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A B S T R A C T

A proteome-wide protein-protein interaction (PPI) network of Methanobrevibacter ruminantium M1 (MRU), a
predominant rumen methanogen, was constructed from its metabolic genes using a gene neighborhood algo-
rithm and then compared with closely related rumen methanogens Using proteome-wide PPI approach, we
constructed network encompassed 2194 edges and 637 nodes interacting with 634 genes. Network quality and
robustness of functional modules were assessed with gene ontology terms. A structure-function-metabolism
mapping for each protein has been carried out with efforts to extract experimental PPI concomitant information
from the literature. The results of our study revealed that some topological properties of its network were robust
for sharing homologous protein interactions across heterotrophic and hydrogenotrophic methanogens. MRU
proteome has shown to establish many PPI sub-networks for associated metabolic subsystems required to survive
in the rumen environment. MRU genome found to share interacting proteins from its PPI network involved in
specific metabolic subsystems distinct to heterotrophic and hydrogenotrophic methanogens. Across these pro-
teomes, the interacting proteins from differential PPI networks were shared in common for the biosynthesis of
amino acids, nucleosides, and nucleotides and energy metabolism in which more fractions of protein pairs
shared with Methanosarcina acetivorans. Our comparative study expedites our knowledge to understand a
complex proteome network associated with typical metabolic subsystems of MRU and to improve its genome-
scale reconstruction in the future.

1. Introduction

Enteric methane emission from ruminants is of great concern for its
impact on global warming potential and climate changes. According to
the IPCC (Intergovernmental Panel on Climate Change) report [1];
global methane emission from livestock was elevated by 11% in 2011.
A loss of about 2–12% of aggregate dietary energy in ruminants can be
caused by methane emission from rumen methanogens [2,3]. Several
methane mitigation technologies have been developed to reduce me-
thane emission in the gut of the ruminants. Methane mitigation inter-
ventions will make additional energy accessible to meet demand on the
animal for meat and milk production and ensure the long-term sus-
tainability of ruminant-based agriculture [4,5]. Conversely, there is no
substantial strategy invented yet. Currently available anti-methano-
genic compounds have been exhibiting the sign of toxic effects to
beneficial rumen microbiota [6–10].

Methanobrevibacter and Methanobacterium are the predominant
genera resident in the ruminants. Methanobrevibacter ruminantium M1
(MRU) is experimentally investigated to be a dominant methanogen in

ruminants since it accounts for 27.3% of rumen methanogens [11].
MRU is a hydrogenotrophic rumen methanogen that uses H2 to reduce
CO2 for methane biosynthesis via hydrogenotrophic methanogenesis.
This organism also uses formate as a carbon source for its growth and
energy metabolism [12,13]. It is the first genome sequence to be
completed for rumen methanogens. This genome consists of a circular
chromosome (2.93 Mbp) with 2278 coding-genes and its genome
coding potential covers 144 metabolic pathways with 722 reactions,
557 enzymes, and 751 metabolites [14]. Nonetheless, its entire pro-
teome function is still not known owing to 73% of coding-genes was
annotated as hypothetical proteins and also complexity in metabolic
and protein networks. Metabolic interactions between gut-microbe;
microbe-microbe are imperative concerns to understand microbial
mutualism in the rumen environment [10].

Genome-wide PPI networks are being prominent tools for annota-
tion of inadequately characterized genomes in the description of the
cellular machinery of prokaryotes [15]. Genome-wide PPI networks
have been identified with high-throughput experimental techniques.
These techniques are time-consuming and cost-effective [16,17].
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Functional annotation of proteins and cognize functional network
modules has been propagated by the availability of experimentally-
determined PPIs and crystallographic structures of proteins in databases
[18–20]. Most recently, a progression of computational methods has
been made to predict and characterize PPI network models of several
prokaryotic and eukaryotic organisms [21–25]. The functioning of
molecular and metabolic pathways is highlighted with the importance
of network topology, node hierarchy, and hubs, which are inclined to
be crucial in protein interaction networks [26]. Hence, computational
network modeling is being constructive to reveal the genotype-pheno-
type relationships in order to expose evolving biological properties
from the genome-wide PPI networks [27,28].

The constraint of network theory is a statistical rationalization of
networks and achieves similar evidence related to experimental data
[29]. Understanding the interaction of proteome in genome-wide is
referred to as a proteome-wide PPI network [30]. In our study, we have
constructed and analyzed the network topology of a proteome-wide PPI
network of MRU for a better understanding of associated metabolic
subsystems. Hydrogenotrophic methanogens sustain the fractional
pressures by exploiting H2 produced by cellulolytic bacteria and facil-
itate the bacterial fermentation in ruminants. However, metabolic in-
teraction or cross-talk across the gut methanogens is still not studied
intensively. Some network properties were predicted to reconsider their
metabolic modules based on dynamic PPI networks of heterotrophic
and hydrogenotrophic methanogens. Moreover, a comparative study of
network stability against targeted attacks delivers a well-designed
tactic. It also probed to study evolutionarily divergence of PPI network
in MRU from these methanogens. Our study revealed a possible me-
chanism of interspecies metabolic associations of MRU with gut me-
thanogens in the rumen ecosystem.

