singer M. et al., 2016). Nowadays, sepsis is
regarded as not only related to early infectious reactions but also related to cardiovascular
(Coldewey et al., 2020), neurological (Yang Y. et al., 2019), biosynthetic (Sardari et al., 2021),
metabolic, and other non-immune body reactions. Therefore, over time, the definition of sepsis has
changed from a bacterial infection at the beginning to an inflammatory response and then to
metabolic disorders in the body.
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Sepsis can lead to severe and excessive inflammation. Our
antioxidant and anti-inflammatory defense mechanisms help to
balance the inflammatory stimulators and inhibitors. However,
these systems can become overwhelmed and finally fail (Lauro and
Limatola, 2020). The alteration of the immune system can contribute
to metabolic abnormalities. Meanwhile, the disorder of immune
metabolism can lead to a series of metabolic diseases such as obesity
and diabetes (Muller et al., 2005; Falagas and Kompoti, 2006;
Vachharajani and Vital, 2006; Frydrych et al., 2018). Metabolic
disorders also cause cell death, chronic low-grade inflammation,
and fibrosis ultimately (Hotamisligil, 2017). Damage-associated
molecular patterns (DAMPs) are a group of different types of
molecules derived from either the various components of the cell
or the extracellular substance. In the situation ofmetabolic disorders,
metabolism-derived DAMPs are increased significantly and are
sensed by innate immune receptors, especially pattern recognition
receptors (PRRs). Following interactionwith PRRs and various non-
immune receptors, DAMPs determine the downstream molecular
signal resulting in sepsis (Schaefer, 2014; Patel, 2018).
NOVEL ROLE OF METABOLISM-
ASSOCIATED MOLECULAR PATTERNS
IN SEPSIS

Metabolic disorders increase the risk of tissue damage and the
number of endogenous dangerous signal molecules, which further
deteriorate the metabolic disorders during sepsis (Christ and Latz,
2019). Metabolism-associated molecular patterns (MAMPs) are
dangerous signal molecules derived from metabolic disorders and
have been further classified to be a subset of DAMPs. In addition to
free fatty acids (FFAs), glucose, advanced glycation end products
(AGEs), and cholesterol, which have been regarded as members of
MAMPs; some newmembers of MAMPs such as mtDNA, OxPLs,
ceramides, and uric acid also have been identified (Wang et al.,
2020). The proposal of MAMPs has a new guiding role for the
research of sepsis and a potential clinical value for the treatment.

Damaged cells release a number of endogenous risk signaling
molecules such as excessive FFAs, glucose, cholesterol, AGEs, and
mitochondrial DNA (mtDNA), which are regarded as MAMPs.
They are sensed by innate immune receptors, particularly PRRs,
which then activate proinflammatory signaling pathways and
promote the release of proinflammatory mediators. The rise of
proinflammatory mediators promotes metabolic inflammation and
leads to chronic metabolic diseases eventually (Saltiel and Olefsky,
2017). In the later stages of the infection, inflammation becomes
uncontrolled and leads to coagulation dysfunction, which is typical
of the pathologic interaction between MAMPs and sepsis (Yang X.
et al., 2019). In addition, numerous studies have also demonstrated
that people with metabolic disorders such as obesity (Falagas and
Kompoti, 2006; Vachharajani and Vital, 2006; Frydrych et al., 2018)
or diabetes (Muller et al., 2005; Frydrych et al., 2018) have more risk
of severe/fatal sepsis than lean people, further indicating the
important role of MAMPs in sepsis (Figure 1). Therefore,
explanations of various kinds of MAMPs and their possible roles
in the pathogenesis of sepsis are important.
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Free Fatty Acid Metabolism in Sepsis
Fatty acids are the energy substrates of biological reactions and
participate in related reactions of metabolism and synthesis.
Long- and medium-chain fatty acids are produced through the
decomposition of triglycerides (TG) in fat and liver tissue, while
short-chain fatty acids are derived from indigestible dietary fiber
produced by intestinal microbial fermentation (Kimura et al.,
2020). Saturated fatty acids are classified as important MAMP
types (Wang et al., 2020), which can induce inflammation by
binding PRRs, particularly Toll-like receptors (TLRs) (Liang
et al., 2018). Elevated FFA levels can be found in various
metabolic disorders associated with diseases such as diabetes
and obesity (Liang et al., 2018; Wong et al., 2019).

