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THE BIGGER PICTURE Cancers are complex diseases orchestrated by the nonlinear feedback loops be-
tween networks of genes and proteins. Cancer stem cells (CSCs) are a subset of cancer populations driving
their self-renewal, therapy resistance, heterogeneity, phenotypic plasticity, and recurrence. Identifying the
minimal set of molecular networks driving cancer stemness remains an intractable problem in oncology.
The time series analysis of protein flows and gene expression dynamics in cancer cells may provide a rich
repertoire of patterns, which currently remain uninvestigated. These patterns are universally defined causal
structures observed in the state space of dynamical systems. We refer to these causal patterns as attractors.
It is proposed herein that CSCs may be chaotic attractors in their signaling state space. If CSCs are chaotic
attractors, a causally deterministic pattern drives their emergence, instability, and irregular signaling dy-
namics. This review discusses various algorithms for identifying such chaotic attractors in cancer time series
datasets. The implications of these algorithmic approaches in assessing targeted therapies and precision
oncology are demonstrated by implementation on pediatric brain cancer datasets. Furthermore, the detec-
tion of chaotic attractors in the state space of cancer stemness networks are suggested to pave the reprog-
ramming of CSCs to benignity.
SUMMARY

Cancers are complex dynamical systems. They remain the leading cause of disease-related pediat-
ric mortality in North America. To overcome this burden, we must decipher the state-space attrac-
tor dynamics of gene expression patterns and protein oscillations orchestrated by cancer stemness
networks. The review provides an overview of dynamical systems theory to steer cancer research
in pattern science. While most of our current tools in network medicine rely on statistical correla-
tion methods, causality inference remains primitively developed. As such, a survey of attractor
reconstruction methods and machine algorithms for the detection of causal structures applicable
in experimentally derived time series cancer datasets is presented. A toolbox of complex systems
approaches are discussed for reconstructing the signaling state space of cancer networks, inter-
preting causal relationships in their time series gene expression patterns, and assisting clinical de-
cision making in computational oncology. As a proof of concept, the applicability of some algo-
rithms are demonstrated on pediatric brain cancer datasets and the requirement of their time
series analysis is highlighted.
INTRODUCTION

Complex diseases, such as cancers, are dynamical systems.

The lack of time series cancer transcriptomics and molecular

profiling imposes a fundamental barrier in advancing oncology.

Then, the question arises, what kind of patterns emerge in time

series cancer datasets that cannot be inferred from the currently

predominant static methods? There are universal patterns

observed in the state space of dynamical systems referred to
This is an open access article under the CC BY-N
as attractors. Identifying these attractors in cancer signaling

and cancer processes will be the primary intention of this review.

Thus, a great emphasis is placed on the science of such patterns

through the lens of complexity, networks, nonlinear dynamics,

and chaos since the paradigm of complex systems remains rela-

tively unfamiliar to cancer researchers. Given the breadth of

these complex concepts, a glossary of essential terms and a

summary table (Table 1) of the tools discussed per section are

provided, as well.
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Table 1. Summary table of algorithms and tools for time series cancer modeling

Section Algorithm or technique Description

2 Lyapunov exponents ðlLÞ A characteristic set of exponents used to characterize the rate of separation of trajectories

in a dynamical system. If lL>0, there may be a chaotic attractor.

2 Frequency spectra The frequency decomposition of a spatial signal. Various algorithms, such as fast-Fourier

transforms, are applicable to convert the time series signal traces to a frequency spectrum.

A broad frequency spectrum in the time trace of a signal may be an indicator of chaotic

dynamics.

2 Fractal dimension A statistical index of self-similarity and complexity. The box-counting algorithm, wavelet

analysis-based methods, or multifractal analysis (when more than one fractal dimension

exists) are used to compute the fractal dimension.

4 Master equation A way of describing gene expression dynamics as the evolution of a probability function.

The Fokker-Planck equations and Gillespie algorithms are approximations of the Master

equation used in the stochastic modeling of cell fate transitions.

4 Boolean networks Discrete models of biological networks. Most applicable in the study of gene expression

network dynamics, wherein each gene can be on or off. However, continuous analogs exist.

5 Reaction-diffusion equations Mathematical models used to describe pattern formation in chemical systems. Examples of

applicability include tumor pattern formation and cancer stem cell differentiation. Chaotic

attractors may emerge in these equations in a regime referred to as chemical turbulence.

6 Computational simulations Simulating the differential equations characterizing gene expression or protein oscillation

dynamics may provide a computational tool for identifying chaotic attractors. Simulations

must be paired with experimental data to infer such complex patterns.

7 Network science Various network visualization tools consisting of machine learning pipelines are discussed.

These tools combine various algorithms to infer regulatory networks from single-cell

datasets.

8 Convergent cross mapping (CCM) Amethod of attractor reconstruction usingWhitney’s theorem and Takens’s theorem (time-

delay coordinate embedding).

9 Entropy A powerful information theoretic in network science used as a measure of chaotic flows in

dynamical systems.

9 Waddington landscape reconstruction The general methods to reverse engineer the transcriptomic state space as an energy

(epigenetic) landscape are discussed. scEpath was demonstrated as an example of such

algorithms.

10 Deep learning neural networks A type of multi-layered artificial neural networks. They are among the most powerful

algorithms in machine learning capable of detecting complex patterns from empirical

datasets.

10 Recurrent neural networks (RNNs) A type of artificial neural networks used in time series analysis. Reservoir computing, a type

of RNN, can be used to find the Lyapunov exponents of large-scale empirical datasets, from

which chaotic attractors could be reconstructed.

11 Kolmogorov complexity, K(s) K(s) is the length of the shortest description of the data object in program space. Lossless

compression algorithms and the block decomposition method (BDM) are available to

approximate the K(s) measure. BDM is the most robust estimate of a graph network’s

complexity available. Algorithmic information dynamics is the branch of computational

science using K(s) approximation algorithms to study complex networks.
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The emerging paradigm of complex systems is essentially

the study of patterns. Therefore, the term pattern science is

interchangeably used with complexity science. Given the

limited space allocated to this paper, the essentials of these

concepts alone are introduced. Many network inference, clus-

tering, and visualization algorithms useful in the dissection of

cancer networks have been discussed in detail in Uthamacu-

maran.1 However, the intuition for nonlinear dynamics and

chaos were absent therein. This paper was written to serve

that purpose, to steer the readers to develop an insight for

pattern science and complex systems approaches (algorithms,

simulations, and mathematical models) when investigating the

state-space dynamics of cancer networks, given their time se-

ries datasets are made available.
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Many of the algorithms discussed here not only sow insights

into time series analysis of cancer processes but are in general,

applicable to single-time frame (static) gene expression data-

sets. These algorithms are highlighted as tools for identifying

personalized, targeted therapies in precision oncology. That is,

comparing the single-cell gene expression profiles of healthy

cells and contrasting them with those of the cancer cells of a pa-

tient, allows us to identify genes and protein networks that are

abnormally expressed in cancer populations. The identified pat-

terns serve as potential markers for (a combination of) target-

specific therapeutic interventions upon further screening.

Pediatric cancers are used throughout the paper as a model-

system to illustrate the algorithms and concepts, and direct sci-

entists toward navigating these disease networks. By including
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an implementation of some of the discussed algorithms on the

patient-derived single-cell RNA sequencing (scRNA-seq) count

matrices from Neftel et al.2 and Richards et al.,3 the clinical rele-

vance of the presented tools, and the insights of the paper are

strongly emphasized. Thus, the patient-centered section on can-

cer networks (section ‘‘Cancer networks’’) is to be treated as the

heart of the paper. The molecular networks and patterns dis-

cussed therein will steer pattern science toward clinical

oncology.

The ‘‘single-patient sample’’ results shown herein correspond

to the scRNA-seq data of the pediatric glioblastoma multiforme

(GBM) patient sample BT1160 from the study by Neftel et al.2 (N

= 335 cells, 16,488 genes). The ‘‘few pediatric GBM samples’’ re-

sults correspond to six patient samples with N = 846 cells

analyzed. The ‘‘few adult GBM samples’’ correspond to three

adult patient samples with N = 409 cells analyzed from the count

matrix found in Neftel et al.2 Finally, the adult glioblastoma stem

cell (GSC) analysis correspond to sample BT127_L (N = 500

random cells) from the scRNA-seq counts obtained from Ri-

chards et al.3 The source datasets (gene expression count

matrices) for these data used to demonstrate some of the algo-

rithms herein are available as .csv and .txt files in the Broad Sin-

gle Cell Portal links provided in the data and code availability

section at the end of this review. The source codes for all dis-

cussed algorithms are available in the links provided at the end

of the paper and their corresponding citations. The various algo-

rithms and approaches illustrated are still simplifications by

themselves. However, when combined, they provide a powerful

computational platform for the realistic modeling of cancer

complexity from empirical data.

Allow me to encapsulate the tumor architecture of these pa-

tient samples in brief. The following terms will be used

throughout the paper and must be clarified for non-biologists

deciding to study cancer dynamics and complexity. In a

nutshell, a cellular subpopulation with stem cell properties

and neural stem cell marker expressions, including nestin and

CD133, can be identified in brain tumors, referred to as cancer

stem cells (CSCs). Self-renewal, high proliferation, and pluripo-

tent potential are considered as the hallmarks of embryonic

stem cells. CSCs express most of these stem cell properties

unlike the well-differentiated cancer cells (see Glossary).

CSCs are associated with cancer differentiation, resistance to

therapies (chemo- or radiotherapy, immunotherapy, etc.), and

recurrence.4 Notably, the bulk of a GBM lesion consists of

both CSCs referred to as GSCs (that are very rare) and the

derived progeny of heterogeneously differentiated cancer cells

(that form the essential of the tumor mass). However, many

other cell types, such as ependymal cells, astrocytes, micro-

glia, infiltrating immune cells, and healthy neurons, as well as

the extracellular matrix and associated vasculature, form a

complex interconnected system that supports the tumor, and

nourishes and preserves the CSC properties.4 We refer to

this microenvironmental unit as the stem cell niche. Cancer

stemness and phenotypic plasticity are maintained via both

cell self-autonomous molecular networks and a dynamic inter-

action with their stemness niches. When their ecological

relationships (i.e., predator-prey dynamics) are considered,

this tumor microenvironment (niche) is referred to as an

ecosystem. The unique microenvironment in the cancer stem
niche sustains potency and self-renewal. Reconstructing the

state space of cancer stemness networks will be a recurring

central theme of the paper.

The overall intent of this communication is to direct the readers

toward a basic intuition for the causal patterns that emerge in the

state-space dynamics of cancer signaling networks. The

methods to detect these patterns can be applied to any cancer

process, if analyzed in time series. Some examples of such pro-

cesses include cancer gene expression dynamics, the epige-

netic landscape reconstruction of cancer (stem) cells, and the

time-lapse imaging of intracellular protein-mediated pattern for-

mation (i.e., reaction-diffusion systems). The primary focus of the

paper would be to address the physical framework and algo-

rithms to detect such causal patterns in cancer gene regulatory

networks (GRNs) and infer their corresponding cell fate transi-

tions on the epigenetic landscape. The epigenetic landscape is

loosely defined as a potential energy projection of the state-

space reconstructed from the single-cell transcriptomics of can-

cer cells. The epigenetic landscape reconstruction of cancer

cells provides a robust tool to visualize cancer processes and

decision making, at a single-cell resolution. Examples of these

processes include the developmental landscape of CSCs under-

going differentiation, and the cell state transitions in cancer pop-

ulations under therapy/drug-induced perturbations or in

response to microenvironmental cues. With time series single-

cell transcriptomics, these processes can be visualized as

dynamical systems and the trajectories of cell states may be

conceived as complex, causal patterns (attractors). The tools

to classify, visualize, and experimentally detect these patterns

from time series, if they exist, are hereby presented. However,

it must be emphasized again that such approaches to time series

modeling and attractor reconstruction are virtually absent in can-

cer research.

Cancers are complex systems with multi-scale processes.1

In principle, attractors can emerge in any cancer process at

any scale when treated as a dynamical system (i.e., time series

quantification). However, two main categories of cancer pro-

cesses will be discussed here in the context of attractor dy-

namics: (1) cell state transitions and (2) pattern formation. The

first, cell state transitions, imposes that cell states themselves

are attractors in the signaling state space of their molecular

networks. The complex dynamics of the signaling pathways

coordinating cell state transitions are best defined as attractors

in state space. The time traces of these signals can be

embedded on state space using Takens’s theorem, and the

various algorithms discussed herein can be applied to accu-

rately reconstruct the underlying attractor. The universality of

attractor dynamics implies that even the signaling of a single

gene or single protein oscillation can form attractors in state

space. The identified cellular signals responsible for the emer-

gence of these attractors, such as stimulants or inhibitors,

growth factors, transcription factors (TFs), cytokines, and other

intracellular signals, would then serve as the control parameters

of the attractor dynamics (these terms will be explained in the

next section, for now the biological context is presented). An

example would be the theoretical models of single TF oscilla-

tions mapped by Heltberg et al.,5 exhibiting the self-organiza-

tion of strange attractors (beyond a critical threshold). The

key concept to understand here is the universality of attractors
Patterns 2, April 9, 2021 3
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in dynamical systems. That is, attractors can occur at any

scales, from a single protein oscillation in a single cell, to a sin-

gle cell’s gene expression signaling or protein flow density dy-

namics in a bulk population of cancer cells. The trajectories of

cell states on a Waddington epigenetic landscape are attrac-

tors, and so are the individual oscillators (genes and proteins)

of the molecular networks driving them.

The second category, pattern formation, comprises chemical

oscillations that govern the phenotypes of cancer cells. Exam-

ples include the differentiation of CSCs to mature (well-differen-

tiated) cancer phenotypes. Such patterning processes can be

well-described using reaction-diffusion systems as discussed

later. The time-lapse imaging of chemical dynamics and protein

oscillations during patterning processes provide empirical data

that can be modeled by pairing with algorithms and simulations

to identify attractor patterns. An example of this includes the

chaotic attractors identified in the oscillations of the bacterial

Min protein by Halatek and Frey,6 which were shown to exhibit

diffusion-mediated spatiotemporal chaos (i.e., chemical turbu-

lence). The mammalian equivalent of Min proteins, Par proteins,

are central role-players in the cell division and differentiation of

cancer (stem) cells. Hence, if similar findings of chaotic attrac-

tors are observed in Par protein flows within cancer cells, it

may be a key driver of tumor complexity and a control parameter

to fine-tune cancer cell division dynamics.

Detecting chaos in cancer cellular systems implies finding the

parameters that make the system behave ‘‘unpredictably.’’ If

chaos did not exist in cancer biology, it would be governed by

stochastic processes, wherein their complex behaviors and

patterns can only be described as probabilistic outcomes.

However, if chaos is detected in these processes, short-term

time series predictions are possible and there are causal struc-

tures (attractors) governing their behaviors. That is, chaosmakes

the time series of deterministic systems appear random but

exhibit intrinsic patterns that govern the collective dynamics.

The dynamics of the system are then bound to these causal

structures that can be fine-tuned to control the chaotic system

toward a more regular state (stable phenotype). Mathematical

models and simulations of different cancer microenvironments

have shown the emergence of chaotic attractors in cancer

dynamics. However, their experimental validation remains

untested.

It must be noted that, in the nonlinear sciences, one often dis-

tinguishes chaos from "order.’’ This phrasing is extremely com-

mon in literature, but it is technically incorrect. For example,

consider supersymmetric theory of stochastics (STS), a mathe-

matical theory of stochastic differential equations (SDEs). STS

provides a mathematical framework to explain the complex dy-

namics in systems exhibiting spontaneous dynamic long-range

order (DLRO). Some examples of DLRO systems include self-

organized criticality, collective dynamics, pattern formation, tur-

bulence, and chaos.7 It has recently been shown in the works of

Ovchinnikov7 on STS that the phase-transition from periodicity

to chaos corresponds with the spontaneous breaking of (topo-

logical) de-Rham supersymmetry, and so, as the symmetry-

broken phase, chaos is counter-intuitively the "ordered" phase

of dynamical systems.7 Moreover, a pioneer of complexity, Pri-

gogine, would define chaos as a spatiotemporally complex

form of order. As such, it is technically more accurate to distin-
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guish chaos from "regularity" or ‘‘periodicity,’’ rather than "or-

der.’’ Therefore, a chaotic cell state refers to an unstable pheno-

type which exhibits irregular (aperiodic and fluctuant) signaling

dynamics, while a regular cell state refers to a stable phenotype

with equilibrium-like dynamics, herein. Unlike a stochastic

system, the irregular signaling of a chaotic system is bound to

causally deterministic patterns in phase space, i.e., strange at-

tractors.

Without time series data, cancer processes are limited to only

one type of attractors: fixed points (equilibria). Fixed-point at-

tractors are predictable and easily controllable. However, as

will be presented, there are four major classes of attractor pat-

terns observed in a three-dimensional dynamical system.

Chaotic attractors are the most complex of these four classes.

The emergence of chaotic attractors in cancer processes have

been suggested as indicators of therapy resistance, cancer

relapse, phenotypic plasticity, emergence of aggressive pheno-

types, and metastatic invasion. Chaotic dynamics at the level of

protein and gene oscillations may also confer dynamical hetero-

geneity, and increased survival (adaptation) in individual cell

states, by allowing them to withstand extreme environmental

conditions due to their large signaling fluctuations.5 As such, it

is further suggested here that chaotic attractors may be signa-

ture hallmarks of cancer stemness. For this reason, the first

half of the paper strongly builds on the theoretical framework

of nonlinear dynamics, chaos, and complexity to progress to-

ward the algorithms needed to detect such patterns in cancer

signaling.