2. Materials and methods

2.1. Dataset

A complete genome sequence of MRU (CP001719) was retrieved
from the NCBI FTP server in FASTA format (ftp://ftp.ncbi.nlm.nih.gov/
). The function of this genome was annotated from the sequence by the
RAST server based on the subsystems technology [31]. A metabolic
network of this genome was constructed from annotated functional data
by the Model SEED using a complete medium [32]. Gene set of this
genome was collected from the draft metabolic network after manual
validation of each gene. Gene sets of acetoclastic methanogens, Me-
thanosarcina acetivorans C2A (MAC; AE010299) [33], M. barkeri Fusaro
(MBA; CP000099) [34] and hydrogenotrophic methanogen, Methano-
coccus maripaludis S2 (MMP; BX950229) [35] were obtained from their
genome-scale metabolic models. The proteome and metabolic in-
formation of these genomes were collected from the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) [36] and MetaCyc [37] da-
tabases and included in the dataset of this study. Fig. 1 represents the
computational process used in this study for reconstruction and com-
parison of the PPI network of MRU with gut methanogens.

2.2. Network construction

To construct the PPI network of MRU, we collected experimental
and predicted interacting protein pairs from the STRING 10.5 database.
The current version 10.5 includes information about 9.6 million pro-
teins from more than 4000 organisms [38]. We attempted to predict the
protein interactions based on close, a co-directional neighborhood of
genes in the MRU genome using a gene neighborhood algorithm [39].
This algorithm captures the functional or physical interactions between
genes that are repeatedly observed in close proximity across many
genomes [40]. Homomeric interactions excluded from the constructed
network since it may cause bias in the subsequent analysis. We used a
unique scoring framework of STRING to produce a single confidence

score per prediction with a minimal false positive rate, which is parti-
cularly important to provide interaction weights. A high confidence
score was set as 0.7 and more than 10 interactions included in the
predicted network. It allows us to prune down the inclusive networks
and ensure the accuracy of the predicted networks.

2.3. Differential network construction

We constructed the large multi-state dynamic molecular interaction
networks using the DyNet module for identification and analysis of the
most ‘rewired’ nodes across many network states in selected organisms
[41]. We computed a dynamic rewiring score (Dn) of a node based on
the variance of its corresponding row, M (p, Q, s), over the various
network states, S, relative to the mean (centroid, c) as below.
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The base dissimilarity measure (d) is the Euclidean distance. The
vector xi represents the neighborhood M (p, Q, s) after standardization.

2.4. Network properties

The network topology is a computational measure for a quantifiable
description of networks. Several network parameters have been used to
describe biological phenomena characterized by distinctive network
parameters and characterize the complex networks. We computed all
network topological parameters of each PPI network with the Network
Analysis module [42] in Cytoscape 3.4.0 [43]. Betweenness C v( )B is a
centrality measure of a vertex v within a graph computed in the fol-
lowing equation.
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Where, σst is the number of shortest paths from s to t, and σ v( )st is the
number of shortest paths from s to t that pass through a vertex v [44].
The path containing the least number of vertices between two vertices
in a network is known as the shortest path [45]. Closeness centrality
value is the inverse of the average length of the shortest paths to/from
all other nodes in the graph and measures how close a node is to other
nodes [46]. It was computed in the following equation.

=C n ave L n m( ) 1/ ( ( , ))c

Where, L (n, m) is the length of the shortest path between two nodes n
and m. The average clustering coefficient Cn for all nodes in a network
was taken to characterize the overall tendency of nodes to form clusters
or groups as below.

= −C e k k2 /( ( 1))n n n n

Where, kn is the number of neighbors of n and en is the number of
connected pairs between all neighbors of n [47]. The topological
coefficientTn is a relative measure for the extent to which a node shares
neighbors kn with other nodes n defined in the following equation.

=Tn avg J n m kn( ( , ))/

Where, J(n,m) is defined for all nodes m that share at least one neighbor
with n [48]. The characteristic path length measures the typical se-
paration between two vertices in the network [45]. The network dia-
meter d is the shortest path between any two nodes in a network, which
defined in the following equation.

=d d (u, v)G
max

u v G, €

Where, dG (u, v) is the shortest path between u and v in G. The number
of interacting partner proteins and its distribution allows distinctive
between various network topologies is defined as the node degree [49].
We also computed other network parameters such as in-degree, out-
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degree, neighborhood connectivity, and stress centrality as methods
described earlier [44,50].

2.5. Network validation

We validated each predicted PPI network by random selection using
the iLOOP server [51]. Gene sets in each network were compared with
the semantic similarities of gene ontology (GO) terms between con-
structed PPI and random networks and then confirmed the functional
similarities of proteins [24]. We captured enriched molecular and me-
tabolic functions of proteins in each network from functional classifi-
cation systems in GO and Pfam [52]. The homologous function of
proteins in each PPI network was searched out and then enriched to GO
terms for the detection of associated metabolic subsystems using dif-
ferent database searching. NCBI-PubMed (www.ncbi.nlm.nih.gov/
pubmed/), MetaCyc [37], KEGG (Kanehisa and Goto, 2018), Model-
SEED [53], PATRIC [54] and BRENDA [55] were the databases used for
this purpose.

3. Results

3.1. Construction of PPI network of MRU

As shown in Fig. 2, a proteome-wide PPI network of MRU was re-
constructed from a metabolic gene set containing 634 genes. The

proteins are directly interconnected in the metabolic network of a
genome. Therefore, metabolic genes are only included in the datasets of
this study. The core network consists of 637 nodes and 2194 edges with
a high betweenness centrality value. It was evaluated with network
parameters including a quantify modularity, clustering coefficient
(0.507), diameter (18), centralization (0.061), path length (5.579),
density (0.015), and network heterogeneity (0.87). Each of the network
properties was appreciably enriched to describe metabolic functions
over-represented by clustered nodes. It was further validated with well-
characterized crystallographic structures available in the protein
structural databases but structural information to the target proteins is
limited to date. Apart from the available crystallographic structures, the
proteins in the network were compared with gene ontology terms for
functional assignment. The reliability of the predicted PPI network was
evaluated from the structure-function-metabolism links of interacting
proteins. Network topology analysis indicates the constructed network
has more influence over the information flow in the network as a node
with a higher betweenness centrality value (Table 1; Table S1). The
distribution of closeness and betweenness centrality value is ranged
from 0.1 to 0.2, representing the number of shortest paths passing
through a specific node in the network. The overall network parameters
indicate that the PPI network model of this genome is more stable,
consistent and conserved across the modules.