Clinical studies have also demonstrated an association between
metabolic disorders of fatty acids and the systemic inflammatory
response of sepsis. Serum TG levels are often elevated due to an
increased total body fat oxidation and decreased TG hydrolysis in
sepsis; the underlying reasons may be the dysregulation of the host
response to lipopolysaccharide (LPS) (Weichselbaum et al., 2020).
LPS and proinflammatory cytokines such as TNF-a, IL-6, and IL-1
rapidly induce the synthesis of FA and hepatic TG. TNF-a also can
stimulate lipid accumulation in the liver, inhibit adipose tissue
lipoprotein lipase, and decrease the clearance of lipoproteins.
Meanwhile, high levels of endotoxin inhibit the activity of
lipoprotein lipase, resulting in the elevation of plasma TG and
then causing FFA levels to rise during sepsis (Weichselbaum et al.,
2020). Elevated FFA induces systemic inflammation and insulin
resistance leading to an increase in blood glucose levels
(Plociennikowska et al., 2015). In addition, excess albumin-bound
plasma non-esterified FFAs (NEFA) can leak through damaged
glomeruli andbe reabsorbedby renalproximal tubular cells, leading
to proximal tubular cell damage (Sun H. et al., 2020). Furthermore,
inhibiting adipogenesis can reduce inflammation and organ
damage in sepsis (Idrovo et al., 2016). In brief, sepsis stimulates
the production of FFA and elevates plasma FFA levels, which
worsen the metabolic disorders and organ damage in turning.
Cholesterol Metabolism in Sepsis
Cholesterol, one of the importantMAMPs, plays an important role in
the occurrence and development of metabolic diseases (Wang et al.,
2020). Excessive activation of TLRs and inflammasome signals can
lead to intracellular cholesterol accumulation and aggravate
inflammatory responses (Tall and Yvan-Charvet, 2015). Cholesterol
crystals, likeHG, can also activateNLRP3 inflammasomes, which can
activate the precursor of caspase-1 (pro-caspase-1), thereby
promoting the maturation and release of the IL-1b family of
cytokines and then mediating pyroptosis (He et al., 2016).
Cholesterol crystals can also be sensed by the lectin and classical
complement systems.Complement activation canbe in crosstalkwith
theNLRP3inflammasomepathway toaggravate theproductionof IL-
1b (Niyonzima et al., 2017).

In patients with sepsis, the processes of microbial infection are
closely related to cholesterol and lipids, and cholesterol also is
involved in regulating the host’s inflammatory response (Paciullo
et al., 2017). Lipid rafts are composed of proteins and lipids, which
float freelywithin the liquid-disorderedbilayerof cellularmembranes
June 2022 | Volume 12 | Article 915099
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but can also cluster to form larger, ordered platforms where
functionally related proteins interact (Simons and Ehehalt, 2002).
Cholesterol is an important component of the lipid rafts, and its role
in lipid rafts is to act as a spacer among the hydrocarbon chains of
sphingolipids and act as a dynamic glue to hold the lipid raft together
(Borén et al., 2022). The lipid raft plays an important role in the
conduction of inflammatory signals. After LPS stimulation, LPS-
related receptormolecules in lipid rafts areactivated, includingCD14,
heat shock protein (hsp) 70 and 90, chemokine receptor 4 (CXCR4),
growthdifferentiation factor5 (GDF5), andTLR4.Theactivationand
enhancement of inflammatory signals are also closely related to the
enrichment of cholesterol in lipid rafts in turning (Radermecker et al.,
2019). Clinical studies have shown that some cholesterol-lowering
drugs, such as statins, can enhance the immune suppression response
mediated by regulatory T cells (T-regs) and can reduce the damage
causedby systemic inflammation simultaneously in sepsis (Needham
et al., 2016). In short, cholesterol participates in sepsis-mediated
inflammation and organ damage, and controlling and reducing the
levels of plasma cholesterol may be necessary for sepsis treatment.