CHAOS AND COMPLEXITY

Chaotic systems are ubiquitous in nature. The heat flows of cof-

fee cups, protein-mediated pattern formation,6 the dynamics of

complex networks, the Hodgkin-Huxley model of neuronal

oscillations,8,9 the fluctuations of financial stock markets,10 the

patterns of fluid turbulence, the growth processes of biological

populations,11 ecological predator-prey dynamics,12 aortic

blood flows,13 cardiac rhythms,14 and the onset of complex

dynamical diseases,15,16 are some of the many illustrations of

complex systems exhibiting chaotic behaviors. Despite its prev-

alence, the detection and long-term time series forecasting of

chaotic systems remains an intractable problem and is widely

considered the pinnacle of scientific progression. Tumors may

be models of chaos exhibiting multifractal geometries and com-

plex dynamics.17,18 Of the numerous applications of causality

inference in chaotic systems, precision oncology (medicine)

may inarguably be the most benefited in times ahead of us. As

such, this review intends to paint tumor ecosystems on the

canvas of nonlinear dynamics, as complex systems fundamen-

tally driven by chaotic processes.

Let us begin with a simple thought experiment. Imagine an ab-

stract expressionist art piece, interconnected by the dripping

and splashes of amyriad of colors. At glance, the heterogeneous

patterns may seem stochastic due to its static appearance, i.e.,

apparent randomness. However, if one reconstructed every mo-

tion involved in the creative process, frame by frame, a sym-

phony of dynamical expressions is interwoven. That is, in the

temporal dimension, one can visualize patches of self-organized

patterns, emergent structures, bifurcating multi-fractals, swirling
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vortices, and cascading flows of fluid turbulence on the canvas

cohering to an undivided whole. Let this painting be a metaphor-

ical representation of a population of cancer cells. The static

(single time frame) perspective is an analogy of our current ap-

proaches to studying cancer cybernetics, i.e., gene expression

dynamics, cell signaling, and pattern formation. The lack of

time series data-driven modeling of tumor ecosystems present

a causal agnostic description of its complexity. What we are truly

interested in is the temporal behavior of tumor ecosystems and

their complex multi-scaled processes, which herein is discussed

as that which is fundamentally coordinated by chaotic dynamics.

In systems science, one must draw comparisons between in-

dividual dynamics and the population dynamics of a nonlinear

system. A key example would be to contrast a single cell versus

a population of cells or rather the dynamics of a single gene

versus that of gene networks. Self-organized patterns can spon-

taneously develop in nonlinear systems composed of positive

and negative feedback loops maintained far from equilibrium.

The statistical mechanics of the many nonlinearly interacting

constituents in biological networks result inmacroscopically irre-

ducible systems. We refer to such emergent systems with multi-

scale structures (networks) in which the interactions change in

time, as complex systems.19,20 Complex systems generally

consist of systems in which the number of particles or degrees

of freedom approach a continuum. The physics of fluids, multi-

cellular networks, social organizations, and financial markets

are good examples. Due to nonlinear dynamics, complex sys-

tems exhibit collective behaviors, which cannot be inferred

from the individuals. Cancers are complex systems, consisting

of groups of adaptive malignant cells that self-organize in time

and space, far from thermodynamic equilibrium.1,21,22

In traditional (analytical) physics, natural systems are dealt

with using statistical mechanics to describe systems with large

degrees of freedom, and dynamical systems theory to describe

the changes in time of systems constrained to phase space.

However, these tools by themselves are inadequate to describe

the emergent scaling behaviors observed in complex systems.23

In the 1980s, these two disciplines, nonlinear dynamics and

nonequilibrium statistical mechanics, merged to the emerging

paradigm of complex systems. Complex systems theory, also

known as complexity science or simply pattern science,

advocates the study of natural systems via the use of algorithms

(machine intelligence) and computational physics.19,24 Pattern

science investigates the otherwise analytically intractable, emer-

gent processes and behaviors of complex systems, which are

computationally reproducible in program space. The pairing of

simulations and computational physics with large-scale, empir-

ical datasets is the modus operandi in pattern science. Pattern

science paves the study of cancer ecosystems in a multidisci-

plinary space, which is referred to as computational oncology.

Some general features of complex systems include: emer-

gence, self-organization, nonlinearity, nonequilibrium dynamics,

criticality (i.e., poised between regularity and chaos), abrupt

phase transitions, multi-nested, multi-scaled feedback loops,

multi-layered (fractal) organization, computational irreducibility,

unpredictability, NP-completeness (i.e., a measure of the re-

sources exhausted to find a solution), non-locality (i.e., global

features of a system cannot be reduced to local properties), un-

decidability, and non-analyticity (intractability).19,20,24 Such no-
tions are inherent to the choices made by the agents in complex

systems and more generally, to certain classes of problems in

computational complexity classified under the P versus NP um-

brella.24 Thus, complexity theory studies complex systems using

algorithmic simulations. Furthermore, it exhibits a universality in

algorithms (i.e., algorithms are as complicated as any complex

system, and vice versa). The crowning glory of pattern science

remains the vision of Laplace’s demon; the time series fore-

casting of chaotic dynamical systems.

A dynamical system can be represented as a set of variables

evolving in time. When the outcomes of the system do not

change in direct proportion to a change in the inputs, we call it

a nonlinear dynamical system. For instance, the cross-talks in

physiological dynamics and signal transduction pathways in

cellular systems are examples of biological nonlinearity.16

Formally, a nonlinear dynamical system exhibiting sensitive

dependence to its initial conditions and perturbations is a

chaotic system. That is, moving or modifying small sections or

pieces of a chaotic system can have unexpected, cascading ef-

fects. Even small fluctuations can amplify to exponentially large

deviations in the system’s behaviors. Chaotic systems can be

continuous (e.g., the Kolmogorov energy spectrum of fluid turbu-

lence) or discrete (e.g., the logistic map used to study population

growth dynamics). The generic form of a continuous-time

dynamical system is given by: dX
dt = fðX; t;mÞ where X is the state

vector, t is time, m is the set of control parameters and f is

some arbitrary function. For example, the gene expression

(count) matrix from an scRNA-seq experiment (as used in algo-

rithms in the latter sections) is a state vector X. With time series

analysis, the expression matrix evolves as a dynamical system.

The generic form of a discrete-time system is given by a recur-

rence (difference) equation: Xk + 1 = fðXkðmÞÞ, where k is the index

of iteration for the state vector. When the control parameter m ex-

ceeds a critical value, chaotic dynamics can emerge.23

In 1963, Edward Lorenz, Ellen Fetter, and Margaret Hamilton

pioneered chaos theory by studying the predictability of hydro-

dynamic flows in simple mathematical models as an approxima-

tion to weather turbulence forecasting.25,26 In 1969, Lorenz

demonstrated the predictability of chaotic flows which preserve

many scales of motion, are sensitively dependent to the errors in

the small scales building up to large-scale anomalies in mea-

surements.27 These findings concluded two key insights in the

study of chaotic systems: (1) even with reduced errors, we can

only forecast the chaotic system’s behavior up to certain Lyapu-

nov times, and (2) that deterministic chaos is difficult to observa-

tionally distinguish from random systems.27 However, there are

certain statistical properties and topological measures we can

extract to infer chaotic dynamics. The general workflow for

chaos detection, is first to obtain time series measurements,

convert the data into a geometric object via time-embedding,

and assess the topological properties of this object/attractor

(i.e., Lyapunov exponents, entropies, fractal dimensions, and

multifractality).1

Generally, dynamical systems depend on certain control pa-

rameters, which, when changed, the stability of the fixed point

can change, appear, or disappear, or give rise to a new object

in its vicinity. An example would be to consider a limit cycle

undergoing a Hopf bifurcation toward an unstable chaotic

oscillator. However, in most complex systems, the control
Patterns 2, April 9, 2021 5



Figure 1. The anatomy of attractors
Attractors are universal causal patterns observed in
the evolution of a dynamical system in state space.
They represent the fundamental ways in which
dynamical systems behave. The four major attractor
patterns include: (A) trajectory convergence toward
a fixed-point attractor in state space, (B) a limit cycle
(periodic attractor), (C) a torus (quasi-periodic at-
tractor), and (D) the birth of a chaotic attractor
(strange attractor). Two unstable fixed points are
shown for this strange attractor.
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parameters and equations of motion may not be self-evident or

difficult to infer from experimental time series measure-

ments.20,24 Despite their apparent randomness, chaotic systems

have a deterministic structure (patterns) and an underlying

mechanism generating the pattern. Although chaotic processes

exhibit irregular and aperiodic oscillations, in principle their

causal structures can be experimentally and computationally de-

tected. We refer to these causal structures as attractors of a

dynamical system.

Attractors are self-organized structures consisting of a set of

points bounded in phase space to which all nearby trajectories

of a dynamical system from a neighborhood (basin of attraction)

will tend to with time. There are many sorts of attractors coexist-

ing in the phase space of a complex dynamical system (Figure 1).

Consider a general one-dimensional dynamical system, dxdt = _x =

fðx;mÞ; with some (set of) order parameter(s) m. The equilibria of

the system correspond to the eigenvalues when _x = 0. These

equilibria correspond to the simplest of attractors, i.e., fixed-

point attractors. Fixed points can be created or destroyed, or

their stability can be changed by varying the order parameter(s).

These qualitative changes are called bifurcations. When small

changes in the parameter lead to large sudden changes in the

state of the system, we call it a phase transition. Phase

transitions are seen when nonlinear systems change from

mono-stability to bistability and/or multistability (i.e., coexis-

tence of attractors). When the number of dimensions increases
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from one to three or more, complex attrac-

tors may emerge. These dynamics are bet-

ter visualized in state space, by letting _x =

� dUðx;mÞ
dx , represent the gradient of a po-

tential energy U describing the system.

Such potential energy (attractor) land-

scapes can be used to study complex

dynamical systems, such as the multidi-

mensional epigenetic landscape of a pop-

ulation of cancer (stem) cells.1

As mentioned, the heterogeneity and

phenotypic plasticity of tumors are vastly

attributed to a dynamic subset of cells

within the cancer population known as

CSCs. CSCs possess the capacity to

both self-renew and generate all cells

within a tumor, and are believed to drive tu-

mor recurrence, therapy resistance,

phenotypic plasticity, and the emergence

of aggressive phenotypes. Cancer cells

(both stem and non-stem cells) transition
amid a variety of functional and heterogeneous cell fates via

the dynamical reconfiguration of their microenvironment-depen-

dent multicellular, molecular networks.1 Upon certain signaling

network configurations, they differentiate toward specific cell

fate commitments (phenotypes). One of the mechanisms most

widely discussed in both CSC and non-stem cancer cell state

transitions is the EMT (epithelial-mesenchymal transition)/MET

(mesenchymal-epithelial transition) switch, which allows the

interconversion of epithelial and mesenchymal cancer pheno-

types.28,29 The nonlinear, multi-nested feedback loops of many

inflammatory signals, including nuclear factor kB (NF-kB),

STAT-3, and embryonic developmental signals (morphogens),

such as Wnt, TGF-b, Shh (sonic hedgehog), Notch, cytoskeletal

networks, etc., orchestrate the EMT programs and CSC/cancer

cell state transitions.28,29 These cell state transitions are dynam-

ical systems.

The statistical mechanics and dynamics of these complex net-

works at both the individual cell level and collective populations

of CSCs can be assessed via quantitative single-cell measure-

ments, including single-cell genomics and proteomics. The

empirically reconstructed molecular networks can be projected

in phase space to be visualized as an epigenetic landscape.

The Waddington’s epigenetic landscape is a metaphorical

concept to represent cellular decision-making processes during

development and differentiation.30 The epigenetic landscape

provides a visualization of developmental processes, such as
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the differentiation of stem cells to their coordinated cell fate com-

mitments.31 The epigenetic landscapes also well apply to

modeling the cell fate transitions of a cancer population under

some given environmental conditions. For instance, one can

map the differentiation of CSCs and dedifferentiation or pheno-

typic switching of the non-stem cancer cells under a therapy or

drug-induced perturbation.

The epigenetic landscape exhibits the cell (often represented

by a ball) rolling up hills and down valleys representing basins

of attraction. The attractors may represent the distinct cell phe-

notypes, and the bifurcations toward these attractors represent

the cell fate trajectories.30 The critical points (extrema) of the po-

tential energy surface U(x, m) correspond to the equilibria of the

dynamical system, where the energy minima denote stability

(e.g., mature/differentiated phenotypes), and themaxima are un-

stable configurations (e.g., stem cell fates). There may be many

hybrid and transient cell fates denoted by metastable attractors

under epigenetic fluctuations of the landscape. Small perturba-

tions and thermal noise can lead to drastic changes in the num-

ber and nature of these critical points, resulting in the emergence

(destruction) of (un)stable attractors.31 Current approaches

naively assume that cell fates are static states represented by

stable fixed-point attractors (i.e., cells are stuck in a valley of

the energy landscape) (see ‘‘Control of chaos’’). Fixed-point at-

tractors represent stable phenotypes in equilibrium. However,

fixed-point attractor can lose stability and bifurcate to complex

attractors (Figure 2). Chaotic attractors, the most complex of at-

tractors, may correspond to CSCs and/or aggressive cancer

states.

There are several types of bifurcations of a fixed point to

consider on the attractor landscape, such as saddle-node bi-

furcations, pitchfork bifurcations (in symmetric systems), and

Hopf bifurcations, to name a few. Andronov-Hopf bifurcations

occur at a critical point where the system’s stability switches,

and periodic solutions/limit cycles emerge. For example, they

are observed in the birth of the Lorenz attractor and pattern for-

mation in reaction-diffusion systems. In a system undergoing a

Hopf bifurcation, when the control parameters m are below the

critical value needed for bifurcation, fixed points remain on the

phase space. Above the critical value, symmetry breaking oc-

curs.32 Let us assume that we can represent some general

dynamical system as an eigenvalue problem of the Jacobian

matrix. If the Jacobian matrix of the system shows eigenvalues

l< 0, these fixed-point attractors are stable. When the param-

eter’s critical value is exceeded, l > 0 resulting in unstable

point attractors (i.e., the real value of the eigenvalues will be

positive).32 The fixed point(s) is then no longer a steady-state

attractor(s), but around it a new object can emerge such a limit

cycle where the phase trajectory periodically oscillates around

a fixed point. This phase transition from a stationary fixed-point

(equilibrium) to a periodic oscillator (limit cycle) attractor is

called a supercritical bifurcation. After the supercritical Andro-

nov-Hopf bifurcation, the amplitude (A) of the limit cycle oscil-

lator grows as:

Az
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� mc

p
;

where the period T of the limit cycle is given by: T = 2p
Iml1;2

. The

indices correspond to the two possible eigenvalues of the sys-
tem at that bifurcation point and Im denotes their imaginary

component.

The periodic oscillator can further become unstable and bifur-

cate into a quasi-periodic attractor or an aperiodic oscillator (i.e.,

chaotic attractor).32 In quasi-periodicity, the trajectories are

constrained to motion on the surface of torus with two separate

frequencies. In a chaotic attractor, also known as a strange at-

tractor, the bounded structure is characterized by a fractal

dimension. If the system is hyperchaotic (i.e., has more than

one positive maximal Lyapunov exponents), multifractal analysis

is required (i.e., more than one fractal dimension exists). In such

systems, multiple strange attractors can self-organize into multi-

nested patterns (i.e., non-isolated). Strange attractors are geo-

metric constructions exemplifying the two basic ingredients for

chaotic dynamics, namely, the repeated actions of stretching

and folding of a given phase space volume.32 A classic example

of bifurcations in chaos is the hierarchical fractal structures of

eddies and vortices breaking down in the Kolmogorov-Richard-

son energy cascade of isotropic, homogeneous fluid turbulence.

Attractor dynamics allow us to predict the time series behavior

of a chaotic dynamical system. However, this realization comes

with a caveat, only fixed points can be found analytically and that

too only in well-behaved low-dimensional systems. Analytically

searching for periodic and chaotic attractors in a dynamical sys-

tem’s state space is related to Hilbert’s 16th problem and is NP-

hard. The quasi-periodic tori and strange attractors cannot be

found analytically and require numerical methods, such as

searching heuristics and computational algorithms. The second

half of thismanuscript will devote to the study of such algorithms.

For the time being, let us consider the birth of chaos and strange

attractors in a dynamical system.