The functional similarities of interacting proteins with the same
topology calculated according to their GO semantic similarities. GO

Fig. 1. Schematic representation of the computational process used for reconstruction and comparison of the PPI network of MRU with gut methanogens. 1. Retrieval
of annotated proteome information of MRU genome, 2. Retrieval of annotated proteome information of existing genome-scale models, 3. Construction of PPI network
and enrichment of molecular and biological function of proteins, 4. Computational evaluation of network properties of each PPI network, 5. Network validation and
functional annotation of metabolic enzymes, and 6. Comparison of differential networks of MRU with heterotrophic and hydrogenotrophic methanogens.
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enrichment analysis for the important nodes was performed to in-
vestigate network-associated metabolism. It described many protein
pairs within the same functional categories in the PPI network of MRU.
We have categorized, grouped and aligned all interacting proteins and
associated metabolism (Fig. 2). It indicates more fractions of coding-
genes found to be associated with biosynthesis of cofactors, prosthetic
groups, electron carriers (125) and generation of precursor metabolites
and energy (103). Above 80 coding-genes are accounted for the bio-
synthesis of amino acids, nucleosides, and nucleotides. Aminoacyl-

tRNA charging, carboxylates degradation, carbohydrate metabolism
and biosynthesis of fatty acid, and lipids are associated with 30 coding-
genes in the PPI network of this organism.

3.2. Differential PPI network between MRU and MAC

We constructed a differential proteome-wide PPI network from the
gene sets of MRU and MAC to find out homologs protein pairs between
them. This network model consists of 466 nodes and 2513 edges with

Fig. 2. A core proteome-wide protein interaction network of MRU. Its whole proteome network was constructed from the gene set (634 genes) of a draft metabolic
model of MRU using a neighborhood algorithm. The draft metabolic network was constructed from the Model SEED. The core network consisted of 637 nodes and
2194 edges with a high betweenness centrality value and 2194 edges.
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410 interacting proteins (Fig. 3). Estimates of network properties show
that it has a 0.537 clustering coefficient, 14 diameters, 0.026 density,
0.106 centralizations, and 0.987 heterogeneity. A large fraction of
coding-genes from their protein pairs are associated with amino acid
metabolism (206), C1 compounds assimilation (129), precursor meta-
bolites and energy (70). The significant fraction of their interacting
proteins accounts for the biosynthesis of cofactors, prosthetic groups,
electron carriers (48), small molecule reactions (57), and cell structures
metabolism (37). It implies that both genomes regulate the interacting
protein modules with similar transcription and metabolic patterns
through conserved PPI networks. The highly connected hub proteins in
these metabolic subsystems are evolutionarily conserved between MRU
and MAC. Besides, we predicted new protein interactions and proteins
with unknown function from its conserved network modules. Shown by
our comparative analysis, we predicted 11 coding-genes (hemC, egsA,
ilvc, deoC, carB, purD, glyA, porD, thiE, fwdD and mtrH) from MRU ex-
hibiting to interact with 54 coding-genes from MAC (Fig. 4a). These
coding-genes form the sub-protein networks separately from a differ-
ential PPI network of MRU and MAC. It suggests that those genes are
originated from a common ancestor and functionally shared together to
make a conserved network module in each genome for amino acid and
energy metabolism. It provides a clue to the understanding of complex
regulatory and metabolic networks of MRU.

3.3. Differential PPI network between MRU and MBA

As similar to MAC, a differential proteome-wide PPI network con-
structed for MRU and MBA (Fig. 5). It contains 466 nodes and 2470
edges with 432 interacting proteins. We computed the clustering
coefficient (0.551), diameter (11), density (0.041), centralization
(0.115), and heterogeneity (0.859), which reflects the stability and
consistency of predicted PPI network. The biosynthesis of amino acids
(115) and carbohydrates (76) and methanogenesis (58) are major me-
tabolic pathways associating with protein pairs predicted from this
network. Many metabolic subsystems have shown a low fraction of
coding-genes to be interacted in core PPI networks and or to make
conserved hubs of these genomes. As shown in Fig. 4b, cimA, adk, argJ,
eno, and mtrC genes from MRU are differentially interacted with 14
coding genes of MBA and formed 5 sub-networks in this network. All of
these interacting proteins are shared between MRU and MBA and found
to mediate mainly hydrogenotrophic and carboxydotrophic methano-
genesis. Perhaps, it suggests the ability of this organism to grow on
carbon monoxide as a carbon source apart from CO2 reduction and
formate oxidation under selective pressure.