Glucose Metabolism in Sepsis
Glucose is also regarded as a typicalMAMP(Wang et al., 2020).High
glucose (HG) is considered to be a major endogenous danger signal
for diabetes and its complications. HG induces proinflammatory
cytokines production viaPRRs in a variety of cell populations such as
macrophages, adipocytes, and muscle cells (Pahwa et al., 2016).
During the pathogenesis of insulin resistance, diabetes, and diabetic
complications, persistent hyperglycemia activates NOD-like
receptors (NLRs), particularly the NLRP3 inflammasomes, which
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
can promote the inflammatory response (Wang et al., 2020).HGalso
stimulates the expression of thioredoxin-interacting protein and
activates ATP/P2X4 signaling, both of which lead to the activation
of NLRP3 inflammasomes, causing severe metabolic inflammation
(Hanet al., 2019). Inaddition toactivatingNLRs,HGhasbeen shown
to induce the activation of TLR4-dependent signaling, which
promote kidney and heart inflammation (Han et al., 2019).

Pyroptosis is considered a pathway of inflammatory
programmed cell death. NLRP3 inflammasomes can cleave pro-
caspase-1 into activated caspase-1, promote the formation of
mature IL-1b and IL-18 precursors, and then mediate pyroptosis
andplays an important role in the development andmaintenanceof
inflammatory response (He et al., 2016). Under HG and hypoxia/
reoxygenation (H/R) conditions, NLRP3 inflammasome-induced
pyroptosis and inflammatory pathways are activated and can be
further enhanced by LPS stimulation (Qiu et al., 2019).

Studies have also shown that LPS can disturb the homeostasis of
blood glucose, and this effect may be related to the release of
glucagon and insulin (Wang et al., 2013; Qiu et al., 2019). In
sepsis, abnormal blood glucose is often manifested as
hyperglycemia or hypoglycemia, which can cause organ function
damage. It is generally believed that HG is one of the responses
related to the systemic inflammatory response during sepsis. Sepsis
also can promote the secretion of cortisol by activating the
hypothalamic–pituitary–adrenal axis to induce an increase in
blood glucose (Pivonello et al., 2016). The systemic inflammatory
response of sepsis leads to the release of a number of
proinflammatory mediators such as IL-6 and TNF-a, which
induce the production of cytokine signaling inhibitors. These
FIGURE 1 | The production and types of MAMPs and their role in sepsis. When the metabolic balance is broken, the metabolic disorders will lead to a decrease in
repair ability of the body. Meanwhile, metabolic disorders can cause extensive cell damage in the body tissues. Cell damage leads to increased levels of endogenous
danger signaling molecules, including FFAs, AGEs, glucose, cholesterol crystal, and mtDNA, which are closely related to metabolic disorders and are defined as MAMPs.
MAMPs can be recognized by PRRs and activate proinflammatory signaling pathways to promote the release of proinflammatory mediators. In addition, pathogenic
substances such as LPS can also be recognized by PRRs and further activate the proinflammatory signaling pathway to cause the formation and deterioration of sepsis.
Sepsis further enhances catabolism and increases MAMPs’ levels in turn. With the development of SIRS, the inflammatory process becomes uncontrollable, and the
organ function and coagulation function become abnormal. Finally, these disorders cause the formation of MODS. MAMPs, metabolism-associated molecular patterns;
FFAs, free fatty acids; AGEs, advanced glycation end products; mtDNA, mitochondrial DNA; PRRs, pattern recognition receptors; SIRS, systemic inflammatory response
syndrome; MODS, multiple organ dysfunction syndromes.
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inhibitors can damage the signaling of the insulin transduction
pathway, cause the downregulation and translocation impairment
ofGLUT3, and lead to insulin resistancefinally.This is also themain
cause of sepsis hyperglycemia (Pivonello et al., 2016). PersistentHG
also activates NLRP3 inflammasomes, which further aggravate the
inflammatory response in turn. Therefore, sepsis patients with
hyperglycemia have a higher mortality rate (Muller et al., 2005;
Frydrych et al., 2018). Interestingly, hypoglycemia also can
aggravate the severity of sepsis and increase the mortality of
sepsis patients simultaneously (Investigators et al., 2012). Glucose
metabolism is closely associated with the liver, and hypoglycemia
has been reported as a common manifestation of sepsis in patients
with cirrhosis, which may cause the inhibition of gluconeogenesis
under the condition of glycogen consumption (Maitra et al., 2000)
(Figure 2). Hence, neither hyperglycemia nor hypoglycemia is
beneficial to the recovery and prognosis of sepsis.

Advanced Glycation End Product
Metabolism in Sepsis
AGEs are formed with the interaction between aldose and proteins
or lipids, and the subsequentmolecular rearrangementofcovalently
linked glucose. The production of AGEs, as endogenous
metabolites, is increased in patients with hyperglycemia (Wang
et al., 2020).AGEs exist inplasmaandaccumulate in the vesselwalls
and tissues along with the aging process. The formation and
deposition of AGEs are significantly increased in hyperglycemic
patients. The degree of oxidative stress is also a key factor in the
formation of AGEs (Wang et al., 2020).