It may be counter-intuitive to consider how a chaotic attractor

exponentially diverges apart from its initial conditions and re-

mains bound to an attracting set within phase space, simulta-

neously. Strange attractors consist of infinite curves bound to a

finite space. The answer lies within the fractal geometry of the

structure; the stretching, folding, and reinjection of the chaotic

system’s trajectory in phase space.32,33 As a metaphor, think of

the kneading of a pastry dough (phase space) into a flaky crois-

sant (the strange attractor). The process of stretching and folding

leads to a loss of information about the initial conditions.32 Think

of the set of initial conditions as a drop of food coloring (dye)

applied to the pastry dough, the kneading process disperses

the dye throughout the dough. These pastries in phase space

exhibit some unique signatures, such as a positive characteristic

Lyapunov exponent(s), and a fractal dimension that remains

invariant under the system’s time-evolution.32 The iconic picture

of a strange attractor is the Lorenz butterfly attractor, a causal

pattern emerging as the solution of a set of ordinary differential

equations describing the Rayleigh-Benard convection model.25

The birth of a strange attractor commonly occurs via a sequence

of period-doubling bifurcations. However, there are different

routes to chaos one must consider. These include the following:

(1) Period-doubling bifurcations: starting from some limit cy-

cle (a point in the Poincare section), a period-2 cycle de-

velops as the control parameter increases and keeps

repeating. This is also referred to as Feigenbaum chaos

or the universal route to chaos, as seen in the logistic
Patterns 2, April 9, 2021 7



Figure 2. Cancer attractor landscape
The state-space projection of a cancer network is
shown as an energy landscape. A particular network
state at time t corresponds to a point on the state
space. The x–y plane corresponds to state space,
whereas the z axis denotes the potential energy U.
The potential energy U denotes the relative stability
of the cell fates (attractors) in state space. CSCs are
populated at the highest peak on the epigenetic
landscape, while stable differentiated (mature)
phenotypes correspond to fixed-point attractors
(energy minima). The interconvertibility (re-
programmability) and plasticity of cancer states
implies that mature cells may not be fixed-point
attractors, as indicated by the red arrow going from
the fixed-point attractor (red ball) back toward the
strange attractor (CSC).
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map equation above a critical threshold of the order

parameter.

(2) Quasi-periodicity: the system begins with a limit cycle tra-

jectory of a certain frequency and, as the control param-

eter changes, a spiral node fixed point turns into a spiral

repellor and a stable limit cycle develops around it with

a new frequency (i.e., Hopf bifurcation). The ratio of the

two frequencies is an irrational number. The quasi-peri-

odic oscillation can lead to chaos as the order parameter

further increases. This is also known as the Ruelle-Takens

route to chaos, seen in certain types of fluid turbulence.33

(3) Intermittency: irregular and aperiodic bursts of chaotic

behaviors followed by intervals of regular behaviors. An

example is the transitions between laminar and chaotic

flows in fluid turbulence.

(4) Transient chaos: the long-termbehavior is influencedby the

interactions of unstable fixed points and/or unstable limit

cycle attractors. For example, the rolling of a dice exhibits

chaotic motion until it reaches its result (an equilib-

rium state).

It remains an open question which type of chaos applies to

which dynamical systems and when. Li and Yorke first coined

the term chaos for a deterministic dynamical system.34 However,

a formal mathematical definition was first given by Devaney.35

He defined a map F : X/X to be chaotic if the following condi-

tions are satisfied:
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(1) F has sensitive dependence on X

(2) F is topologically transitive, i.e., there exists a point x�

such that a closure of an orbit O is given by clðOðx�;
FÞÞ = X

(3)The periodic points are dense in X

Conditions 2 and 3 were later shown to imply 1. A diffeomor-

phism or map F is said to be chaotic on an invariant set A pro-

vided that the following conditions are satisfied:

(a) the diffeomorphism F has sensitive dependence on initial

conditions when restricted to an attractor A

b) F is topologically transitive

The set A is a chaotic attractor for a diffeomorphism/map F

given that the set A is an attractor for F and that F is chaotic on

A. The latter was defined by Alligood et al.,36 where the Lyapunov

exponent was established as a computational method to distin-

guish a chaotic attractor. They defined a chaotic attractor as an

attractor such that:

(a) the Lebesgue measure of the basin of attraction of A,

W(A), is positive

(b) there exists a point P where P0˛A, such that there exists

at least one positive Lyapunov exponent lLðP0Þ>0 and

that all the Lyapunov exponents of the dynamical system

are non-zero. If more than one positive lL exists at various

points, the system exhibits hyperchaos
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The second condition also satisfies that the attractor is not a

periodic orbit nor a set of fixed points. Distinguishing attractor

types are analytically intractable, and computationally an NP-

hard problem. There are various techniques to visualize chaotic

dynamics and these algorithms should be incorporated into the

study of time series cancer datasets when made available. To

quantify sensitive dependence on initial conditions, consider

two points separated by a very small distance in time, s(t), in

phase space, then:

sðtÞ � s0e
lLt

for a small time, t, where the lLis the Lyapunov exponent and not

to be confused with the eigenvalue symbol used earlier. If lL< 0,

there may be a fixed-point attractor, and if lL>0, there may be a

chaotic attractor.32 If it is zero, there is a limit cycle (i.e., a stable

periodic orbit). A negative largest Lyapunov exponent may also

correspond to a limit cycle. As discussed, when a system’s con-

trol parameter increases beyond its critical values, the fre-

quencies of the oscillations multiply and bifurcate. As the system

transitions to completely developed chaos, infinite frequencies

are observed within the period-doubling bifurcations. The in-

verse of the maximal characteristic Lyapunov exponent(s) is

the predictability horizon of the system, i.e., we can only predict

a chaotic system to several multiples of its Lyapunov time.32

Fractal behaviors are statistical signatures of chaotic systems-

they are the geometry of chaos.37 We can characterize a strange

attractor by its fractal (Lyapunov) dimension, ameasure of statis-

tical self-similarity and roughness of a complex structure.

Various numerical methods, such as the box-counting algorithm,

exist for the estimates of the Lyapunov dimension of attractors in

dynamical systems. The most popular method to compute the

attractor dimension remains the Kaplan-Yorke K dimension:

K = j +

Pj
i = 1li��lj +1

�� ;

where j is the index for which
Pj
i =1

liR0 and l denotes the Lyapu-

nov exponents.38 Such measures allow the attractor patterns of

chaotic systems to be described using phase space portraits. If

the system exhibits hyperchaos, multifractal analysis is required

which involves defining statistical measures, such as the Hölder

exponents and Hurst exponents (for time series). Multifractal

analysis will not be discussed herein, and readers are directed

to Uthamacumaran1 for further details of its cancer applications.

An alternate approach to studying chaos is to visualize the po-

wer spectral density (frequency space) of the systemwherein the

Fourier transform picks out the frequencies from the time series

datasets. The frequency/power spectrum of chaotic oscillators,

despite its complexity, demonstrates that systems exhibiting

deterministic chaos often can be treated as a broadband with

pronounced peaks at the natural frequency of the system.33,39

The spectral properties of chaos reveal irregular harmonics

and aperiodicity where a small amplitude (external) driving force

can produce a large-amplitude response in the nonlinear oscilla-

tors, i.e., resonance.33 There may be hidden spikes (sudden

transitions) in the intermittent fluctuations. These resonances

can accumulate toward cascading effects and dissipative dy-
namics. Therefore, a broadband spectrum in the frequency

spectra (Fourier transform) of gene/protein signals’ time traces

can be an indicator of chaotic attractors. Multifractal analysis

is required to further understand the complex dynamics and fluc-

tuations of these time traces.

To illustrate an example, consider again the Kolmogorov en-

ergy spectrum for the three-dimensional isotropic turbulence

of a homogeneous, incompressible fluid. The spectrum of fluid

turbulence tells a story encapsulating the competition between

the velocity and viscous forces encountered by a fluid, consist-

ing of three distinct phases: (1) the stirring/creation of eddies

and vortices, (2) the inertial phase denoting the transfer and

transport of energy from large-scale to lower-scale vortex struc-

tures, and lastly (3) the dissipative phase embarking the destruc-

tion of vortices (i.e., viscosity dominant). The frequency (energy)

spectrum of experimental fluid turbulence must be continuous,

and broadband, in which only a small number of frequency

modes produce the spectrum. However, the number of modes

in the transition is an open question.33,39 The period-doubling

in frequency space shows that each time the period doubles,

the fundamental frequency halves.33,39 The detection of reso-

nances in the frequency spectra remains a field of study in the

time series forecasting of turbulent fluids.33 In contrast, the

phase-space dynamics of fluid turbulence exhibit a kaleido-

scope of chaotic solutions—i.e., strange attractors.33,37 In fact,

the term strange attractors was first coined by Ruelle and Takens

to describe the chaotic solutions seen in fluid turbulence

models.33 Fluid turbulence is an ideal model of complex systems

to develop some intuition for chaotic dynamics and survey

experimental techniques for its detection. These techniques

can be adapted to the study of cancer processes when treated

as dynamical systems.

There are a few additional caveats to consider with these ap-

proaches. The general methods for chaos detection (i.e., positive

Lyapunov exponents and fractal dimension) defined above may

not be directly applicable when equations-free or parameter-free

systems are considered. There could be high levels of noise

smearing the data and dimensionality constraints. Denoising al-

gorithms are needed to pre-process the time series, followed by

time-delay coordinate embedding algorithms, prior to their use.

In the case of discrete-time models, there are Boolean deriva-

tives and the spreading velocity of a perturbation (local damage

spreading) available as analogs of the Lyapunov exponents.40

There are also attractors that may be non-isolated and entangled

with other attractors and, hence, ambiguous in their detection.

Multistable systems are often enriched with the coexistence of

these so-called hidden attractors. The basins of attraction of

the hidden attractors do not intersect the (un)stable fixed points

(if it exists) and nonlocally influence the dynamics of nearby at-

tractors.41 The entanglement of attractors in chaotic dynamics,

and the infinitely many unstable periodic orbits/fixed points

embedded in a single chaotic attractor, indicate that chaotic sys-

tems can be fine-tuned by controlling their complex dynamics.

The study of steering a chaotic system by regulating its attractor

dynamics is a powerful method in the control of chaos.

One can foresee that attractors draw parallels to oscillators,

given that a dynamical system consists of periodic and/or aperi-

odic oscillations varying in time. A genetic oscillator is a simple

model to describe how a gene’s product, protein concentration,
Patterns 2, April 9, 2021 9
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oscillates. For instance, many essential genes of the circadian

clock, embryonic development, tissue patterning, cell division,

and metabolic networks can be treated as nonlinear coupled os-

cillators. As a mathematical trick, biophysicists often model

genes and cells as nonlinear oscillators. Interactions between

different coupled nonlinear genetic oscillators with a driving

force can exhibit chaotic oscillations.42 Many oscillatory genes,

such as NF-kB, p53, and Wnt, involved in embryonic develop-

ment, cell division, and morphogenesis are dysregulated in can-

cers acting as the precursors for tumor pattern formation.43

These genes are required to be expressed at precise times

and locations during developmental processes. Their aperio-

dicity would be implied in the emergence of pathological cell

fates, such as cancer. Thence, if some of these developmental

genes are identified as the master regulators of cancer stem-

ness, the detection of periodic oscillators/limit cycles in the at-

tractor space of gene networks could reduce the search space

for candidate chaotic attractors (if they exist). However, as dis-

cussed, there are various routes to chaos to consider. Therefore,

we require a more rigorous set of algorithms and experimental

methods to capture strange attractor dynamics in cancer time

series datasets.

Finally, the biological relevance of the various discussed at-

tractors in cancer dynamics must be clarified. As stated, fixed-

point attractors in cancer gene expression state space denote

stable equilibrium states, such as well-differentiated, mature

phenotypes. Thereby, in principle, if a patient’s cancer cells

are mapped as fixed-point attractors on the transcriptomic state

space, they are likely easier to treat and a well-defined, relatively

predictable molecular network drives the cancer state. Finding

targeted therapies should be feasible from static (single-time

frame) molecular profiling. However, even mature cancer cells

exhibit phenotypic plasticity and can dedifferentiate. A good

example is the EMT transition and its reverse-process observed

in most cancers during metastatic invasion. Cell state transitions

are dynamic processes. At the other end of the attractor spec-

trum, strange attractors may be associated with aggressive can-

cer phenotypes and complex adaptive behaviors, such as tumor

relapse and therapy resistance.44–47 As such processes are gov-

erned by cancer stemness, it is further suggested here that CSCs

may be strange attractors governed by the chaotic dynamics of

certain molecular networks. Unlike the currently predominant

‘‘static’’ picture of cancer dynamics (i.e., fixed-point attractors),

strange attractors cannot be experimentally detected without

time series analysis. A video of many time-slices is needed. If

chaotic attractors are experimentally detected in cancer signals,

the various algorithms as discussed above and those in the latter

sections, can be implemented on experimental datasets paired

with computational simulations, to infer the chaotic signals that

may confer these adaptive cell states.5

Having laid the basic foundations of attractor dynamics, we

can now explore its relevance in untangling cancer complexity.

Assuming the interdisciplinary pattern scientists assessing this

paper may not necessarily be experts in cancer biology, allow

me to first introduce a brief background of pediatric cancers as

a model system of tumor complexity. The complex molecular

patterns governing pediatric cancer networks will provide the

systems thinkers the necessary background to investigate the

molecular networks driving cancer dynamics and pattern forma-
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tion from a dynamical systems perspective. The gene and pro-

tein networks discussed in the following section can then be

modeled using the various approaches discussed later, from dif-

ferential equations to network state-space reconstruction algo-

rithms, with time series data.

CANCER NETWORKS

Prior to addressing the mathematical framework of cancer

GRNs, some context to the cancer stemness networks must

be provided. Let us consider two cases of highly morbid pediat-

ric brain tumors, glioblastoma multiforme (GBM) and medullo-

blastoma (MB). These lethal tumors are known for their therapy

resistance, immunosuppression, migration/invasive dynamics,

and intra/inter-tumoral heterogeneity, making them some of

the most difficult cancers to treat.4 Epigenetic alterations (that

affect DNA transcription [i.e., gene expression] without modi-

fying its nucleotide sequence) serve as characteristic molecular

patterns distinguishing high-grade pediatric gliomas from adult-

gliomas. Some examples include dysregulated multiprotein

complexes/enzymes involved in direct DNA methylation, and

histone H3.3 mutations, such as K27M (i.e., a mutation that

changes the lysine [K] at position 27 to a methionine [M]) (preva-

lent in pediatric diffuse intrinsic pontine gliomas [DIPG]), K36M,

and G34V/R, to name a few.48,49 However, epigenetics is ambig-

uous and a poorly understood complex system. For instance,

while the H3K27M mutant is a glioma phenotype associated

with a lack of methylation, recent studies show mammalian

target of rapamycin ( mTOR) complexes promote the hyperme-

thylation of H3K27 (in the form of trimethylated lysine 27 of his-

tone H3 [i.e., H3K27me3]) that influence tumor progression and

malignancy.50 For simplicity, the epigenetic dysregulations,

which serve as hallmarks of pediatric brain cancers, will not be

discussed here. Rather it is implied that the dynamics of the dis-

cussed transcriptional network modules are inseparable from

the aberrant changes in their epigenetic networks.

CSCs are the central drivers of tumor complexity and are here-

in predicted to be strange attractors of the tumor Waddington

landscape. A central question then arises, can CSCs be reprog-

rammed to benign-like plastic states? This would be a fruit-

bearing direction for clinical oncology. Regenerative biology

was revived when it was shown that fibroblasts could be reprog-

rammed into embryonic stem cell-like fates—called induced

pluripotent stem cells (iPSCs)—by introducing into them a mini-

mal set of essential TFs: Oct4, Sox2, Klf4, and Myc (OSKM).51

Changes of a very few TFs can transform a differentiated cell

into a stem cell (i.e., transdifferentiation).52 Altering the timing

and concentration of specific TF expression programs steers

the cell fate choices during stem cell differentiation.52 GSCs

are at the apex of an entropic hierarchy (i.e., maximal entropy

state) in their epigenetic landscapes.53 Maximal entropy state

implies the maximum number of gene network configurations

correspond to that cell state. Chaotic oscillations of cell states

and intrinsic transcriptional fluctuations were suggested as the

mechanism responsible for their heterogeneity, plasticity, and

therapy resistance.53 However, the term chaotic is mostly used

in a qualitative manner in the description of GSC complexity.53

Recent advancements in high-throughput multi-omics

sequencing have identified the essential TF networks and
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genetic programs regulating CSCs. For example, Suvà et al.54

identified a core set of neurodevelopmental TFs (POU3F2,

SOX2, SALL2, and OLIG2) essential for the propagation and

stemness of the GBM stem cells (GSCs). These TFs are part of

the Yamanaka circuitry critical for the maintenance of self-

renewal and pluripotency in embryonic stem cells. In principle,

mature/differentiated GBM phenotypes could be reprogrammed

into GSCs by the induction of these four TFs.54 More recently,

the YAP and TAZ transcriptional coactivators were shown to

be master regulators of GSC stemness, irrespective of the

GBM molecular subtypes.55 Their expressions are highly inter-

twined with the Hippo signaling pathway and p53 expression.

However, the cybernetics of these stemness networks remains

poorly understood. Do the highly entropic CSCs at the peak of

the epigenetic landscape roll down their valleys (energy minima)

and get stuck in them, or can they climb uphill from the valleys

and oscillate in between valleys as strange attractors? Time se-

ries analysis is required to address these fundamental questions.