3.4. Differential PPI network between MRU and MMP

For comparing MRU with MMP, we constructed a differential pro-
teome-wide PPI network consisting of 371 nodes and 1278 edges with
348 interacting proteins (Fig. 6). Network parameters including clus-
tering coefficient (0.551), network diameter (19), centralization
(0.058), density (0.023) and heterogeneity (0.651) were calculated for

this network. It represents the robustness and consistency of network
with more biological and statistical significance. Analysis of interacting
proteins shows that a large fraction of protein pairs are accounted for
the biosynthesis of amino acids (164), nucleosides and nucleotides (51),
and C1 compounds assimilation (77). Some of the coding genes (tpiA,
mer/mtd, birA, and ndk) from MRU are homologs to those genes found
in MMP (Fig. 4c). We found 8 gene homologs from MMP showing to
interact with 4 coding-genes of MRU. All of these coding genes are
contributed to the biosynthesis of nucleosides and nucleotides in both
genomes. As a result of our study, we suggest that despite hydro-
genotrophic methanogenesis, both genomes are shared some gene
clusters (pyr, car, pur, gua, cmk, atp, adk, and ndk) for nucleic acid
metabolism.

4. Discussion

Yeast two-hybrid system and tandem affinity purification are time-
consuming and cost-effective high-throughput experimental methods
for the construction of a large number of PPI networks [16,17]. Func-
tional annotation and assignments of proteins has been improved ad-
vance by available experimental data on PPIs and crystallographic
structures in the public domain databases [18]. Experimental and
computational approaches have been utilized to drive the molecular
hypothesis of several organisms from their proteome-wide PPI networks
[23,24]. Therefore, we developed a proteome-wide PPI network model
for MRU consisting of 2194 edges, 637 nodes, and 634 interacting
genes. Estimates of its network parameters and topology have char-
acterized this network model, which supported us to reveal our mole-
cular hypothesis of this organism at the proteome-scale. The PPI net-
works constructed from this study were experimentally validated with
relevant structures, COG and GO terms [17,29,30,56]. The results of
our study indicated its species-specific network characteristics, which
are associated with distinctive metabolic subsystems. It also pointed out
that MRU proteome has shared homologous features mainly with me-
tabolic enzymes of MAC compared to MBA and MMP proteomes. Some
poorly characterized proteins and their complexes were functionally
annotated from interacting proteins with a known function from dif-
ferential PPI networks of other organisms.

Computational prediction and characterization of PPI networks
have been carried out for some bacteria including Escherichia coli [57],
Helicobacter pylori [58], Mycobacterium tuberculosis [59], Bacillus subtilis
[60], Bacillus licheniformis [24], Synechocystis sp. PCC 6803 [21]. Sev-
eral investigators have been reconstructed PPI networks of few eu-
karyotic organisms including Tetraselmis subcordiformis [22], Candida
albicans, Aspergillums fumigatus [23] and methanogenic archaean, Me-
thanothermobacter thermautotrophicus [19]. Hence, in silico methods are
more reliable, accurate and consistent for these PPI network models as
similar evidence related to experimental data. Nevertheless, no one is
reported a large proteome-wide PPIs of archaea yet for studying the
basic genome biology and lifestyle in the rumen ecosystem. A pro-
teome-wide PPI network constructed from this study was the first
computational model of the archaeal domain. It described significant

Table 1
Comparison of differential proteome-wide protein interaction network parameters between MRU and existing genome-scale metabolic models of methanogenic
archaea. Network radius and network density were calculated as 1 and 0, respectively.

Network parameters Dynamic protein networks Differential protein networks

MRU MAC MBA MMP MRU MAC MBA MMP

Clustering coefficient 0.288 0.279 0.276 0.288 0.182 0.242 0.235 0.252
Connected components 15 16 12 15 11 21 16 12
Network diameter 22 23 22 22 8 9 24 27
Path length 7.173 7.189 7.813 7.173 2.17 7.429 8.532 7.745
# of neighbors 7.693 10.471 7.911 7.693 6.319 10.061 7.211 7.085
# of nodes 462 594 384 462 426 590 380 457
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Fig. 3. DyNet visualization of the dynamic proteome-wide PPI network constructed by combining the gene sets (410 genes) collected from the genome-scale
metabolic models of MRU and MAC using a neighborhood algorithm. The core network consisted of 466 nodes and 2513 edges with a high betweenness centrality
value. Diamond and circle shapes represent the proteins from MRU and MAC, respectively.
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interacting protein pairs associated with central metabolic networks of
MRU. New protein pairs or function of uncharacterized proteins have
been disclosed from conserved network modules and highly connected
hubs. As shown by our analysis, the present network models could serve
as a computational platform to describe its growth physiology in the gut
of ruminants. Another one noteworthy is that PPI network models
constructed from the metabolic gene sets of the rumen, heterotrophic
and hydrogenotrophic methanogens. As a result, gene sets derived from
the genome-scale metabolic networks allow us to infer underlying cel-
lular metabolism associated with PPI sub-networks of rumen metha-
nogens.

Studying network topology and node hierarchy, the centrality
parameter is being a major concern to determine the importance of
each node in a network [26]. It described evolving properties and the
functioning molecular pathways of the PPI network in MRU. The term
degree distribution represents the number of proteins that interact with
another specific protein. The degree distribution was slowly decreased

in interacting proteins, leading to the generation of a network pattern,
as calculated to the earlier models [27,28]. As the results of network
parameters, the PPI network model of MRU has attained a general
characteristic to best fit in all currently available PPI networks and its
topological coefficient also perfectly followed a power law distribution.
GO enrichment analysis indicated that the function of interacting pro-
teins from MRU directly linked to central metabolism of respective PPI
networks of MMA. Topological robustness analysis probed the diver-
gence and conservation of modularity of predicted PPI networks be-
tween heterotrophic and hydrogenotrophic methanogens, as described
earlier [41].