Several receptors of AGEs (RAGE) have been identified, and
activating the RAGE canmediate a series of cellular responses. Like
MAMP, AGEs can directly activate the TLR2/4 signaling pathway
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
in various cells and stimulate the production of proinflammatory
cytokines suchas IL-6andTNF-a to takepart in thepathogenesis of
sepsis (Koch et al., 2010; Zhang et al., 2017). Innate immune
response in sepsis is inseparable from RAGE (Hofer et al., 2016).
Studies have found that both RAGE and its ligand AGEs on the
surface of neutrophils of peripheral blood were significantly
increased in sepsis patients (Forero-Pena and Gutierrez, 2013).
Therefore, RAGE participates in the occurrence and development
of sepsis through the interaction of innate immune cells.

MtDNA Metabolism in Sepsis
Mitochondria are the energy centers of cell activity and promote the
body’s metabolism by producing ATP. Human mtDNA is a naked
circular double-stranded DNA molecule whose full length is about
165–168 bp. MtDNA shares many similarities with bacterial DNA
(bDNA) and is rich in unmethylatedCpGrepeatmotifs. Studies have
shownthatCpGrepeatmotifs are the structures inwhichbDNAbind
PRRs and produces inflammatory effects (Zhang et al., 2010).
Currently, most believe that mtDNA, which is similar to bDNA in
the basic structure, can promote the development of sepsis by
activating TLR9/NLRP3 signaling pathways. Of note, the exact
mechanisms require more research. In the case of metabolic
disorders, excess nutrients (such as glucose and FFA) can induce
mitochondrial damage and dysfunction (Munoz and Costa, 2013).
Mitochondrial dysfunction has been demonstrated to be closely
associated with the occurrence and development of sepsis. The
levels of free mtDNA in plasma are positively related to the risk of
organdysfunctionduring sepsis.Mechanically, in theTLR9 signaling
pathway, mtDNA binds to the TLR9 of neutrophils to stimulate
neutrophils to releasemeasuringmatrixmetalloproteinase (MMP)-8
and MMP-9 and produce TNF-a, IL-1, IL-6, and other
FIGURE 2 | Relationship between HG and sepsis. Sepsis can stimulate the hypothalamus to increase the secretion and release of CRH. Meanwhile, CRH promotes
the synthesis and release of ACTH from the pituitary gland, and ACTH in turn stimulates the adrenal cortex to secrete cortisol, which can lead to an increase in blood
glucose. Sepsis can also stimulate macrophages to secrete large amounts of IL-6, TNF-a, and other proinflammatory mediators. These proinflammatory mediators
can disrupt the signaling of the insulin transduction pathway, and it is a major cause of insulin resistance in the host. Insulin resistance can further exacerbate HG in
turning. Glucose is recognized by TLRs in a variety of tissue cells and activates NLRP3 inflammasomes that can cleave pro-caspase-1 into activated caspase-1 to
induce inflammation. Activated caspase-1 processes pro-IL-1b and pro-IL-18 to form mature IL-1b and IL-18, promoting the development of inflammation in sepsis.
HG, high glucose; CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone; IL, interleukin; TNF, tumor necrosis factor; TLRs, Toll-like receptors.
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proinflammatory factors. Furthermore, in the NLRP3 signaling
pathway, mtDNA is released into the cytoplasm after
mitochondrial injury, then induces the activation of the NLRP3
inflammasome, and contributes to the secretion of IL-1b and IL-18
(Liao et al., 2022).