While the complex dynamics of GBM cells remain ambiguous,

distinct molecular patterns have been identified for the self-orga-

nization of GBM’s transcriptional heterogeneity. Combining

scRNA-seq and lineage tracing in glioblastoma models, an anal-

ysis of TCGA bulk specimens and scRNA-seq from both adult

and pediatric GBMs were performed.2 The study concluded

that malignant cells in glioblastoma exist in four distinct cellular

states influenced by the copy-number amplifications of the

CDK4, EGFR, and PDGFRA loci andmutations in the NF1 locus.2

These correspond to the Verhaak classification—the clinically

relevant molecular subtypes of GBM, namely, proneural, clas-

sical, mesenchymal, and neural subtypes, respectively.56

The four distinct cell types also demonstrate microenviron-

ment-dependent phenotypic plasticity and can undergo cell

fate transitions under environmental fluctuations/perturba-

tions.57 Therefore, transcriptomic classifications of supposedly

well-differentiated GBMs reveal that cancer cell fates exhibit a

high degree of phenotypic plasticity, and targeted therapies

are required for patient-specific molecular patterns. For

instance, the mitochondrial GBM subtype, which displays the

most favorable clinical outcome, relies exclusively on oxidative

phosphorylation for energy production, whereas the glycolytic

subtype relies on aerobic glycolysis (Warburg effect), amino

acids, and lipid metabolism. While the mitochondrial subtypes

are vulnerable to oxidative phosphorylation inhibitors, the glyco-

lytic subtypes are unaffected.58 Non-selective (non-target-spe-

cific) therapy regimens can allow mature, differentiated cancer

cells of a patient’s tumor population to revert to a highly plastic,

CSC state.57 These findings further blur the difference between a

CSC and a well-differentiated cancer cell.57 More importantly,

they question the existence of a global pattern (attractor) govern-

ing the dynamics of GBM stemness, plasticity, and its differenti-

ated heterogeneity.

In a recent study, scRNA-seq was performed on >69,000

GSCs cultured from the tumors of 26 adult patients.3 The study

found that GSCs mapped along a transcriptional gradient of two

distinct cellular states resembling the normal neural develop-

ment and inflammatory wound-healing response.3 Various clus-

tering algorithms were used to identify cell states (phenotypes)

with similar gene expression patterns. Often these techniques

infer maximally connected differentially expressed gene net-
works using graph-based clustering methods and correlation

metrics. Cluster analysis, followed by measuring the Jaccard in-

dex and principal-component analysis (PCA), revealed an

elevated expression of mesenchymal-related genes and enrich-

ment of pathways associated to inflammation and immune cell

activation, aswell as NF-kBandSTAT signaling in one cell state.3

These mesenchymal subtypes may promote the pathways

needed for GSCs to sustain growth and self-renewal in hypoxic

tumor microenvironments. The other cell state, with lower PCA

loading, consisted of cells associated with genes and signaling

pathways related to gliogenesis and neural developmental

markers, such as PTPRZ1, ASCL1, and SOX2, and those high-

lighted by the expression of oligodendrocytic (e.g., OLIG1,

OLIG2), astrocytic (e.g., CLU, APOE, S100B), and neuronal

(e.g., STMN3) neurodevelopmental lineage markers.3 Thesemo-

lecular subtypes resemble the four major Verhaak classifications

of GBM. Whether these two-cell states correspond to a single

dynamical structure or strange attractors, such as the Lorenz

system, can only be verified with time series analysis. The detec-

tion of a global attractor governing cancer stemness networks

would provide a mechanism to fine-tune tumor behaviors and

dynamics.

Similar phenotypic clustering bymolecular profiling have been

paved for MB.59,60 Four major distinct molecular subtypes of

MB, namely WNT, Shh, group 3 and group 4, exhibit distinctive

transcriptional and epigenetic signatures that define clinically

observed patient subsets.59 The WNT and Shh subgroups are

driven by mutations of the wingless and SSH signaling path-

ways, respectively. The emergence of the other two subgroups

remains unclear. However, other genetic driver mutations and

epigenetic changes have been repeatedly documented.

Moreover, recent scRNA-seq studies have revealed that all sub-

groups mirror transcriptional programs observed in the devel-

oping brain, wherein group 3 MB resembled Nestin-positive

stem cells, and group 4 MB resembled unipolar brush cells.60

Again, none of the above-discussed studies were performed

in time series, a major drawback in cancer research. With time

series analysis, a globally defined strange attractor(s) may exist

in the state space (epigenetic landscape) of cancer gene expres-

sion dynamics. It is proposed herein that identifying such causal

structures would pave reprogramming cancer (stem) cells to-

ward benign-like, stable cell fates. The reprogramming of cancer

(stem) cells to benignity provides a new avenue to investigate

non-invasive, selective, and potentially universal cancer thera-

pies. It also provides a form of empirically controllable, perturba-

tion analysis to investigate cancers as dynamical systems and

probe for causal patterns (attractors) in their gene expression

state space, given time series data is available.1 In support of

these ideas, several studies have been reported indicating that

certain genes act as epigenetic barriers preventing tumor re-

programming to benign stem cell fates.61 For instance, it has

been shown that CSCs can be reprogrammed in vitro to iPSC-

like states or chemically directed toward specific cell lineage

commitments.62 In another study, human pancreatic cancer

cells were reprogrammed to iPSCs in vitro using episomal vec-

tors and demonstrated a lack of tumorigenicity post-reprogram-

ming.63 A more recent study further confirmed these findings by

showing that inhibiting or expressing certain factor(s) can indeed

reprogram cancer cells to premalignant epiblast-like states
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(i.e., normal iPSC states). Kong et al.64 demonstrated that sup-

pression of the RAS-pathway can reprogram anaplastic thyroid

tumors—aggressive, fast-growing lethal cancers—into transient

iPSCs.

Sendai virus-mediated transduction of the OSKM factors

enabled the generation of transient iPSCs only from tumor cells

bearing a Ras mutation.64 At the transcriptional and epigenetic

level, the cancer-derived iPSCs clustered closely to human em-

bryonic stem cells and lost many of their malignant markers. The

genes upregulated in the cancer-derived pluripotent stem cells

(SOX2, LIN28A, and SALL4) showed a decrease in DNA methyl-

ation surrounding their promoters, indicative of reprogrammed

epigenetic landscapes and a loss of neoplastic potential.64While

CD133+/CD44+ enriched CSCs may have been present in the

starting tumor population, they were undetected post-reprog-

ramming to epiblast-like states. Key molecular patterns

regulated by the RAS-signaling cascade, such as NF-kB, were

downregulated to levels seen in embryogenesis, as observed

via the heatmaps constructed from gene set enrichment anal-

ysis. When a reversible pharmacological RAS-MEK inhibitor,

PD0325901, was withdrawn, the reprogramming was blocked

and the cancer-derived iPSCs converted back to their parental

lineage-specific neoplastic cells.64 The risks of these methods,

such as the possibility of tumor regression/formation, teratoma

formation, and other possibilities are ignored here, and only

the ability to reprogram tumor plasticity is put into context.

These findings collectively demonstrate that the epigenetic

landscape of cancer (stem) cells can be controlled and cancer

cell fates can be selectively reprogrammed (fine-tuned). It is spec-

ulated thatadifferent (setof) reprogramming factor(s)maybe iden-

tified for converting each cancer subtype to healthy epiblast-like

states (iPSCs).On the other hand, identifying a universal set of fac-

tors (a global attractor) capable of reprogramming any cancer

phenotype to iPSC remains the holy grail of medicine. Such re-

programming experiments should be repeated on patient-derived

cancer cells and isolated CSC subpopulations, followed by time

series scRNA-seq analysis. These measurements should be

further subjected to the algorithms for network state-space visual-

ization and trajectory inference as discussed, followed by chaos

detection and chaotic attractor reconstruction methods. These

could serve as the initial conditions to identifying the minimal reg-

ulatory network driving cancer stemness. Herein, it is proposed

that identifying these driver stemness networks is the equivalent

of detecting strange attractors in the transcriptomic state space

of cancer networks. If such attractors do exist and are shown to

drive cancer stemness, it must be further investigated whether a

universal strange attractor exists for all cancers.

Gene-editing methods (e.g., CRISPR technology) or pharma-

cological inhibitors/activators should be applied to perturbing

the Suvà stemness clique and the essential gene network drivers

of MB/GBM discussed above followed by a study of their gene

expression in time series and detect the corresponding attractor

dynamics. Reprogramming cancer (stem) cells to iPSCs and

investigating their state-space attractor dynamics (energy land-

scapes) provides a powerful tool for searching the existence of

global attractors governing cancer stemness/emergence. These

techniques can also be applied to patient-specific tumors for

identifying personalized cancer therapies and optimal treatment

strategies.
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In the later sections, various network inference pipelines and

algorithms are discussed. Some pediatric cancer datasets

from the above-mentioned works will be directly used to test-

run some of these algorithms to illustrate their practical applica-

tions and critical importance in reconstructing patient-specific

(personalized) cancer networks. A few selected algorithms are

tested on the static (single-time frame) pediatric datasets to

demonstrate how insightful complexity approaches are to clin-

ical medicine and help illustrate the concepts discussed herein.

However, time series RNA-seq datasets are severely lacking and

therefore hindering true progress in clinical oncology.

GENE EXPRESSION DYNAMICS

In this section, I briefly review classical methods to model gene

expression dynamics. As previously mentioned, treating GRNs

as a network of oscillators coordinating developmental pro-

cesses provide a deterministic approach to modeling gene

expression. The attractor space of genetic oscillators provides

a mathematical framework to visualize chaotic attractors and

emergent behaviors. For instance, certain genetic oscillators

exhibit synchronization during the collective cell migration

(flocking) of cancer cells and their cytoskeletal fluids.65 Oscilla-

tory dynamics in gene expressions are necessary for stemness,

a loss of which can be regarded as a loss of stem cell potential.66

The cell fate transitions between stem cells and their differenti-

ated counterparts have been discussed as regulated by a com-

bination of noise fluctuations and oscillatory dynamics in gene

expression levels.66

It is widely accepted that the cell fate transitions between the

distinct functional phenotypes of a cancer population are gov-

erned by stochastic dynamics. Molecular observations can be

explained by a Markov model in which cancer cells transition

stochastically in between states and settle to equilibria (fixed-

point attractors) of an epigenetic landscape. In stochastic

models, the probability of state transitions are assigned to a pop-

ulation of cancer (stem) cells rather than describing the transi-

tions using continuous, causal trajectories in state space.67,68

Their ability to well-fit empirical cancer datasets must be appre-

ciated.

In contrast, single-cell transcriptomics have revealed, in the

past decade, that cell fate transition dynamics may be defined

by smooth, continuous trajectories on the epigenetic landscape.

Oscillator models and dynamical systems approaches are

largely ignored in cancer cybernetics, as the wisdom of the

crowd follows the central dogma of systems biology: gene

expression dynamics is a stochastic process. In the stochastic

modeling of continuous-time gene expression, three general ap-

proaches are widely considered: (1) the CME (chemical Master

equation) is used to model the evolution of a probability distribu-

tion of chemical species across the system, (2) the Fokker-

Planck equations (FPEs) provide a continuous approximation

of molecular diffusion kinetics across a potential energy land-

scape, or (3) the Gillespie algorithm is used to simulate stochas-

tic dynamics of individual trajectories. The latter two methods (2)

and (3), are approximations of the CME approach (1).

CME is a relatively accurate framework for the stochastic

modeling of gene expression dynamics. The CME provides a

time-evolution equation for the probability of observing a gene
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state and a certain number of gene products at a given time. It is

a Markovian model in which the molecular numbers change in

discrete (integer) amounts.69 Continuous approximations of the

CME include methods, such as the FPEs and partial integro-dif-

ferential equations. These stochastic models of gene expression

have proven to be quite insightful in the study of complex sys-

tems wherein FPEs are among the most widely used models to

characterize cell fate transitions.69 An alternate approach to

solve the CME is the use of the Gillespie algorithm. However,

the Gillespie algorithm is only computational tractable for

small-scale systems with a few reactant species, and quickly

becoming computational prohibitive as the number of species

increases.

The simplest CME to consider is one that describes the gene

expression without autoregulation or gene/protein bursting. For

instance, consider the following set of ordinary differential

equations:

_m = km � gmm

_n = kpm� gpn

Where,m is the number of mRNA per cell and n is the number of

proteins, g is the degradation rate, and km and kn are the kinetic

rates (of synthesis) of the chemical species, respectively. A two-

statemodel (often referred to as a constitutive expressionmodel)

describing promoter switching, transcription, and messenger

RNA (mRNA) decay is the simplest stochastic model of mRNA

fluctuations to consider. The model assumes that the gene is

continuously turned on, producing mRNA at some constant

rate, followed by mRNA decay or its dilution due to cell divi-

sion.70 If all these processes are approximated by effective

first-order reactions, then themodel is easy to solve and predicts

a Poisson distribution of mRNA numbers in cells. Such a two-

stage model of gene expression ignores that protein synthesis

occurs in geometrically distributed bursts.70 The CME for the

two-stage model of gene expression assumes that the promoter

is always active and has two stochastically fluctuating variables,

the number of mRNA (m) and number of proteins (n). The CME is

then given by:

vPm;n

vt
= k0ðPm�1;n �Pm;nÞ+ k1ðPm;n�1 �Pm:nÞ+d0½

� ðm + 1ÞPm+ 1;n �mPm;n�+d1½ðn + 1ÞPm;n+1 � nPm;n�

Where k0 is the probability per unit time of transcription, k1is the

probability per unit time of translation, d0is the probability per unit

time of degradation of an mRNA, and d1 is the probability per

unit time of degradation of a protein.70 AGillespie algorithm-based

simulation of these deterministic ordinary differential equations

(ODEs) will exhibit qualitatively different behaviors from the equa-

tions, such as the disregarded emergence of bursts. This demon-

strates that the average of themany stochastic dynamics of mole-

culeswill eventually resemble theODEs.We consider the behavior

to be stochastic dynamics when kn[ km or rather as the system

increases in complexity, asmanyprotein-protein interactions inter-

twine. TheGillespie algorithm is thenauseful copingmechanism to

overcome the complexity when studying the stochastic dynamics

of large networks of chemical species’ interactions.
Commonly, scientists a priori assume a Poisson distribution

for the mean mRNA count per cell and mean protein synthesis

per mRNA, then derive the Master equation for the distribution.

The various parameters are further tweaked in the resultant dif-

ferential equations, such as the synthesis and degradation rates

of the products based on empirically quantified measure-

ments.71 A Poisson distribution is often sufficient to capture

the technical noise in single-cell quantitative measurements,

such as the RNA-seq counts.71 The stochastic picture is repeat-

edly supported by findings in different cellular models, although

not necessarily in pathological (cancer) networks. For instance,

Stumpf et al.72 demonstrated that stem cell differentiation may

be best defined as a non-Markov stochastic process. Their find-

ings collectively demonstrated a general increase in mean Shan-

non entropy as differentiation progressed from pluripotency to

particular-cell fate commitments. When the data were fitted

into a Hidden Markov process, the system was shown to obey

a Poisson distribution. On such basis, Stumpf et al.72 concluded

that the increase in cell-cell variability observed indicated that

cells do not synchronize their fate transitions and thereby stem

cells progress in an uncoordinated, stochastic manner.

In contrast, there is a large body of experimental evidence

showing that the distribution of molecule-number fluctuations

in gene expression dynamics is non-Poisson.73 If a gene can

switch between an on and an off state, non-Poissonian mRNA

fluctuations and bursting are observed. The model of mRNA

bursting, commonly called the telegraph model, has thus been

recently more widely adopted in the description of mRNA dy-

namics in eukaryotic cells.73 In the Telegraph model, the CME

is slightly altered to accommodate additional parameters, such

as the marginal distribution of the nascent mRNA molecules

(contains Gaussian-like terms). A major drawback in both

coarse-grained models discussed here is that they do not take

into consideration mRNA fluctuations during cell divisions/repli-

cation, an aberrant state of which is the signature hallmark of

cancer.

Alternately, there are path-integral approaches involving the

use of SDEs to study the nonequilibrium statistical mechanics

of the Waddington landscape. The transitions between meta-

stable, intermediate cell fates (i.e., mixed phenotypes or tran-

sient cell fates) are considered stochastic, and governed by

the Diffusion matrix of the kinetic trajectories of involved chemi-

cal species in the transition. In principle, metastable attractor

states may be nonequilibrium attractor states, such as strange

attractors. A lack of dynamical systems approaches in the time

series treatment of these systems remains a roadblock in

deriving such conclusions, for the time being.

To simplify the epigenetic landscape’s complexity, mean-field

approximations are used to obtain steady-state distributions of

gene expression.74 A potential energy landscape is then recon-

structed to visualize the attractors, such that given the steady-

state probability distribution P, the potential energy is given

byU = � lnP.75,76 FPEs are used to describe the cell state tran-

sitions on the epigenetic energy landscapes. We shall not get

into the finer details of these approaches herein and readers

are directed to the citations. Note that for epigenetic landscapes

exhibiting multistability, defining a potential U may be ambig-

uous. Furthermore, it is a priori assumed the solutions of the

Waddington attractor landscape are steady state (i.e., solutions
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negligibly change in time). Such nonequilibrium statistical ap-

proaches are only beginning to emerge in the study of cancer dy-

namics.

To illustrate, Rockne et al.77 used a double-well state transition

theory to map the state transition dynamics from healthy periph-

eral mononuclear blood cells in mice to acute myeloid leukemia

(AML). They found that critical points on the transcriptomic state

space could predict the cell fate trajectories of the disease. The

two-dimensional state space was obtained from PCA dimen-

sionality reduction on the time series bulk RNA-seq data.77 The

transcriptome was modeled as a particle undergoing Brownian

motion (Langevin equation) in a double-well quasi-potential

U(x) with two stable states, representing the healthy and AML

states. To calculate the mean expected behavior of the stochas-

tic dynamics of a transcriptome-particle (cell), the evolution of

the probability density function was obtained via the FPE.77

However, the assumption that the healthy state and AML state

critical points are stable phenotypes (i.e., valleys of a double-

well potential) may have been the issue with this model. The

cell states were a priori assumed to be stable, isolated fixed-

point attractors of a conserved system. Simplifying the transcrip-

tomic state-space trajectories as one-dimensional systems

limits the phase space patterns to only fixed-point attractors

and neglects oscillatory dynamics.32 As discussed, cell pheno-

typesmay correspond to attractors of various sorts, such as limit

cycles (metastable fixed points) and chaotic attractors (unstable)

on the multidimensional signaling state space. That is, in three-

dimensions (R3Þ, trajectories can intertwine in state space and

lead to chaos (i.e., strange attractors).