Results of metabolic analysis show, that biosynthesis of cofactors,
prosthetic groups, electron carriers, generation of precursor metabolites
and energy associated with more fractions of interacting proteins in
MRU. The proteins pairs predicted from a differential network of MRU
and MAC have shown more fractions of them contributed to amino acid
and energy metabolism. As shown by our analysis, MRU has the ability

Fig. 4. Functional prediction of gene homologs identified from MRU using interacting proteins in differential PPI networks of MRU and MAC (a); MRU and MBA (b);
MRU and MMP (c).
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Fig. 5. DyNet visualization of the dynamic proteome-wide PPI network constructed by combining the gene sets (432 genes) collected from the genome-scale
metabolic models of MRU and MBA using a neighborhood algorithm. The core network consisted of 466 nodes and 2470 edges with a high betweenness centrality
value. Diamond and circle shapes represent the proteins from MRU and MBA, respectively.
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to grow on carbon monoxide via carboxydotrophic methanogenesis at
the specific rumen environmental niche [2]. Both MRU and MMP found
to share some interacting proteins commonly for the biosynthesis of
nucleosides and nucleotides. As a result of this study, it is a hypothesis
that interacting proteins from each genome are making a sub-protein
network from core PPI network to a particular metabolic subsystem so
as to withstand their growth in the rumen environment. Such inter-
acting proteins and networks might have evolved from a common an-
cestor and they shared together to make a conserved functional net-
work module in each genome.

5. Conclusions

We reconstructed a proteome-wide PPI network for MRU com-
prising 2194 edges and 637 nodes interacting with 634 genes of MRU.
GO terms of functional modules assessed with network quality and
robustness. The great efforts have been made to extract experimental
PPI concomitant information from the literature for the structure-
function-metabolism mapping. Many network characteristics are shared
with heterotrophic and hydrogenotrophic methanogens.

Genes involved in hydrogenotrophic methanogenesis are shared
commonly across the MRU, MAC, MBA and MMP but genes involved in
acetoclastic methanogenesis are absent in MMP. MRU has the ability to

Fig. 6. DyNet visualization of the dynamic proteome-wide PPI network constructed by combining the gene sets (348 genes) collected from the genome-scale
metabolic models of MRU and MMP using a neighborhood algorithm. The core network consisted of 371 nodes and 1287 edges with a high betweenness centrality
value. Diamond and circle shapes represent the proteins from MRU and MMP, respectively.
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grow and survive in the rumen environment by the establishment of
metabolic subsystems including biosynthesis of amino acids, nucleo-
sides, nucleotides, and energy metabolism through PPI sub-networks.
The network properties of this model have shown a good agreement
with experimental data and the previous protein networks. Moreover,
we suggest the network simulations check the network stability, im-
plicating a potential molecular basis for the stochastic nature of me-
thanogenesis. It is also important to note that protein structural and
gene expression data will improve the accuracy and biological relia-
bility of this model to present the molecular hypothesis on methane
mitigation mechanism of rumen methanogens.

Declaration of competing interest

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to thank the University Grants Commission
(RA-2012-14-SC-TAM-1768), New Delhi, India for financial assistance.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bbrep.2019.100698.

References

[1] IPCC (Intergovernmental Panel on Climate change), Climate Change 2007: the
Physical Science Basis, Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, (2007).

[2] S.E. Hook, A.D. Wright, B.W. McBride, Methanogens: methane producers of the
rumen and mitigation strategies, Archaea 2010 (2010) 945785.

[3] A.N. Hristov, J. Oh, J.L. Firkins, J. Dijkstra, E. Kebreab, G. Waghorn, H.P. Makkar,
A.T. Adesogan, W. Yang, C. Lee, P.J. Gerber, B. Henderson, J.M. Tricarico, Special
topics-Mitigation of methane and nitrous oxide emissions from animal operations: I.
A review of enteric methane mitigation options, J. Anim. Sci. 91 (2013) 5045–5069.

[4] P.K. Thornton, Livestock production: recent trends, future prospects, Philos. Trans.
R. Soc. Lond. B Biol. Sci. 365 (2010) 2853–2867.

[5] P.K. Thornton, M. Herrero, Potential for reduced methane and carbon dioxide
emissions from livestock and pasture management in the tropics, Proc. Natl. Acad.
Sci. U.S.A. 107 (2010) 19667–19672.

[6] C.K. Reynolds, D.J. Humphries, P. Kirton, M. Kindermann, S. Duval, W. Steinberg,
Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and ni-
trogen balance of lactating dairy cows, J. Dairy Sci. 97 (2014) 3777–3789.

[7] A.N. Hristov, J. Oh, F. Giallongo, T.W. Frederick, M.T. Harper, H.L. Weeks,
A.F. Branco, P.J. Moate, M.H. Deighton, S.R. Williams, M. Kindermann, S. Duval,
An inhibitor persistently decreased enteric methane emission from dairy cows with
no negative effect on milk production, Proc. Natl. Acad. Sci. U.S.A. 112 (2015)
10663–10668.

[8] J.C. Lopes, L.F. de Matos, M.T. Harper, F. Giallongo, J. Oh, D. Gruen, S. Ono,
M. Kindermann, S. Duval, A.N. Hristov, Effect of 3-nitrooxypropanol on methane
and hydrogen emissions, methane isotopic signature, and ruminal fermentation in
dairy cows, J. Dairy Sci. 99 (2016) 5335–5344.

[9] P. Chellapandi, M. Bharathi, R. Prathiviraj, R. Sasikala, M. Vikraman, Genome-scale
metabolic model as a virtual platform to reveal the environmental contribution of
methanogens, Curr. Biotechnol. 6 (2017), https://doi.org/10.2174/
2211550105666160901125353.