Other Metabolism-Associated Molecular
Patterns in Sepsis
OtherMAMPssuchasoxidizedphospholipids (OxPLs), ceramides,
and uric acid also play an important role in sepsis (Wang et al.,
2020). OxPLs are potential participants in acute and chronic
inflammation. Studies have found that OxPLs not only are
produced in the inflammatory response but also have a regulatory
effect on inflammation. OxPLs are an important proinflammatory
mediator in atherosclerosis (Que et al., 2018) and non-alcoholic
steatohepatitis (Sun X. et al., 2020). However, recent studies have
found that in addition to their proinflammatory effects, OxPLs also
have powerful anti-inflammatory properties. OxPLs can inhibit
LPS-induced upregulation of inflammatory genes by inhibiting the
interaction of LPS with LPS-binding protein and CD14, but OxPLs
do not inhibit TNF-a-induced or IL-1b-induced upregulation of
NF-kB-mediated inflammatory genes. Therefore, the discovery of
chemical structures that inhibit the effect of LPS is of great
significance for the treatment of sepsis. Acid sphingomyelinase is
activated by a number of pathogens and plays a harmful role in the
development of apoptosis and organ failure in sepsis (Peng et al.,
2015). The increased concentration and activity of acid
sphingomyelinase in plasma indicate the severity of the disease in
patients with sepsis (Chung et al., 2016). Acid sphingomyelin then
mediates the release of ceramides, which play an important role in
apoptosis. Recent studies suggest that ceramides are related to a
varietyofmetabolicdisorders (Summers, 2018).Ceramidesmediate
the formation and activation of the NLRP3 inflammasome under
different pathological conditions, can activate caspase-1, and
promote the release of IL-1b and other cytokines (He et al., 2016).
Uric acid is the end product of purine metabolism during the
normal physiological process. Uric acid can be involved in the
inflammatory response by activating the renin–angiotensin system.
In patients with sepsis, elevated serum uric acid levels may be
associated with systemic inflammation (Kir et al., 2021). Uric acid
crystals can promote inflammation by activating NLRP3
inflammasomes, and soluble uric acid can induce CCL2
production to drive monocyte aggregation (Wang et al., 2020).
The causes of elevateduric acid crystal levels are related tometabolic
disorders of sepsis rather than proximal tubular injury (Tabibzadeh
et al., 2021). Cell death not only can release the stored uric acid but
also can produce huge quantities of uric acid due to nucleic acid
degradation, while uric acid has been proved to be an important
proinflammatory molecule (Tabibzadeh et al., 2021).

THERAPEUTIC PROSPECTS OF
METABOLISM-ASSOCIATED MOLECULAR
PATTERNS IN SEPSIS

Although it is now recognized that sepsis is closely related to
metabolic disorders and can lead to persistently excessive
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
inflammation, the treatment of sepsis still remains a difficult
task. Metabolic disorders can lead to high levels of MAMPs.
Therefore, further research on the role of MAMPs in sepsis is
important for the therapeutic prospects of sepsis. For example,
OxPLs also have anti-inflammatory effects, and OxPLs contain
chemical structures that inhibit LPS activation (Oskolkova et al.,
2021). Recent studies have shown that the oxidized1-palmitoyl-
2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), but
not the non-oxidized PAPC, significantly inhibited LPS-
induced TNF-a response (Oskolkova et al., 2017). This
suggests that drugs that contain compounds with protective
barrier properties have great potential in the treatment of sepsis.

Further studies of MAMPs and their associated signaling
pathways are also highly anticipated in the treatment of sepsis.
MAMPs play an important role in promoting the activation of
inflammatory pathways. Searching for or preparing drugs that can
inhibit the rise of some MAMPs levels or inhibit the pathway
response mediated by MAMPs may be a promising treatment
for sepsis.
CONCLUSION

Today, sepsis is still the main cause of death in intensive care unit
patients, and effective treatment means are very scarce. Although
some treatments have been proposed, few appropriate treatments
have been successfully applied in the clinic due to severe side effects
or low efficacy (Aliomrani et al., 2016; Singer B.H. et al., 2016). The
proposal of the concept of MAMPs brings a new standard for the
classification of inflammatory stimulation, provides a more
accurate description of metabolic inflammation, and further
assists the study of the pathogenesis of sepsis. Here, we provide a
preliminary summary of the role of these MAMPs’metabolism in
the pathogenesis of sepsis, and it is believed that MAMPs have
considerable therapeutic prospects for sepsis. Although the
relationship between MAMPs and sepsis is inseparable, there are
still some potential problems that need to be solved. Firstly, the
current discovery of MAMPs is far from complete, and new
MAMPs will be continuously explored, as they may be also
involved in the inflammatory process or induce the inflammatory
response in sepsis. Secondly, the detailed mechanisms of action of
variousMAMPs in sepsis are not comprehensive and in-depth, and
the relationship between MAMPs and sepsis is worthy of further
research. Finally, treatment of sepsis with MAMPs will also be a
potential problem, and there may be a long way to search for a safe
and reliable treatment strategy for sepsis.
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