To avoid these assumptions and the rigorous use of differential

equations and nonequilibrium statistical mechanics, system bi-

ologists have adopted a simpler approach to modeling gene

expression dynamics: Kauffman’s Boolean networks (BNs).78

Most cancer network models in systems science have transi-

tioned to the use of Boolean architectures since they are simple

discrete-time models exhibiting complex behaviors.79 BNs can

model many types of biological networks, such as GRNs, meta-

bolic networks, and protein-protein interactions (PPIs). The bio-

logical components (genes, proteins, or signaling molecules) are

described by binary values of 0/1 and their interactions are rep-

resented by binary functions.78,80 Let us consider GRNs as our

biological network of interest. BNs contain a set of regulatory

variables x = fx1;.;xNg; xi˛B, where each gene follows a Bool-

ean logic, i.e., can be 0 representing the on state (expressed/

activated) or 1 for the off state (repressed). The concentration

levels of many regulatory processes in gene expression and their

corresponding cell fate choices behave according to a Hill func-

tion.81 For many values of Hill coefficients, the curve is sigmoidal

and thus approximated as a dichotomous step function making

BNs a representative model of gene expression fluctuations.

BNs can be considered as a directed graph network, where

each regulatory component is represented by a node of the

graph. The directed edges between these nodes define the reg-

ulatory interactions and the dependencies are given by the Bool-

ean functions. The state of a BN at a time t is given by the state

vector XðtÞ, which at each discrete time t, a new network state is

updated by applying the appropriate Boolean functions: There

are three major updating schemes in how BN states transition:
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(1) synchronous updates (all components take equivalent

amount to change their value)

(2) asynchronous update (one random component updated

at each time-step), wherein complex network topologies

can emerge

(3) probabilistic update (alternative Boolean functions are

used for each component), where the network can transi-

tion from synchronous to asynchronous states

GRNs and PPIs can exhibit scale-free topologies where the

degree distribution of the regulatory interactions follows a power

law distribution, i.e., most components are lowly connected

while the rest form highly connected hubs.82 Meanwhile, certain

metabolic networks exhibit small-world graph topologies (i.e.,

the Watts-Strogatz network).82,83 These network structures are

highly robust and resilient in information flow. If we assume their

network configuration to be fixed at some chosen time frame,

their interactions can be defined as directed state graphs.83

However, complex diseases, such as cancers, reveal dynamic

non-trivial topologies with multi-nested feedback loops.

The long-term behavior of the network is a trajectory through

the state graph. A periodic sequence of states forms an attractor

on the state space, in which, once reached, the network config-

uration is stuck in unless some perturbation occurs. Therefore,

attractors may correspond to cell phenotypes. There are various

attractor types observed in BNs, namely, steady-state equilibria

(fixed points), periodic cycles (can become chaotic with pertur-

bations), and chaotic attractors (seen in asynchronous networks,

but very rarely). The global behavior of BNs of N-genes (proteins)

can be divided into three broad regimes: ordered (regular),

chaotic, and critical.80 Networks in the ordered (regular) regime,

when placed into any random initial state in the state space, will

quickly settle down to stable behaviors, such as a fixed-point at-

tractor or limit cycle attractor with a small period T. In contrast,

networks in the chaotic regime will exhibit apparent randomness

in the phase space. Since the classical BN is discrete and finite,

the network will eventually encounter a previously occupied

state and repeat its trajectory (note: continuous BN models do

exist). The period T of a limit cycle in the chaotic regime is very

long and can be in the order of 2N. Such an unstable limit cycle

will exhibit aperiodicity and endless trajectory (permanent tran-

sient). The degree of chaos in the chaotic regime of BNs can

be quantified based on the slope of the Derrida plot and

spreading of information. Finally, the network in the critical

regime is at the edge of chaos, where it can both generate novel

structures and maintaining stability, simultaneously.80 Edge of

chaos is formally defined as a state of zero largest Lyapunov

exponent.

When investigating BNs, one must consider the average con-

nectivity per node k. It was found that when k = 2, the BNs are

poised at the edge of chaos.80 Above a critical kc value (depends

on various parameters), networks behave chaotically. Kauff-

man80 proposed that most biological networks/cells are poised

at criticality, allowing the dynamic transitions between regular

and chaotic regimes. However, the implications of chaotic at-

tractors in BNs remain poorly understood and without an inter-

pretation in a biological context. No feedback mechanisms

were strongly proposed to support criticality in gene networks

or conceive their phase transition to chaos under symmetry
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breaking. Self-organized criticality is only discussed qualitatively

in analogy to Bak’s sandpile model.80 The EMT mechanism

involved in CSC phenotype switching and cancer state transi-

tions is often discussed as a process exhibiting critical dynamics

(power law behaviors). However, their empirical investigation re-

mains primitively developed. As stated above, STS is a mathe-

matical framework to better understand the connection (transi-

tion) between chaos and criticality, and should be explored in

cancer systems.

To envision the quantitative applications of BNs, consider a

graphical representation constructed by the mapping of some

experimentally derived gene expression matrix where each row

represents a gene and each column a time point, under certain

conditions. Transposing the matrix, mapping each column (con-

dition) as a dot in a three-dimensional space where each axis is

spanned by the number of genes expressed, creates a state

space because each coordinate represents a state S of the tran-

scriptome. With molecular profiling, a higher-dimensional state

space consisting of epigenetic expressions can be recon-

structed. A gene expression pattern reflects the dynamic config-

uration state of a GRN network and settles down to an attractor

on phase space.84,85 These states can be stable (e.g., a mature

phenotype) or unstable (e.g., a transient state or stem cell pheno-

type)86 (see Figure 2). Gene set functional enrichment analysis

(GSEA) and clustering algorithms are then used to identify clas-

ses of genes or protein flows that are over-represented in a large

set of genes or proteins associated to phenotypes, by navigating

Gene Ontology databases.87

Huang et al.88 used time series transcriptome data to experi-

mentally verify the existence of robust attractors in the dynamics

of hematopoietic progenitor cells. The trajectories of these stem

cells toward neutrophil state differentiation, in multidimensional

signaling state space, revealed a high-dimensional stable attrac-

tor denoting the distinct cellular phenotype. In contrast, cancer

cells were discovered to be unstable attractors of their gene

expression state space (epigenetic landscape).84 Cancer cells

were identified as states trapped in embryonic attractors of the

epigenetic landscape. The EMT switch during metastatic pro-

gression was used as an argument for the emergence of embry-

onic attractor phenotypes.89 Although they defined cancers as

abnormal, unstable attractors, algorithms for the detection of

chaotic attractors were not performed on time series CSC

gene expression datasets in these analyses.

In principle, measuring the time series mRNA abundance and

protein quantifications in the cancer stemness networks dis-

cussed above, exposed to various environmental conditions or

drug/therapeutic perturbations, can provide an experimentally

verifiable model for cancer signaling dynamics via these clas-

sical methods. The quantified data from kinetic and/or expres-

sion experiments can be fed into the CMEs and differential equa-

tions discussed in this section, projected in phase space, and

searched for chaotic dynamics via computational algorithms/nu-

merical methods. Alternatively, their gene expression matrix can

be used to reconstruct BNs.

To contrast these two approaches, the CME offers a way of

describing the evolution of a probability function. Thus, it is ideal

for studying transition probabilities from one state to another. It is

most applicable to describe discrete state transitions, although

the equation is generally continuous. The FPE is a subset of
the CME obtained by transformation/expansion, applied to a

specific situation: Brownian motion (under drag forces and

random forces). Thus, the CME is particularly relevant in the

context of biochemical reaction networks where we have kinetic

information about reaction rates (think of chemical reactions of

reactants X and Y, where [X] + [Y] / [XY] at some rate k).

From the CME, information about the evolution of the state

space probabilities are derived, and we usually use truncation

or moment closure to understand how the mean and the vari-

ances are changing over time. The classic BN is a discrete

dynamical system in which there is only on or off (1 or 0) states

and is relevant to expression rather than kinetics. There are limits

to the type of attractors observed in classical BNs as defined

above. In the "continuous" or semi-continuous forms of BNs,

we get closer to the CME, but there is less integration of kinetics

in BNs than in theCME. In BNswe are not looking at the evolution

of probabilities, and rather observe the state space (unless some

heuristics are applied to the whole network to infer probabilities).

While these classical approaches of gene expression

modeling are powerful tools that have reshaped our understand-

ing of network science, we are most interested in parameters-

free, equations-free approaches to reconstruct cancer networks

and their corresponding attractor dynamics (from time series da-

tasets). Attractor dynamics and chaos detection are nearly ab-

sent in current practices of systems biology, which are adherent

to stochastic modeling of gene expression. The current ap-

proaches naively hold many a priori assumptions by which the

complex features of the dynamical system may be lost. There-

fore, algorithms for parameter-free causality inference in GRN

networks are essential to decipher cancer complexity.

PATTERN FORMATION

In this section, the essential physics of another category of can-

cer processes will be introduced: pattern formation. How do the

protein products of the various gene expression patterns interact

to form cancer structures? Protein-mediated pattern formation is

another direction pattern scientists should take to detect chaotic

attractor dynamics. Specific genetic programs and transcrip-

tional networks are involved in synthesizing the proteins required

for tumor pattern formation. The concentrations of these pro-

teins are spatiotemporally distributed by the precise coordinated

timing of multi-scale network processes, providing the blueprint

for the self-organization of tumor structures. Turing coined the

term morphogen to describe these protein flows orchestrating

biological patterning.90 Turing demonstrated the pattern forma-

tion (morphogenesis) of a wide variety of complex systems can

be described using a set of nonlinear partial differential equa-

tions, i.e., reaction-diffusion equations.90 The Turing model

shows that even simple reaction-diffusion systems can generate

complex structures, spatiotemporal oscillations, and chaos. Sta-

tionary patterns, also known as Turing patterns, are coherent

stable structures acting as the underlying mechanism for cellular

differentiation in healthy embryonic development.91

Many extensions of the reaction-diffusion models have been

unfolded with various applications in systems biology. For

instance, in the clock and wavefront model of somitogenesis,

posteriorly moving molecular gradients sequentially slows the

rate of clock (gene) oscillations, resulting in the patterning of
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the developmental system.92 In the French Flag Model of cellular

differentiation, the effects of morphogen gradients in the posi-

tions of the various specialized cell types within a tissue are

observed.93 The concentrations below or above a critical

threshold causes the activation of certain genes and hence, their

chemical programs required for pattern formation.93 A classic

example, the stripes observed in the development of a fruit fly

embryo, exhibits the precise positional localization of certain

protein molecules alternating on the developmental plate of the

embryo in high and low concentrations. Nonetheless, these re-

action-diffusion systems are vastly disconnected, and it remains

unclear how one model relates to another.

On the contrary to embryogenesis, nonequilibrium patterns

and complex multi-scale (fractal) structures are universally

observed in tumor pattern formation.94 For instance, the migra-

tion/proliferation dichotomy (go-or-grow) hypothesis is an

example of a reaction-diffusion-based model used in the

description of glioma pattern formation.95 The tumor density-

dependent go-or-grow mechanisms can produce highly com-

plex structures via Turing instabilities.95 There is an inherent

notion of disorder, aperiodicity, and instability in tumor

patterning. Assuming the law of mass action and that the trans-

port of these proteins is under Brownian motion (i.e., viscosity

dominant), the variations of the involved chemical species’ con-

centrations by these equations lead to spontaneous spatial pat-

terns with a wavelength determined by the diffusion constants

and reaction rates.90 As discussed above, pediatric cancers,

such as GBM and MB, are invasive diseases consisting of

dynamical heterogeneous phenotypes interacting with an adap-

tive microenvironment.2 The reaction-diffusion equations are ac-

curate models to describe the dynamics of the various protein

flows involved in cancer (stem) cells to give rise to their heteroge-

neous patterns. They provide a mathematical tool to visualize

how the dynamics of cancer (stemness) networks give rise to

cancer phenotypes, under a given set of environmental condi-

tions. Therefore, a better understanding of the reaction-diffusion

processes in the emergence and cell fate transitions of the

distinct cancer phenotypes are fundamental to finding better

therapy regimens.96

Consider a continuum description of the density of cells uðr;tÞ,
and the density of some growth factor/protein or nutrient, cðr; tÞ
stimulating the growth diffusing to the tumor from far away,

plated on an extracellular matrix. A tumor density-dependent

dynamical switch of the glioma to invasive phenotypes is

observed at critical concentrations of the growth factor, as gov-

erned by the reaction-diffusion equations:

vu

vt
= V,ðDuVuÞ+au2c

vc

vt
= V,ðDcVcÞ � bu2c:

Here, Du and Dc are the diffusion coefficients of u and c, a is a

proliferation exponent, and b is the coefficient of nutrient

consumption. Reaction-diffusion models well-portray the

growth-invasion dynamics of tumors and their dynamic pattern

formation.97 However, this simplified model transitions to the

regime of nonequilibrium thermodynamics and nonlinear dy-
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namics when we consider a many-body problem consisting of

the interactions between tumors and their dynamic microenvi-

ronment.22 For instance, chaotic patterns and strange attractor

dynamics emerge when one considers the predator-prey dy-

namics of a three-body tumor ecosystem consisting of the

competitive interactions among tumor cells, host cells, and im-

mune cells, for resources.47,98

Fractals are the geometric signatures of chaos. Fractals are

Nature’s most stable structures exhibiting the optimization of

space and spatially constrained resources. Think of trees, blood

vessels, clouds, snowflakes, contours of geographic land-

scapes, etc. A system exhibiting fractal architectures may be

robust to environmental changes. The fractal dimension is a sta-

tistical index of complexity. Tumor pattern formation exhibits

complex, multifractal architectures.18,99 The multi-fractality of

cancer structures may imply their information and patterns are

embedded across many length and time scales (i.e., self-similar-

ity). Thus, a higher fractality in tumor structures may imply that

the tumor is more complex, resilient (i.e., withstands environ-

mental perturbations), aggressive, and difficult to treat.18,99

The reaction-diffusion models underlying tumor growth-invasion

dynamics have repeatedly demonstrated tumors can spontane-

ously self-organize into strange attractors and multifractal

patterns in their state space. For example, strange attractors

resembling the Lorenz attractor have been observed in reac-

tion-diffusion models of cancers with nutrient-oxygen depen-

dence.100 These chaotic reaction-diffusion models were further

validated on aggressive cancer models, such as malignant mel-

anoma and mucinous ductal ectasia, which exhibited the emer-

gence of strange attractors.100,101 Experimentally validated

mathematical models of tumor growth-invasion dynamics based

on reaction-diffusion equations and predator-prey models (i.e.,

Lotka-Volterra-type equations) can exhibit chaotic attractors.102

For example, the Itik and Banks model44 consisted of three cell

populations in a single tumor site component:

TðtÞ : tumor cell number density at time t

HðtÞ : healthy cell number density at time t

EðtÞ : effector immune cell number density at time t

Then, the system of ODEs describing the tumor growth dy-

namics were given by:

dT

dt
= r1T

�
1� T

k1

�
� a12TH� a13TE

dH

dt
= r2H

�
1� H

k2

�
� a21TH

dE

dt
=

r3TE

T + k3
� a31TE � d3E

Given the rate of change of the competing populations. Here,

r1 is the growth rate, k1 is themaximum carrying capacity, a12 de-

notes the tumor cell population loss with competition with H(t),
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and a13 is the tumor cell population losswith competition with the

effector cells E(t). Here, r1>r2, and the tumor cells also inactivate

healthy cells at a rate of a21. Experimental data can be fitted into

these equations to model the predator-prey dynamics and

obtain phase space portraits of their attractors. Itik and Banks44

demonstrated that chaotic attractors with Shilnikov-like connec-

tions emerge when a12R1. The Lyapunov exponents were

calculated using n-orthogonal tangent vectors satisfying initial

conditions for the Jacobian matrix of the system, and the

Gram-Schmidt orthogonalization followed by the Lyapunov K-

dimension calculation. The K-dimension was computed to be

about 2.03 in the model at selected parameters for chaotic

onset, whereas the Lyapunov dimension of the Lorenz attractor

is around 2.06. These chaotic reaction-diffusion models demon-

strate the state-space dynamics of cancer cells exhibit strange

attractors.

Itik and Banks44 confirmed chaotic dynamics in cancer

models by computing the Lyapunov exponents and the Lyapu-

nov dimension, which was obtained to be fractal. The study

strongly demonstrated that tumor-immune system interaction

dynamics may result in the emergence of chaotic attractors in

their phase space. As suggested by the authors, the existence

of chaotic attractors may indicate tumor escape (immunosup-

pression) and the uncontrolled growth of cancer cells.44

Thereby, a deeper understanding of the immune signaling path-

ways mediating tumor-immune interactions, such as cytokines,

inflammatory pathways, etc., must be experimentally screened

and probed as control parameters to study the state-space at-

tractor dynamics of patient-specific tumors, using these Lotka-

Volterra-type equations as a toy-model. As such, these equa-

tions and their phase space attractor dynamics are powerful

tools to investigate the optimal dosage of immunotherapies

and similar drug-based interventions in oncology. Simulations

of these equations can be paired with experimental findings to

confirm the detection of chaotic attractors. Time series molecu-

lar profiling may provide empirical data to be paired with the

mathematical modeling.