[10] P. Chellapandi, M. Bharathi, C. Sangavai, R. Prathiviraj, Methanobacterium for-
micicum as a target rumen methanogen for the development of new methane mi-
tigation interventions: A review, Vet Anim Sci 6 (2018) 86–94.

[11] P.H. Janssen, M. Kirs, Structure of the archaeal community of the rumen, Appl.
Environ. Microbiol. 74 (2008) 3619–3625.

[12] J. Zabranska, D. Pokorna, Bioconversion of carbon dioxide to methane using hy-
drogen and hydrogenotrophic methanogens, Biotechnol. Adv. 36 (2018) 707–720.

[13] M. Bharathi, P. Chellapandi, Intergenomic evolution and metabolic cross-talk be-
tween rumen and thermophilic autotrophic methanogenic archaea, Mol.
Phylogenetics Evol. 107 (2017) 293–304.

[14] S.C. Leahy, W.J. Kelly, E. Altermann, R.S. Ronimus, C.J. Yeoman, D.M. Pacheco,
D. Li, Z. Kong, S. McTavish, C. Sang, S.C. Lambie, P.H. Janssen, D. Dey,
G.T. Attwood, The genome sequence of the rumen methanogen Methanobrevibacter
ruminantium reveals new possibilities for controlling ruminant methane emissions,
PLoS One 5 (2010) e8926.

[15] S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, Q. Morris, GeneMANIA: a real-
time multiple association network integration algorithm for predicting gene func-
tion, Genome Biol. 9 (2008) S4.

[16] F. Browne, H. Wang, H. Zheng, F. Azuaje, A knowledge-driven probabilistic

framework for the prediction of protein-protein interaction networks, Comput. Biol.
Med. 40 (2010) 306–317.

[17] K. Raman, Construction and analysis of protein-protein interaction networks,
Autom. Exp. 2 (2010) 2.

[18] J. Zahiri, J.H. Bozorgmehr, A. Masoudi-Nejad, Computational prediction of protein-
protein interaction networks: Algorithms and resources, Curr. Genom. 14 (2013)
397–414.

[19] R. Prathiviraj, P. Chellapandi, Functional annotation of operome from
Methanothermobacter thermautotrophicus ΔH: An insight to metabolic gap filling, Int.
J. Biol. Macromol. 123 (2019) 350–362.

[20] C. Sangavai, R. Prathiviraj, P. Chellapandi, Functional prediction, characterization,
and categorization of operome from Acetoanaerobium sticklandii DSM 519, Anaerobe
2019 (2019) 102088.

[21] Y. Li, N. Rao, F. Yang, Y. Zhang, Y. Yang, H.M. Liu, F. Guo, J. Huang,
Biocomputational construction of a gene network under acid stress in Synechocystis
sp. PCC 6803, Res. Microbiol. 165 (2014) 420–428.

[22] C. Ji, X. Cao, C. Yao, S. Xue, Z. Xiu, Protein-protein interaction network of the
marine microalga Tetraselmis subcordiformis: prediction and application for starch
metabolism analysis, J. Ind. Microbiol. Biotechnol. 41 (2014) 1287–1296.

[23] C.W. Remmele, C.H. Luther, J. Balkenhol, T. Dandekar, T. Müller, M.T. Dittrich,
Integrated inference and evaluation of host-fungi interaction networks, Front.
Microbiol. 6 (2015) 764.

[24] Y.C. Han, J.M. Song, L. Wang, C.C. Shu, J. Guo, L.L. Chen, Prediction and char-
acterization of protein-protein interaction network in Bacillus licheniformis WX-02,
Sci. Rep. 6 (2016) 19486.

[25] R. Prathiviraj, Sheela Berchmans, P. Chellapandi, Analysis of modularity in pro-
teome-wide protein interaction networks ofMethanothermobacter thermautotrophicus
strain ΔH and metal-loving bacteria, J. Protein Proteom. (2019), https://doi.org/
10.1007/s42485-019-00019-5.

[26] H. Azevedo, C.A. Moreira-Filho, Topological robustness analysis of protein inter-
action networks reveals key targets for overcoming chemotherapy resistance in
glioma, Sci. Rep. 5 (2015) 16830.

[27] N. Carreno-Quintero, H.J. Bouwmeester, J.J. Keurentjes, Genetic analysis of me-
tabolome-phenotype interactions: from model to crop species, Trends Genet. 29
(2013) 41–50.

[28] Y.Y. Liu, J.J. Slotine, A.L. Barabási, Control centrality and hierarchical structure in
complex networks, PLoS One 7 (2012) e44459.

[29] N.A. Christakis, J.H. Fowler, Social contagion theory: examining dynamic social
networks and human behavior, Stat. Med. 32 (2013) 556–577.

[30] T. Hao, W. Peng, Q. Wang, B. Wang, J. Sun, Reconstruction and application of
protein-protein interaction network, Int. J. Mol. Sci. 17 (2016) E907.

[31] R.K. Aziz, D. Bartels, A.A. Best, M. DeJongh, T. Disz, R.A. Edwards, K. Formsma,
S. Gerdes, E.M. Glass, M. Kubal, F. Meyer, G.J. Olsen, R. Olson, A.L. Osterman,
R.A. Overbeek, L.K. McNeil, D. Paarmann, T. Paczian, B. Parrello, G.D. Pusch,
C. Reich, R. Stevens, O. Vassieva, V. Vonstein, A. Wilke, O. Zagnitko, The RAST
Server: rapid annotations using subsystems technology, BMC Genomics 9 (2008) 75.