In a similar study to Itik and Banks,44 the competing popula-

tions of cancer cells, immune cells, and host (healthy) cells

gave birth to chaotic attractors that were topologically equivalent

to the Rössler attractor (i.e., a strange attractor).45 Chaotic

attractors were suggested to be indicative of fast-growing,

aggressive tumors, therapy resistance, andmetastatic potential.

Therefore, controlling their unstable periodic orbits toward

stable, non-chaotic orbits provides a screening method for iden-

tifying selective, targeted therapies.45 Letellier et al.45 further

suggested that clinicians can use immunological parameters to

assess tumor behavior during immunotherapy by studying their

attractor dynamics using these equations-based modeling sys-

tems. Furthermore, the predator-prey dynamics and ecological

relationships shared by the heterogeneous cancer cells and their

microenvironment (i.e., immune cells, healthy cells, extracellular

matrices, etc.) enables us to define the tumor’s interaction with

its microenvironment as a cancer ecosystem.

Many other mathematical models further confirmed the

chaotic attractor model of tumor invasion-growth dy-

namics.103,104 Numerical model extensions have demonstrated

that periodic oscillations as well as chaotic attractors result in

the complex dynamics of the tumor-immune cell predator-prey
dynamics.47,98 The emergence of these limit cycles and chaotic

attractors were suggested as indicators of long-term tumor

relapse.47,98 For instance, a discrete map of a time-delayed

cytotoxic T-lymphocyte response on tumor growth was

mathematically modeled given the growth kinetics described

by the logistic equation and the growth rate being the bifurcation

parameter.105 Increasing the control parameter beyond a critical

threshold caused instability of the tumor state along with period-

doubling bifurcations onto the emergence of strange attractors.

These findings suggested metastatic progression and aggres-

siveness of tumor dynamics may correspond to not external

parameters, but intrinsic tumor density-dependent chaotic

dynamics. Nonlinear forecasting programs utilizing these equa-

tions were suggested to help monitor clinical tumor-immune dy-

namics under therapy progression.105

The emergence of chaotic patterns remains a poorly investi-

gated branch of pattern science. While a significant importance

has been put into how orderly patterns, such as stripes, swirls,

and spots emerge in tissue patterns, the study of chaotic pat-

terns in biosystems is in its infancy. Prigogine and Stengers,106

pioneers of complexity science, demonstrated the spontaneous

self-organization of highly ordered complex patterns known as

dissipative structures in open reaction-diffusion systems. Their

works established that reaction-diffusion systems far from equi-

librium may exhibit spatiotemporal chaos. A recently emerging

paradigm of pattern science is that spatiotemporal chaos can

emerge in certain protein-mediated reaction-diffusion systems

within cell populations.107,108 The term chemical turbulence

has been coined to describe these emergent chaotic patterns

in cellular systems.6 Chemical turbulence demonstrates that

chaotic patterns, reminiscent of those seen at high Reynolds

numbers in fluid dynamics, are observed in small-scale chemical

reaction-diffusion systems. A broadband distribution in the po-

wer spectrum of the protein flows and a low spatial correlation

length reminiscent of the Kolmogorov spectrumwere observed.6

Such complex systems are currently unaccounted for in tumor

pattern formation. These findings on diffusion-mediated chemi-

cal turbulence should be extended to the study of cancer cells

and CSCs and investigated for the emergence of chaotic

attractors during their patterning processes (i.e., division and dif-

ferentiation). Time-lapse videomicroscopy and similar imaging

techniques can be used to capture potential chaotic dynamics

of such proteins and reconstruct their attractor dynamics. The

equations discussed in this section provide a theoretical frame-

work to perform simulations and mathematical modeling, as

done by Halatek and Frey,6 and should be paired with the exper-

imental data of protein dynamics during cancer (stem) cell differ-

entiation and chemical perturbations/reprogramming.

CHEMICAL OSCILLATIONS AND SYNCHRONIZATION

The dance of various proteins, gene expressions, and cell

signaling molecules at differing timescales (a)synchronize to

this complex painting we call tumors. Tumor gene expression

and pattern formation are complex processes fundamentally

orchestrated by chemical oscillations. When these oscillations

are aperiodic and irregular, chaotic dynamics are observed in

cancer (stem) cells resulting in their adaptive emergent behav-

iors.53 How can one understand aperiodicity, the signature of
Patterns 2, April 9, 2021 17
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chaos, without understanding oscillations? As such, the

following are a few illustrations and theoretical models to build

some insights for chemical oscillations in tumor cybernetics.

Winfree109 and Kuramoto110 pioneered the study of sponta-

neous synchronization of populations of biological oscillators.

They demonstrated that each individual cell, organism, or

biochemical process could be considered as an oscillator

with its own distinctive frequency and phase. When considering

a population of biological oscillators, a mean-field approxima-

tion can be considered where each oscillator responds to the

average signal produced by all others.109,111 In the case of a

large population of weakly interacting oscillators, the

mean-field distribution of natural frequencies may appear asyn-

chronous and arrhythmic (i.e., random). As the coupling

strength increases above a critical value of the order param-

eter, an abrupt phase transition often occurs where the popu-

lation of biological oscillators enter a coherent (synchronized)

state (i.e., phase locking).111 These principles apply to the

biochemical waves and oscillations observed within reaction-

diffusion systems, whereby a lack of synchrony (i.e., aperiodic

oscillations) may result in complex patterns and spatiotemporal

chaos (i.e., chemical turbulence).110,112 Kuramoto110 estab-

lished that reaction-diffusion systems share resemblance to

the Navier-Stokes equations. The oscillatory units of the diffu-

sion system can undergo synchronization when multiple peri-

odic processes with different natural frequencies couple toward

a collective frequency (phase). Mutual synchronization is a key

mechanism for the self-organization of chemical waves into

structured, coherent patterns. When synchronization is lost,

chaotic patterns may emerge.

Cell division and morphogenesis is a highly coordinated pro-

cess consisting of the precise timely oscillations and synchroni-

zations of various cell-cycle regulators.113,114 Cancers emerge

from the dysregulated multicellular molecular networks of cell-

cycle oscillations and aberrantly expressed cell-cycle pro-

teins115. Interestingly, cell-cycle oscillations even in two-coupled

mitotic oscillators with simple underlying kinetics can exhibit

chaotic (strange) attractor dynamics.116,117 Cell-cycle oscilla-

tions can be represented by simple first-order ODEs for simple

gene circuits. A CME was derived to describe a mesoscopic

model of tumor dynamics considering a cell-cycle master regu-

lator, the p53-Mdm2 feedback loop system, in attempt to explain

tumor apoptosis evasion.118,119 Experimental studies of the tu-

mor suppressor gene p53 and Mdm2 oscillatory dynamics, in

response to DNA damage, show damped oscillations of p53

concentration at the cell population level and undamped oscilla-

tion of p53 in single cells.118

Consider a simplified model where p53 activation is stimu-

lated by some chemical species Dm, associated with the

DNA damage level, and p53 stimulates the synthesis (positive

feedback) of Mdm2, which in turn has a negative feedback

(promotes the degradation) of p53.118,119 Given A is the

Mdm2 synthesis rate, B is the Mdm2 inhibition rate, and C is

the rate constant for damage reparation by p53 dynamics, K

is the p53 degradation constant, d1 is the p53 basal synthesis

rate constant, and d2 is the rate constant associated to the

DNA damage level, the transition probabilities of each species’

concentration per unit time is given by the following ODEs, in

the absence of external fluctuations:
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d½p53�
dt

= d1 � K

�
p53

��
Mdm2

�
;

d½Mdm2�
dt

= A½p53� � B½Mdm2�½Dm�;

d½Dm�
dt

= d2 � C½p53�:

The model selected d1 and B as the control parameters

dictating the dynamical system’s bifurcations.

In this case, when B<Bc, p53 shows damped oscillations and

when B>Bc, the cell apoptosis occurs as regulated by the p53

sustained oscillations (undamped oscillation, limit cycle).119

The use of such simple kinetic equations provides basic insights

into the oscillatory dynamics and their corresponding attractor

spaces in cancer cell-cycle networks. These equations can be

used as a model system to screen for the presence of chaotic

dynamics in cancer cell-cycle oscillations. Although chaotic dy-

namics were not investigated in this study, the entropy produc-

tion rates were shown as robust characteristics of the tumor

complexity, measurable from the contour-based fractal dimen-

sions of avascular tumor growths.120 Increased entropy produc-

tion rates were proportional to the growth rates (invasiveness) of

tumors.120 As will be discussed later, a positive (increasing) en-

tropy production rate is a useful measure to infer chaotic sys-

tems (in combination with other methods).

The mutation/inactivation of p53 is a critical event in the devel-

opment of cancer cells and CSCs. Indeed, p53 inhibition and

hTERT activation followed by the aberrant acquisition of stem

cell-associated morphogens, such as those conferred by EMT

programs, Nodal, Shh, Notch, Pax, Par, TGF-b, and Wnt pro-

teins, to name a few, determine the phenotypic plasticity in

CSCs.121 The oscillations of these morphogens provide the

developmental cues for tumor structures and their regenerative

potentia.l121 Many of thesemorphogens regulating cancer stem-

ness are also involved in the reaction-diffusion processes gov-

erning embryonic development as periodic oscillators. The

time seriesmeasurements of these factors’ oscillations in tumors

fitted into the above-discussed equations, with appropriate

state-space reconstruction algorithms, may provide a simple

framework for detecting chaotic attractors in the oscillatory dy-

namics of such proteins in cancer (stem) cells.

Metabolic networksmay also exhibit chaotic dynamics. Tumor

ecosystems exhibit drastic phenotypic transitions under nutri-

ents and growth factor oscillations. For example, under glucose

starvation, glycolytic oscillations were observed in individual

HeLa cervical cancer cells.122 The intracellular oscillations and

intercellular synchronization of such oscillatory dynamics were

collectively observed under nutrient deprivation.122 With FBS

serum starvation, collective asynchronous and aperiodic oscilla-

tions with differing amplitudes and periods were observed form-

ing heterogeneous behavioral patterns.122 Aperiodicity, irreg-

ular, and asynchronous oscillations are hallmarks of chaotic

dynamics. Further investigation is required in the plausibility/

emergence of chaos in metabolic networks.

The key point to be recognized here is that periodic oscillators

(limit cycles) can induce and transition toward chaotic behaviors
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when stability is lost. Oscillators are potentially a rich source of

chaotic dynamics. In fact, chaotic oscillations in dissipative sys-

tems were first observed when periodic self-oscillators were

periodically perturbed.123 The theoretical framework of chaotiza-

tion of oscillations by periodic forcing was provided by Russian

mathematicians like Afraimovich and Shilnikov, who indicated

three possible bifurcation mechanisms by which this chaos

can be generated, and these have been documented in turbulent

fluid models, such as the Taylor-Couette flows.123 For example,

yeast extracts with periodic perturbation of varying glucose

fluxes will begin to chaotically oscillate.123

While the investigation of chaotic oscillations at a single gene

or single protein level remain under-explored in cancer research,

a recent study in healthy systems may be of central interest to

cancer systems. NF-kB is a central TF involved in complex pro-

cesses, such as inflammation, tumor-immune homeostasis, and

tumor microenvironment dynamics. The activation of the NF-kB

pathway and its associated signaling cascades exert significant

immunomodulatory effects involved in inflammation, cancer

immortalization/telomerase overexpression, cellular prolifera-

tion, and cell survival, critical processes for cancer progres-

sion.124 Oscillations in the nuclear cytoplasmic translocation of

NF-kB regulate these complex dynamics. Jensen and

Krishna,125 using a mathematical model, demonstrated that

when the amplitude of an externally applied stimulus, tumor

necrosis factor (TNF), exceeded a critical threshold, the coexis-

tence of multiple synchronized states and eventually chaotic dy-

namics of the nuclear NF-kB concentration (oscillation) are

observed. Furthermore, it was suggested that this could be

used as a way of externally controlling immune response, DNA

repair, and apoptotic pathways.125 In confirmation of these

models, chaotic oscillations in gene expression and protein

oscillation dynamics were confirmed in a recent set of studies

by Heltberg et al.5,126 The team demonstrated that NF-kB-

dependent genes can be frequency controlled by controlling

an externally applied TNF amplitude.126

Periodic inputs of a signal can cause the dependent genetic

oscillations to undergo frequency-locking and phase coherence

to the external signal. Thus, periodic stimulus with TNF was

shown to synergistically enhance the NF-kB oscillations, which

above a critical threshold at large enough amplitudes of TNF,

overcame the noise/stochasticity of the gene expression land-

scape and resulted in the birth of chaotic attractors.5,126 The

NF-kB protein was shown to be most effective at activating

downstream genes via signaling cascades and optimally tuning

the immune cells when in a chaotic state. Strange attractors

were shown to form by the cellular protein densities. Chaotic dy-

namics in protein/gene oscillations were also suggested to

enhance the formation of protein complexes required for signal

amplification.5 These findings suggest chaotic dynamics may

be used by cancer cells, master hijackers of the immune system,

to regulate their complex signaling dynamics and cell fate deci-

sion making. Heltberg et al.5,125,126 also demonstrated that

chaotic dynamics of NF-kB in individual cell states may increase

the dynamical heterogeneity of the populations and allow them

to adapt to harsh, fluctuant environmental conditions. When

cytotoxic drug perturbations were considered in the model,

due to large fluctuations, chaotic cell states survived. Therefore,

chaotic dynamics may provide cancer cell populations adaptive
heterogeneity and therapy resistance.5,125 The chaotic dynamics

of these signaling pathways, if experimentally confirmed in

cancer cells, would serve as critical targets for cancer-specific

therapies and reprogramming cancer attractor (epigenetic) land-

scapes.

Usingmicrofluidic cell cultures, Heltberg et al.126 delivered pe-

riodic TNF simulation to fibroblasts and recorded the NF-kB nu-

clear localization by live-cell fluorescence imaging. CellProfiler

and MATLAB peak analysis algorithms were used to track cells

and quantify the NF-kB translocation, where the activation was

quantified as mean nuclear fluorescence intensity normalized

by mean cytoplasm intensity.126 The transitions of phase locking

in an oscillatory manner were observed even among nonequilib-

rium fluctuations. Simulations using differential equations further

revealed that these oscillatory frequency jumps are chaotic at-

tractors, whereas the driving TNF force oscillation increased,

deterministic chaoswas observed in state space.5 The fourth-or-

der Runge-Kutta and Gillespie algorithms were used in the

deterministic and stochastic stimulations of the TF dynamics,

respectively. Before the chaotic transition, period doubling, a

signature of chaos, was observed in the NF-kB oscillation ampli-

tudes in time. Even at the early onset of chaos, transient and un-

stable limit cycle behaviors were formed—confirming the birth of

chaotic attractor as discussed in earlier sections. These findings

and methods should be extended to tumor ecosystems, and

their TF networks, such as the stemness networks driving

pediatric GBM and MB discussed previously. Due to the critical

relevance of these findings in chaos detection, below are the

mathematical equations needed to simulate the chaotic attrac-

tors observed in this study.

Assume the NF-kB can bind to an enhancer or operator region

and form complexes to bind the RNA polymerase with different

affinity. The protein synthesis and mRNA level transcribed by

the i-th genes (i.e., transcription and translation) is described

by the following differential equations:

8>>><
>>>:

_mi =gi

Nhi

khii +Nhi
� dimi

_pi = bimi � Dipi

;

where mi is the concentration of mRNA of i-th-species, and pi is

the protein levels of i-th species, the affinity of the binding is de-

noted by the parameter ki (determines the concentration of NF-

kB that results in 50% maximal gene expression enhancement),

and the corresponding Hill coefficient is hi (a measure of cooper-

ativity of TF at the gene). The first term in the equation is the Hill

function of mRNA, used normally as a description of proteins

produced by genes as governed by TFs. The sigmoidal curves

produced by the Hill functions enable them to be ideal candi-

dates for BNmodeling as well. Here, gi describes themRNA pro-

duction per time, di the decay of mRNA per time, bi the protein

production per time, and Di the decay of protein per time. All

these parameters can be experimentally quantified with time se-

ries cancer datasets.

It must be emphasized again that the study of chaos in cancer

processes should, when possible, be paired with the analyses of

computational models/simulations of such processes. In gen-

eral, the gold standard for empirical detection of chaos is to
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demonstrate that a particular parameter change produces chaos

in a model as well as in the real system that the model is simu-

lating. An example of this was the empirical works by Heltberg

et al.5 discussed above. The emerging paradigm of complex sys-

tems is essentially the marriage between computational algo-

rithms/simulations and empirical analyses. On a tangential

note, cancer dynamics can also be visualized from an evolu-

tionary game theoretic perspective when studying the adaptive

behaviors of tumor ecosystems to cancer therapies. Tumor het-

erogeneity and therapy resistance can be explained as adaptive

game strategies in response to their environmental condi-

tions.127 For instance, the total chemotherapy delivery, usage,

and time to recovery can be optimally controlled by solving a

system-specific Hamilton-Jacobi-Bellman equation.127 Such

principles of game theory dynamics will not be discussed herein.

NETWORK SCIENCE AND PATTERN INFERENCE

From here onward, the central focus of the paper will be the infer-

ence and state-space reconstruction of cancer networks. To

model dynamic networks from time series data, first we must

know how to reverse engineer the underlying networks from

real data. Let us suppose we do not necessarily adhere to a

Boolean framework or the CMEs discussed so far to infer the

dynamics of complex networks. How canwe reconstruct param-

eter-free biological networks using experimentally derived data-

sets without such assumptions? This brief section is allocated to

provide the mathematical framework of graph networks and a

general recipe to reconstruct parameter-free GRNs and PPIs

from experimental cancer datasets. Only then can algorithms

to infer chaotic attractor dynamics on the networks’ signaling

state space be discussed in a meaningful manner. A multitude

of algorithmic pipelines exist for reconstructing cancer signaling

networks frommolecular/gene expression datasets. These algo-

rithms have been reviewed in Uthamacumaran,1 and therefore

will not be rediscussed in detail herein.

Network science is the interdisciplinary branch of complexity

science in which the statistical mechanics and dynamics of com-

plex, nonlinear networks are investigated. Networks are univer-

sal, versatile tools at the heart of pattern science. Networks are

used to study complex diseases, such as cancer, and assist

finding targeted therapies (personalized pharmacogenomics) in

precision oncology.128 Network medicine advocates the use of

networks in clinical oncology and thus provides a bridge be-

tween pattern science and cancer research. The initial condi-

tions of network theory stems from a discipline of mathematics,

graph theory. Any biological network, regardless of its

complexity, can be represented as a graph network. Graphs

are abstract representations of the relationships between the

variousmembers of a system (network). A typical graph structure

G (V, E) consists of the associations between various nodes

(vertices) V indicated by the edges (lines) E connecting them.

Graphs can be directed or undirected, while the nodes can

have labels and features which determine which type of learning

algorithms are most suitable to optimize their function or classi-

fication/prediction.129

For instance, Z scores assess the gene-gene correlations in

cell clusters identified from the gene expression matrix of

scRNA-seq datasets.130 Z scores are preferred over Pearson
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or Spearman correlation metrics for single-cell datasets, while

the latter may be better suited for bulk RNA-seq datasets. The

cell clustering must be performed in a pre-processing step

with log-normalized gene expression counts. The identified

gene-gene pairwise correlations serve as the weighted edges

of the inferred regulatory network, where the nodes represent

the genes.130 The same interpretation holds for other types of

molecular networks (e.g., PPIs, metabolic networks). The bigS-

Cale algorithm is available as a machine learning pipeline to

automatize these processes and thereby serve as computational

tools to infer cancer networks.130

A computer recognizes a graph as various matrices. For

instance, a feature graph or an incidence matrix, of size n 3 m,

represents the statistical information about the relationships be-

tween two classes (i.e., vertex-edge), where n is the number of

nodes andm is the number of edges. The information on the inci-

dence matrix can be extracted to more useful matrices, such as

the adjacency matrix, Aij; a matrix wherein the components are

binarized to either 0 or 1 depending on whether the nodes of

the graph are adjacent (connected) or not. The connectivity (as-

sociations between the nodes) can also be weighted and up-

dated.83,129 The adjacency matrix of gene expression deter-

mines the network structure.

If the network is weighted, Aij; can take positive values different

from one representing the weight of the link (relationship). In gen-

eral, directed, and undirected graph networks are represented by

symmetric and unsymmetric matrices, respectively.129 There are

many othermatrices used to assign the relationships in a complex

network. For instance, a degree matrix is a diagonal matrix which

contains information about the degree (the number of nodes con-

nected to each edge of a graph network). Various network param-

eters, such as the degree, directionality, smoothness (i.e., Graph

Laplacian), architecture, and connectivity (e.g., power law/scale-

free, small-world, Erdos-Renyi, etc.), are used to characterize

the graph network’s topology.83,131 Some measures to assess a

network structure’s statistical mechanics include the following:

(1) clustering coefficients (to define the local cohesion of network

structures, such as cliques, motifs, communities, etc.), (2) central-

ity (isolate hubs of information), and (3) degree distribution and de-

gree-correlations.83

Functional assignment of genes is often performed using clus-

tering or undirected graphical models, including Markov random

fields, while pathway reconstruction is often based on directed

probabilistic graphical models. Common network clustering

algorithms (e.g., Bayesian clustering, K-means, spectral clus-

tering, agglomerative hierarchical clustering) and pairwise inter-

actions’ information theoretic measures (e.g., entropy scores,

mutual information) are then used to infer statistically correlated

network structures.82,132 For instance, cancer networks can be

graph partitioned into smaller sub-networks via hierarchical clus-

tering and dimensionality reduction techniques.133 Several mea-

sures can be used to assess the similarity of two time series gene

expression datasets, both model-free, such as Euclidean dis-

tance, correlation and lag-correlation, and model-based

methods, such as the Kullback-Leibler distance. Spectral clus-

tering algorithms remain among the most robust network infer-

ence/graph partitioning tools used to find community clusters

and protein expression- and gene expression-based cancer

subtypes within complex networks.134,135
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The typical workflow for dissecting intra-tumoral heterogene-

ity from single-cell datasets is as follows: (1) filtering the gene

expressionmatrix (i.e., discard low quality cells and zero counts),

(2) data processing (i.e., normalization of gene expression, impu-

tation, and feature-selection/identify differentially expressed

genes via correlation metrics), (3) correlation analysis—addi-

tional correlation metrics, such as Z scores, or similarity metrics,

such as the Jaccard index, are used to identify clusters of pat-

terns, (4) visualization via dimensionality reduction (find a low-

dimensional representation of the dataset while preserving

essential structures), (5) clustering (algorithms to label cells

with discrete states/types) and modularity (graph clustering/

community structure detection), (6) identify differentially ex-

pressed patterns, and (7) lineage trajectory tracing (various

pseudotime inference algorithms exist for differentiation and

lineage trajectory mapping).1,136

The lineage trajectory tracing (pseudotime inference) tech-

niques, traditionally applied to stem cell datasets, are extensively

used in model systems that exhibit cell fate transitions, such as

cancers. When time series datasets are absent (the status in can-

cer research), pseudotime trajectory analysis is used to infer the

trajectories of cell fates from their static gene expression datasets.

The pseudotime is a quantitative measure of single-cell progres-

sion through a biological process, such as differentiation/cell

fate transition. Following trajectory analysis, the identified clusters

and gene-gene or protein-protein correlations are used to recon-

struct the inferred regulatory networks.136GSEAcan further reveal

clinically relevant transcriptomic markers and functional network

modules. Network properties are then assessed to study the

network structure and infer information flow (dynamics).

Some important, general measures/properties of complex

networks include the following:

(1) Degree (connectivity): k, indicates how many links the

node has to other nodes in a network. The connectivity

can be undirected or directed.

(2) Degree distribution: P(k), gives the probability that a

selected node has exactly k-links. Unlike a random

network, a power law degree distribution indicates that

a few hubs hold numerous small nodes. The degree distri-

bution is obtained by counting the number of nodes N(k)

with k-links and dividing by the total number of nodes N.

Most biological networks are scale-free, and the degree

distribution obeys a power law PðkÞ � k�g, where g is

the degree exponent.82 The smaller the g, the more

important the role of the hubs in the network. When

g>3, the hubs become quite irrelevant and the network

dynamics transitions toward randomness. When 2> g>

3, there is a hierarchy of hubs, with the most connected

hubs in contact with the large fraction of all nodes. If

g = 2, the largest hubs are in contact with the large frac-

tion of all nodes. In general, universal properties of scale-

free networks exist if g<3, where the dispersion of the dis-

tribution s= Ck2D� Ck2D increases with the number of no-

des, and higher the degree of robustness against acci-

dental node failures or random perturbations.82,83

(3) Shortest path/mean path length: finding the shortest path

of a complex dynamical network is NP-complete. Various

heuristics exist to infer the mean path length.
(4) Clustering coefficient: Ci =
2ni

kðk�1Þ denotes the clustering

coefficient, where ni is the number of links connecting

the ki neighbors of node i to each other.82 The clustering

coefficient gives the number of triangles that go through

the node i. The average clustering coefficient C(k) of all

nodes with k-links, for many real networks is approxi-

mately k�1 indicating a hierarchical character.

(5) Modularity: most real-world, complex networks are het-

erogeneous, nonlinear, non-random, and exhibit modu-

larity (i.e., cluster into distinct groups/modules with vary-

ingly dense connectivity). Several algorithms have been

proposed to compute partitions of networks into commu-

nities that score high on a graph clustering index called

modularity. However, modularity optimization is an NP-

hard problem, where our current approaches, including

the most efficient graph clustering algorithms, are only

heuristics.137,138 A general benchmark to assess the

modularity and the richness of communities within a com-

plex network is given by the Newman-Girvan modularity

measure, which states:

Q =
1

2m

X
i:j

½Aij �Pij�dðci; cjÞ;

where Q is the modularity index (expected fraction of edges

forming a community), indices i and j correspond to the nodes,

c represents their respective communities, and Aij is the adja-

cency matrix of the graph partition of interest.139 Consider the

matrix formulation of modularity as follows. The actual number

of edges between i and j is given by the adjacency matrix:

Aij =

�
1 if there is an edge ði; jÞ
0 otherwise

and Pij is the expected number

of edges between nodes i and j, then the modularity Q is the

sum of Aij � Pij over all pairs of vertices ði; jÞ falling into the

same group. The simplest approach to partition the nodes is to

consider a bipartition. This method is analogous to finding the

ground state energy of a ferromagnetic random field, known as

the Ising model.140

We define, Si =

�
+ 1 if vertex i belongs to group A
�1 if vertex i belongs to group B

, then

Q = 1
4m ½Aij � Pij�SiSj. The optimization of this Ising spin model

is NP-hard. Thus, to maximize Q, we can convert the discrete

spin model into a continuous eigenvalue problem, such that

we seek to maximize: ½Aij � Pij�S = lS, where l is the Lagrange

multiplier and the discrete constraint for the spin S is relaxed

toward. jSj2 = ne Z:

The Louvain community detection algorithm is often used as

an efficient community structure searching heuristic, which func-

tions based on two iterative steps: (1) find a local maximum and

(2) compare neighbors to the local maximum by building a new

network whose nodes are the communities, and iterate.141 Due

to the roughness of a network’s modularity landscape, finding

community structures is not the sole pattern used to assess

complex network structure-function relationships. The dynamic

curves of a network’s associations are of central interest, espe-

cially when studying dynamical diseases.

The following are few examples of network inference and visu-

alization tools available to pattern scientists investigating cancer
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Figure 3. Results with Seurat pipeline: A
framework for clustering, phenotyping,
pseudotiming, and inferring GRNs from
single-cell data
(A) TSNE plot in Seurat. The t-SNE pattern space of
a few pediatric GBM samples generated by Seurat
(n= 6 samples, with N = 846 cells analyzed; count
matrix from Neftel et al.).2

(B) UMAP plot in Seurat. The UMAP Rplot of a few
pediatric GBM samples; same data as in (A).
(C) UMAP plot of a GSC sample. UMAP plot of a
GSC single sample shows two distinct cell states
(sample BT127_L, N = 500 random cells in count
matrix from Richards et al.).3
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networks. Some results have been computed to help illustrate

the essential concepts. Seurat is a machine learning pipeline

used as a gold standard pre-processing and clustering tool for

dissecting cancer gene expression datasets.142 The identified

clusters can be further sorted by other algorithmic packages

into regulatory flow networks. Cells cluster together based on

similarly expressed genes. Graph-based clustering algorithms

are used by Seurat to assign potential phenotypic variations

from differentially expressed genes. An example of a graph-

based clustering algorithm is a K-nearest neighbor (KNN) graph,

where the edges are drawn between cells with similar feature

expression patterns, and the graph is partitioned into highly

connected cliques or communities. Following on from this, the

Louvain community detection algorithm is used for modularity

optimization. Then, nonlinear dimensionality reduction methods,

such as uniform manifold approximation and projection (UMAP)

or t-distributed stochastic neighbor embedding (t-SNE), are

used to visualize the sorted clusters. Positive and negative

expression markers distinguishing the distinct phenotypic

clusters can also be extracted to reconstruct the regulatory net-

works. In principle, once these cluster-specificmarkers are iden-

tified in cancer populations, chaos detection algorithms, such as

Lyapunov exponents estimations, and entropy rates can be used

to infer chaotic patterns in the individual signal’s time series. Sin-

gle-cell datasets can be highly noisy, and therefore more com-

plex machine algorithms for chaos detection will be required,

as discussed in the next sections. Regardless, Seurat-like tools

are powerful pre-processing algorithms to visualize the cancer

networks. To demonstrate the applicability of Seurat-like clus-

tering and network visualization algorithms, allowme to illustrate

Seurat’s performance on the pediatric cancer datasets fromNef-

tel et al.2 and on the GSC datasets from Richards et al.3

Figure 3A shows the Seurat-generated Rplot of a few pediat-

ric samples’ GBM cells clustered into four global clusters in a

t-SNE embedding. The tumor heterogeneity is well-visualized

by the various colors indicating the six cell clusters with simi-

larly expressed gene patterns. Figure 3B shows the same re-

sults for a few pediatric samples’ GBM cells under a UMAP

embedding space, where three distinct clusters are observed.
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Finally, Figure 3C shows two distinct cell

clusters for adult GSC cells, single sample

(BT127_L) from Richards et al.3 dataset in

UMAP embedding. The distinct clusters

from the dimensionality-reduced static

datasets show that different classes of
drugs (targeted therapies) may be more effective in specific

subtypes of a patient’s cancer. The key insight to consider is

that with time series, dynamical structures connecting the

distinct clusters may emerge. If such attractor patterns are

observed showing the transitions and potential interconvert-

ibility of cell fates from one cluster to another, there are specific

genes and molecular regulatory networks underlying these

dynamical attractors. In principle, targeting such attractors, if

detected, provides the most robust approach to cancer ther-

apy. It may further pave road to reprogramming cancer (stem)

cells toward benign states.

Figure 4 shows the visualization of selectedmarkers in the cells

projected on the UMAP dimensionality reduction space from

Figure1.Asdiscussed, theselectedmarkerscompared inFigure4

are threeof the four essentialTFs identifiedbySuvà etal.54 for glio-

blastoma stemness. Figure 4A corresponds to the expression of

these stemness factors in a few pediatric GBM samples, corre-

sponding to Figure 3B. Figure 4B compares the stemness factors

in a single pediatricGBMpatient sample (BT1160) to demonstrate

the applicability of these tools in assessing personalized, patient-

specific targeted therapies. Finally, Figure 4C shows themarkers’

expression in adult GSC cells, corresponding to Figure 3C. The

key remarkestablishedhere is that thesestemness factors areex-

pressed in all pediatric GBM clusters, further blurring the distinc-

tion between GSCs and the ‘‘differentiated’’ cancer cells (GBMs).

Asmentionedpreviously,mature/differentiatedGBMphenotypes

could be reprogrammed into GSCs by the induction of these

stemness TFs.54 The dynamics of these stemness networks

must be further investigated with time series analysis.

Figure 5 displays violin plots of the single cell data from Neftel

et al.2 for a few pediatric patient GBM samples (corresponding to

Figure 3A). The sorted identity classes (on the x axis) indicate the

distinct cell clusters identified by the average expression of the

marker being potted. The compared gene markers are the four

major molecular subtypes identified by Neftel et al.2 discussed

in ‘‘Cancer networks’’. From a static point of view they may be

distinct cell clusters. The Seurat-guided clustering tool was

used to generate these data. However, with time series analysis,

dynamical attractors may join the clusters, as will be evident in



Figure 4. Feature plots of stemness marker
expressions in GBM and GSC samples
(A) Selected stemness markers’ expression in a few
patients. Few pediatric GBM samples’ UMAP
pattern space of selected markers (GBM stemness
factors). A higher expression is denoted by the blue
color gradient.
(B) Selected stemness markers’ expression in a
single patient. Single pediatric GBM sample’s
UMAP pattern space of selected markers.
(C) Selected stemness markers in a single GSC
sample. Single sample GSC feature plot of selected
markers.
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the single-cell energy path (scEpath) algorithm discussed in the

following section.

Slingshot is a pre-processing, cell lineage classification, and

trajectory inference algorithm in which diffusion maps, PCA,

etc., are used as dimensionality reduction techniques followed

bymodel-based clustering of cell populations.143 The underlying

GRNs and their cliques (maximally connected subnetworks) can

be assessed from the distinct clusters mapped on the energy

landscape using the above-defined network measures and cor-

relation metrics.143 To demonstrate, Figure 6A and Figure 6B

show the pseudotime inference of cell states from the single pe-

diatric GBM dataset (BT1160) under a PCA and diffusion map

pattern spaces, respectively. As seen, the black curve indicating

the inferred trajectory transitions from the distinct cell clusters

depend on the type of dimensionality reduction technique

used, indicating that neither by themselves provide a realistic

description of the actual cell state trajectories. Three distinct

clusters of similarly expressed gene expression patterns were

identified in the sample from the generated expression heat-

maps in Slingshot and in Seurat (data not shown).

As a final remark to this section, there are a fewemerging empir-

ical techniques to visualize trajectory inference/cell fate transitions

in single-cell studies that pattern scientists should be aware of.