[32] S. Devoid, R. Overbeek, M. DeJongh, V. Vonstein, A.A. Best, C. Henry, Automated
genome annotation and metabolic model reconstruction in the SEED and Model
SEED, Methods Mol. Biol. 985 (2013) 17–45.

[33] M.N. Benedict, M.C. Gonnerman, W.W. Metcalf, N.D. Price, Genome-scale meta-
bolic reconstruction and hypothesis testing in the methanogenic archaeon
Methanosarcina acetivorans C2A, J. Bacteriol. 194 (2012) 855–865.

[34] M.C. Gonnerman, M.N. Benedict, A.M. Feist, W.W. Metcalf, N.D. Price, Genomically
and biochemically accurate metabolic reconstruction of Methanosarcina barkeri
Fusaro, iMG746, Biotechnol. J. 8 (2013) 1070–1079.

[35] N. Goyal, H. Widiastuti, I.A. Karimi, Z. Zhou, A genome-scale metabolic model of
Methanococcus maripaludis S2 for CO2 capture and conversion to methane, Mol.
Biosyst. 10 (2014) 1043–1054.

[36] M. Kanehisa, Y. Sato, M. Furumichi, K. Morishima, M. Tanabe, New approach for
understanding genome variations in KEGG, Nucleic Acids Res. (2018), https://doi.
org/10.1093/nar/gky962.

[37] R. Caspi, R. Billington, C.A. Fulcher, I.M. Keseler, A. Kothari, M. Krummenacker,
M. Latendresse, P.E. Midford, Q. Ong, W.K. Ong, S. Paley, P. Subhraveti, P.D. Karp,
The MetaCyc database of metabolic pathways and enzymes, Nucleic Acids Res. 46
(2018) D633–D639.

[38] D. Szklarczyk, J.H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Simonovic, A. Santos,
N.T. Doncheva, A. Roth, P. Bork, L.J. Jensen, C. von Mering, The STRING database
in 2017: quality-controlled protein-protein association networks, made broadly
accessible, Nucleic Acids Res. 45 (2017) D362–D368.

[39] B. Snel, G. Lehmann, P. Bork, M.A. Huynen, STRING: a web-server to retrieve and
display the repeatedly occurring neighborhood of a gene, Nucleic Acids Res. 28
(2000) 3442–3444.

[40] I. Yanai, C. DeLisi, The society of genes: networks of functional links between genes
from comparative genomics, Genome Biol. 3 (2002) research0064.

[41] I.H. Goenawan, K. Bryan, D.J. Lynn, DyNet: visualization and analysis of dynamic
molecular interaction networks, Bioinformatics 32 (2016) 2713–2715.

[42] Y. Assenov, F. Ramírez, S.E. Schelhorn, T. Lengauer, M. Albrecht, Computing to-
pological parameters of biological networks, Bioinformatics 24 (2008) 282–284.

[43] N.T. Doncheva, Y. Assenov, F.S. Domingues, M. Albrecht, Topological analysis and
interactive visualization of biological networks and protein structures, Nat. Protoc.
7 (2012) 670–685.

[44] U. Brandes, A faster algorithm for betweenness centrality, J. Math. Sociol. 25
(2001) 163–177.

[45] D.J. Watts, S.H. Strogatz, Collective dynamics of 'small-world' networks, Nature 393
(1998) 440–442.

[46] M.E.J. Newman, A measure of betweenness centrality based on random walks,

B. M and C. P Biochemistry and Biophysics Reports 20 (2019) 100698

10

https://doi.org/10.1016/j.bbrep.2019.100698
https://doi.org/10.1016/j.bbrep.2019.100698
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref1
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref1
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref1
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref2
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref2
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref3
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref3
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref3
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref3
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref4
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref4
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref5
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref5
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref5
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref6
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref6
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref6
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref7
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref7
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref7
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref7
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref7
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref8
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref8
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref8
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref8
https://doi.org/10.2174/2211550105666160901125353
https://doi.org/10.2174/2211550105666160901125353
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref10
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref10
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref10
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref11
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref11
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref12
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref12
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref13
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref13
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref13
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref14
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref14
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref14
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref14
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref14
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref15
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref15
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref15
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref16
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref16
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref16
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref17
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref17
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref18
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref18
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref18
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref19
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref19
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref19
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref20
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref20
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref20
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref21
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref21
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref21
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref22
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref22
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref22
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref23
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref23
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref23
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref24
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref24
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref24
https://doi.org/10.1007/s42485-019-00019-5
https://doi.org/10.1007/s42485-019-00019-5
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref26
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref26
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref26
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref27
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref27
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref27
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref28
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref28
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref29
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref29
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref30
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref30
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref31
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref31
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref31
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref31
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref31
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref32
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref32
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref32
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref33
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref33
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref33
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref34
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref34
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref34
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref35
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref35
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref35
https://doi.org/10.1093/nar/gky962
https://doi.org/10.1093/nar/gky962
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref37
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref37
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref37
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref37
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref38
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref38
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref38
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref38
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref39
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref39
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref39
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref40
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref40
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref41
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref41
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref42
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref42
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref43
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref43
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref43
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref44
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref44
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref45
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref45


0309045, (2003).
[47] A.L. Barabási, Z.N. Oltvai, Network biology: understanding the cell's functional

organization, Nat. Rev. Genet. 5 (2004) 101–113.
[48] U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F.H. Brembeck, H. Goehler,

M. Stroedicke, M. Zenkner, A. Schoenherr, S. Koeppen, J. Timm, S. Mintzlaff,
C. Abraham, N. Bock, S. Kietzmann, A. Goedde, E. Toksöz, A. Droege, S. Krobitsch,
B. Korn, W. Birchmeier, H. Lehrach, E.E. Wanker, A human protein-protein inter-
action network: a resource for annotating the proteome, Cell 122 (2005) 957–968.

[49] E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.L. Barabási, Hierarchical or-
ganization of modularity in metabolic networks, Science 297 (2002) 1551–1555.

[50] S. Maslov, K. Sneppen, Specificity and stability in topology of protein networks,
Science 296 (2002) 910–913.

[51] J. Planas-Iglesias, M.A. Marin-Lopez, J. Bonet, J. Garcia-Garcia, B. Oliva, iLoops: a
protein-protein interaction prediction server based on structural features,
Bioinformatics 29 (2013) 2360–2362.

[52] R.D. Finn, A. Bateman, J. Clements, P. Coggill, R.Y. Eberhardt, S.R. Eddy, A. Heger,
K. Hetherington, L. Holm, J. Mistry, E.L.L. Sonnhammer, J. Tate, M. Punta, Pfam:
the protein families database, Nucleic Acids Res. 42 (2014) D222–D230.

[53] C.S. Henry, M. DeJongh, A.A. Best, P.M. Frybarger, B. Linsay, R.L. Stevens, High-
throughput generation, optimization and analysis of genome-scale metabolic
models, Nat. Biotechnol. 28 (2010) 977–982.

[54] J.J. Gillespie, A.R. Wattam, S.A. Cammer, J.L. Gabbard, M.P. Shukla, O. Dalay,
T. Driscoll, D. Hix, S.P. Mane, C. Mao, E.K. Nordberg, M. Scott, J.R. Schulman,
E.E. Snyder, D.E. Sullivan, C. Wang, A. Warren, K.P. Williams, T. Xue, H.S. Yoo,

C. Zhang, Y. Zhang, R. Will, R.W. Kenyon, B.W. Sobral, PATRIC: the comprehensive
bacterial bioinformatics resource with a focus on human pathogenic species, Infect.
Immun. 79 (2011) 4286–4298.

[55] I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, D. Schomburg,
BRENDA, the enzyme database: updates and major new developments, Nucleic
Acids Res. 32 (2004) D431–D433.

[56] I.W. Taylor, R. Linding, D. Warde-Farley, Y. Liu, C. Pesquita, D. Faria, S. Bull,
T. Pawson, Q. Morris, J.L. Wrana, Dynamic modularity in protein interaction net-
works predicts breast cancer outcome, Nat. Biotechnol. 27 (2009) 199–204.

[57] S.V. Rajagopala, P. Sikorski, A. Kumar, R. Mosca, J. Vlasblom, R. Arnold, J. Franca-
Koh, S.B. Pakala, S. Phanse, A. Ceol, R. Häuser, G. Siszler, S. Wuchty, A. Emili,
M. Babu, P. Aloy, R. Pieper, P. Uetz, The binary protein-protein interaction land-
scape of Escherichia coli, Nat. Biotechnol. 32 (2014) 285–290.

[58] R. Häuser, A. Ceol, S.V. Rajagopala, R. Mosca, G. Siszler, N. Wermke, P. Sikorski,
F. Schwarz, M. Schick, S. Wuchty, P. Aloy, P. Uetz, A second-generation protein-
protein interaction network of Helicobacter pylori, Mol. Cell. Proteom. 13 (2014)
1318–1329.

[59] T. Huo, W. Liu, Y. Guo, C. Yang, J. Lin, Z. Rao, Prediction of host-pathogen protein
interactions between Mycobacterium tuberculosis and Homo sapiens using sequence
motifs, BMC Bioinf. 16 (2015) 100.

[60] E. Marchadier, R. Carballido-López, S. Brinster, C. Fabret, P. Mervelet, P. Bessières,
M.F. Noirot-Gros, V. Fromion, P. Noirot, An expanded protein-protein interaction
network in Bacillus subtilis reveals a group of hubs: Exploration by an integrative
approach, Proteomics 11 (2011) 2981–2991.

B. M and C. P Biochemistry and Biophysics Reports 20 (2019) 100698

11

arxiv:0309045
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref47
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref47
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref48
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref48
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref48
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref48
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref48
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref49
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref49
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref50
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref50
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref51
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref51
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref51
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref52
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref52
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref52
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref53
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref53
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref53
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref54
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref54
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref54
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref54
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref54
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref54
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref55
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref55
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref55
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref56
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref56
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref56
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref57
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref57
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref57
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref57
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref58
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref58
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref58
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref58
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref59
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref59
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref59
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref60
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref60
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref60
http://refhub.elsevier.com/S2405-5808(19)30199-2/sref60

	Comparative analysis of differential proteome-wide protein-protein interaction network of Methanobrevibacter ruminantium M1
	Introduction
	Materials and methods
	Dataset
	Network construction
	Differential network construction
	Network properties
	Network validation

	Results
	Construction of PPI network of MRU
	Differential PPI network between MRU and MAC
	Differential PPI network between MRU and MBA
	Differential PPI network between MRU and MMP

	Discussion
	Conclusions
	mk:H1_15
	Acknowledgments
	Supplementary data
	References