The cell fate trajectories can be quasi-mapped as attractors in

state space via these emerging methods and should be coupled

to the algorithmic approaches discussed here. Nearly all currently

used techniques for gene expression profiling in single cells do not

directly capture transcriptional dynamics. Transcription dynamics

can be quantitatively visualized directly in vivo using RNA imaging

techniques or it can be inferred from (short-lived) protein re-

porters. For many genes, several RNAs are synthesized almost

simultaneously, followed by a period of transcriptional quies-

cence, known as transcriptional bursting or intermittency.144 La

Manno et al.145 demonstrated a method that enables the level

and rate of change of gene expression dynamics to be estimated

simultaneously for each gene in a single-cell dissection. Newly

transcribed mRNA contains segments that are spliced during
mRNA maturation. For a gene that is stably

expressed, a small fraction of its mRNA is

found in the unspliced form.

When a gene has been activated, for a

brief time there will be a higher proportion

of immature transcripts, and the converse

holds true as well. Therefore, the ratio of

unspliced to spliced mRNA can be used

to infer instantaneous expression dy-
namics—referred to as the ‘‘RNA velocity’’ of each gene during

cancer (stem) cell differentiation and cell fate decision making.

The velocity field can be projected on a t-SNE plot’s pattern

space where the cell clusters labeled with specific differentiation

markers can be visualized. More recently, Sci-fate was demon-

strated as a new method using combinatorial cell indexing and

4-thiouridine labeling of newly synthesized mRNA to concur-

rently profile the single-cell transcriptome.146 Lung adenocarci-

noma cells were treated by a drug for perturbation analysis in

gene expression dynamics, for various time intervals up to

10 h. RNA velocity analysis revealed to be a powerful tool to cap-

ture the main cell fate trajectory types in the lung cancer

profiles.146

In principle, the previously discussed general chaos detection

algorithms, such as Lyapunov exponents estimation and fractal

dimension analysis, can be applied on the time series of the iden-

tified markers in these RNA velocity methods.145 Despite that,

there are two caveats: (1) as the cell count increases, the pattern

space can becomedifficult to follow and,more fundamentally, (2)

the projection of scRNA-seq data into low-dimensional latent

spaces may remove many of the essential features of the com-

plex dynamics. For instance, to obtain the UMAP or t-SNE plot,

certain hyper-parametersmust be tuned, andchanging thesepa-

rameters even slightly can drastically alter the clustering and re-

sults/interpretation (i.e., hyperparameter tuning is NP-hard).

Regardless, suppose chaos is indeed detected in these patterns,

either at the level of cell fate trajectories or at the level of their in-

dividual gene/protein networks. How does one determine its un-

derlying causal structure, the strange attractor (if it exists)?

ATTRACTOR RECONSTRUCTION METHODS

By now we have cultivated an intuition for the patterns and

causal structures (attractors) complex systems can produce.

The analytical detection of limit cycles, tori, and strange attrac-

tors within the state-space reconstruction of dynamical systems

remains an intractable, NP-hard problem. Furthermore,
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Figure 5. GBM cell clustering by Seurat
Rplot of a few pediatric GBM samples’ expression
levels of selected markers in the distinct identified
cell clusters are shown. The markers correspond to
the four GBM molecular subtypes, as discussed.
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correlation does not imply causation. This remains a funda-

mental issue in our current statistical approaches to studying

cancer signaling dynamics. The statistical patterns detected by

contemporary methods provide mostly a static picture of gene

expression, but how does one infer dynamics? If there are

chaotic signatures in an experimentally acquired time series da-

taset, how will they be distinguished from noise? To reconcile

these problems, the following sections are allocated to pertinent

algorithms in causal discovery that should be incorporated into

the network inference algorithms and Waddington landscape

reconstruction algorithms discussed herein. The following algo-

rithms can be merged with many of the freely available network

reconstruction algorithms discussed not only in this paper, but

those reviewed in Uthamacumaran1 as well.

As mentioned, cancer signals, such as time series gene

expression and protein oscillatory dynamics, may reveal rich

chaotic structures, such as strange attractors and fractal pat-

terns. The classical approaches to detect such causal structures

include: Lyapunov exponents, fractal dimension, entropy, time-

delay embedding algorithms, and empirical dynamic modeling

(e.g., convergent cross-mapping [CCM]).147 Lyapunov expo-

nents and fractal dimensions are useful algorithms to verify

whether a detected attractor in time series is chaotic. However,

entropy deserves special attention and, hence, its discussion
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has been allocated to the next section on

control of chaos. Although formally, a sys-

tem’s degree of chaos is quantified by the

magnitude of its largest Lyapunov expo-

nents, they are computationally difficult to

estimate from finite, noisy time series mea-

surements. Another fruitful direction in the

detection of chaotic systems is the use of

spectral frequency decomposition (e.g.,

Fourier transform, wavelet analysis). Still,

thesemethods too require some other ma-

chine algorithms or attractor reconstruc-

tion techniques as follow-ups for causality

inference in parameter-free, complex sys-

tems (note: the term parameter-free is

used here to also denote systems for

which the governing equations of motions

and parameters are unknown).

Time-delay coordinate embedding is the

state-of-the-art approach for phase space

reconstruction and causal pattern discov-

ery. Nevertheless, they may have dimen-

sionality limits to consider. Let us assume

we can empirically measure two variables

in a dynamical system (e.g., time point

and normalized gene expression level or

protein oscillation). Takens’s theorem

gives us a one-to-one mapping between
the original manifold and the reconstructed shadow manifolds

via time-lags of the two compared variables.148 These methods

allow us to validate whether two time series variables belong to

the same dynamical system (i.e., causally related) (see Figure 7).

The points that are nearby on the shadow manifold of one vari-

able will also correspond to those on the other’s manifold

wherein their nearest neighbors are denser and closer with

longer time series (Figure 7). Cross-mapping estimates will

further increase the precision of causal structures.148

CCM is a causal network inference technique that recon-

structs mechanistic couplings in variables when one variable

can encapsulate information about a dynamical attractor

observed in other patches of the state space.148 CCM is most

applicable for time series with recurrent or oscillatory behaviors,

as in the case of cancer cybernetics. CCM relies on two theo-

rems central to the time-delay coordinate embedding of attrac-

tors: Whitney’s theorem and Takens’s theorem. CCM allows

one to embed chaotic signals from cancer time series on state

space and reconstruct their underlying attractor dynamics. The

implications of CCM were recently demonstrated in a study

that consisted of patients with markers for cyclic thrombocyto-

penia, in which multiple cells and proteins undergo abnormal os-

cillations149. An R-software implementation of CCM algorithms

is available under the rEDM package (see data and code



Figure 6. Pseudotime trajectory inference in
GBM sample
(A) PCA on a single GBM patient. The PCA plot of a
single pediatric GBM sample’s pseudotime trajec-
tory inference by the Slingshot algorithm.
(B) Diffusion map on a single GBM patient. Diffusion
map plot of a single pediatric GBM sample’s
pseudotime ordering by the Slingshot algorithm.
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availability). The rEDMpackage can be applied in the embedding

of any chaotic time series cancer signal.

An empirical dynamical toolbox was developed for inferring

networks of biomarker interactions in complex diseases in

pattern space. Krieger et al.149 combined CCM, transfer entropy,

and dynamical mode decomposition (DMD), three non-para-

metric causal inference techniques, to study attractor dynamics

in these complex disease networks (e.g., hemato-immune net-

works). Transfer entropy is an information theoretic network

inference tool that draws on mutual information and seeks to

quantify the amount of entropy that is shared between two caus-

ally linked time series. DMD attempts to quantify a smaller num-

ber of behaviors (modes) of a system by decomposing the time

series, which, as an ensemble, fit well to complex exponential

functions.149 Empirical dynamics serve as a blueprint with

broader applicability in understanding and treating complex dis-

orders, such as cancers, as dynamical systems. These algo-

rithms for attractor reconstruction should be paired with the

network inference and epigenetic landscape reconstruction

tools for single-cell datasets discussed herein.
CONTROL OF CHAOS

Entropy, tomost systems thinkers, rings a bell to the second lawof

thermodynamics denoting the tendency of natural processes to

evolve toward the increased disorder of the universe. In statistical

mechanicsand information theory, entropy isusedasameasureof

complexity. Entropy is a quantitative measure of the uncertainty

(predictability) of an outcome. The larger the entropy of a system,

themore complex the system tends to be, andmore information is

required for its description. As mentioned, tumors that exhibit a

greater value of entropy production rate have an increased

invasive ability, indicating entropy is a quantitative index of the

metastaticpotential of tumors.120However, in dynamical systems,

entropy is a robustmeasure of chaotic dynamics. It emerges in the

algorithms used for chaos detection and control. For instance,

Toker etal.150demonstrated that thechaosdecision treealgorithm

performswith very highaccuracyacrossawide variety of complex

systems, even in the presence of relatively high levels ofmeasure-

ment noise. The chaos decision tree algorithm approximates the

degree of chaos by calculating the permutation entropy of the in-

putted signal, after it has been de-noised and corrected for

possible over-sampling.150 It has been tested on a model of the

transcription of the NF-kB protein complex, adding further algo-

rithmic support to the findings by Heltberg et al.,5 by comparing

the permutation entropy of the original time series to the permuta-

tion entropies of random surrogates of that time series.

There are many variants of entropy applicable in the study of

complex dynamical systems. For instance, the Kolmogorov en-
tropy, hK , is related to the Lyapunov characteristic exponents

li, as given by:

hK =

Z X
li>0

lidm:

It is an information metric to characterize the irregularity in the

oscillations of dynamical systems. A positivity in topological en-

tropy is another measure of chaos related to the exponential

growth rate of the number of UPOs (unstable periodic orbits)

embedded within a chaotic attractor.151 A set of UPOs can

also be thought of as the skeletal framework for chaotic dy-

namics.152 Recall that an unstable periodic orbit (limit cycle)

can bifurcate into a strange attractor at the onset of chaos.

Furthermore, many dynamical averages, such as the Lyapunov

exponents, the fractal dimensions, and the entropy, can by effi-

ciently expressed in terms of a sum over the UPOs. The UPOs

can be further fine-grained toward the detection of periodic un-

stable points (PUPs). In principle, detecting these UPOs and

PUPs in cancer datasets would reduce the search space for

chaotic attractors. The science of navigating the state space

for such causal structures and unstable orbits, to control chaotic

systems is defined as cybernetics.

Cybernetics is the control theory of the regulatory processes

and communication within complex systems.153 Cybernetic

approaches can be designed to stabilize by means of small

perturbations one of the many UPOs in a chaotic attractor of

a feedback loop system, to switch it toward a more stable at-

tractor. For instance, synchronization of certain chemical oscil-

lations during tumor pattern formation would reduce tumor het-

erogeneity (i.e., synchronization of chaos). A cybernetician

seeks to control the UPOs embedded in a chaotic attractor,

to reprogram the dynamical system’s chaotic behaviors toward

stability, regularity, and predictability. Recall that, due to sensi-

tive dependence on initial conditions, a tiny perturbation (con-

trol) can lead to a drastic change in the chaotic system’s

behavior. While this definition is the generating mechanism of

chaos, it is also its weak point used to control chaos. Here

we discuss some general cybernetic methods for the detection

and control of chaos in dynamical systems. This is easy to

conceive in biological systems when target genes or proteins

are identified in regulatory networks, which can be controlled

by various techniques, such as pharmacological stimulants/in-

hibitors or gene-editing techniques (CRISPR-Cas9, viral trans-

fection, etc.). Even so, what if we could use certain algorithms

to know how much of a stimulant/inhibitor is needed to fine-

tune the chemical oscillations of a system? Is there a mathe-

matical framework to control chaos (if it exists) given a specific

master regulatory cancer network? Maximal entropy provides
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Figure 7. Takens’s theorem
The time-delay coordinate embedding of a single variable X of a signal’s time
trace is shown. The time delay is represented by the tau ðtÞ parameter and t
corresponds to time. The attractor reconstruction of the embedded signal is
shown as a Lorenz attractor.
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an answer, at least in part, for short-term time series fore-

casting and control of such complex systems.

A control chaos algorithm for the detection of PUP’s was devel-

oped by Ott, Grebogi, and Yorke: the OGY method.154 In control

theory, chaos is defined as a superposition of a very large number

of unstable periodic motions.155 In the OGY algorithm, small

forced, periodic kicks are applied to the system to maintain it

near the desired unstable periodic orbit of a chaotic attractor.

Themost studied example is the transformation of periodicmotion

into chaotic motion, and vice versa, by an external harmonic exci-

tation (periodic kicks) knowing the oscillation amplitudes and fre-

quencyspectraof thedynamical system(i.e., feedforwardcontrol).

Pierson and Moss156 showed that chaotic attractors can be de-

tected reliably by using these methods on the van der Pol oscil-

lator, known toexhibit chaotic behaviors aboveacritical threshold.

An example of such a method was earlier seen in the findings by

Heltberg et al.,5 in controlling the attractor dynamics of the NF-

kBTFkinetics via periodic forcing of TNF amplitudes. InOGYcon-

trol, we exploit the understanding of the chaotic attractor’s unsta-

ble manifold structure and the denseness of the UPOs on the at-

tractor, for controllability of the chaos. For instance, the OGY

algorithm has been demonstrated in controlling the oscillations

of cardiac and brain tissues.155 Another approach is the Pyragas

method based on a time-delay feedback to generate or suppress

chaos, as seen in the findings of Khajanchi and colleagues,47,98

where a time-delayed model of chaotic attractors was demon-

strated in tumor growth invasion. Furthermore,works on the stabi-

lization/spatiotemporal control of chaos in reaction-diffusion sys-

tems have been documented. For example, Matsumoto and

Tsuda157 demonstrated the ability to suppress spatiotemporal

chaos in the Belousov-Zhabotinsky reaction by adding a white

noise disturbance. Topological entropy and entropy rates are at

the heart of all these methods in chaos detection.

Given entropy is a measure of control in chaos, entropy met-

rics and entropy rates can be used to reconstruct complex

signaling dynamics from empirical datasets. Several single-cell

data-processing pipelines have demonstrated that entropy

serves as an estimate of chaos detection and, thereby, strange

attractors inference if time series datasets are made available.

Some entropy-based cancer networks and trajectory inference

algorithms are reviewed in Uthamacumaran,1 all of which can

be applied to time series analysis. Examples include the scEpath

algorithm discussed above (energy distribution based on
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maximum entropy), Markov chain entropy (MCE), and single-

cell entropy rate (SCENT) algorithms.158,159 These algorithms

use the signaling entropy rate or maximum entropy, as statistical

measures to infer cell fate transitions from sCRNA-seq datasets.

The entropy measures can be used to project the corresponding

Waddington energy landscape (i.e., multidimensional transcrip-

tomic state space) from single-cell datasets and to further infer

the master regulatory networks driving the distinct cell clusters

on the landscape.158,159

Entropy was demonstrated as a robust tool for characterizing

the height of the attractors (cell fates), a measure of the cell po-

tency on the landscape.159 When using the MCE or SCENT algo-

rithms to analyzeRNA-seq data, the geneexpressionmatrix (often

in the form of a text file or csv file) is read into the algorithm’s soft-

ware space. From it, a matrix object is generated, with rows label-

ing genes and columns labeling cell barcodes. The data matrix

should be normalized i.e., typically via a log-transformation of

the form log2ðcounts:m � sf + 1:1Þ, where counts are the raw

expression counts and where sf is a cell-specific scaling factor.

The +1.1 pseudocount ensures that empty cells (0s) are avoided

in the data matrix if one subsequently uses the single-cell entropy

method (zero counts are typical issues in RNA-seq experiments).

Hence, the +1.1 will guarantee upon log-transformation that all

values of the matrix are >0. A quicker and simpler CCAT (correla-

tion of connectome and transcriptome) method is available in the

SCENT-R packages, where a pseudocount of +1 can be used as

usual.160 The CCAT is essentially a Pearson correlation coeffi-

cient, which can take on values between�1 and 1,with increasing

values indicating higher potency. The CCAT approximation mea-

sure is simpler, faster, and proposed to be equally accurate as the

MCE measure in estimating single-cell differentiation and/or cell

fate transition from gene expression datasets.160 The entropy

rate values can be clustered into various phenotypic cell states

on an energy landscape. This is accomplished with the ‘‘InferPo-

tencyStates’’ function, which fits a mixture of Gaussian distribu-

tions to log-transformed entropy rate values, or Z score-trans-

formed CCAT values. The phenotypic cluster estimate obtained

using these entropy measures can be integrated with diffusion

maps or other dimensionality reduction techniques to assign line-

age trajectories.160

These entropy-based inference tools are integrated in a similar

user-friendly MatLab interface in the scEpath algorithm.158

scEpath is a computational algorithm for mapping the three-

dimensional energy landscape of cells and visualize their tran-

scriptional dynamics. The algorithm allows us to estimate the

transition probabilities between cell states from patient-derived

scRNA-seq datasets.158 The lineage trajectories and pseudo-

temporal ordering can be visualized from single-cell gene

expression data using the scEpath algorithm.158 The scEpath al-

gorithm reconstructs a three-dimensional energy landscape for

the single-cell gene expression dataset by incorporating nearest

neighbor correlations based on maximum entropy. In addition,

scEpath performs downstream analyses, including unsuper-

vised clustering of differentially expressed marker genes or

TFs, cell lineage hierarchy clustering byminimally directed span-

ning tree, and pseudotime trajectory inference.

To visualize the energy Waddington-like landscape, scEpath

performs PCA analysis on the energy matrix E = (Eij) and fits a

surface using piecewise linear interpolation over the first two
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PCA components and energy of each cell. The energy of each at-

tractor (cell state), Ej, on the landscape is computed according to

the following function:

EjðyÞ =
Xn

i = 1

EijðyÞ= �
Xn

i = 1

yij ln
yijP
k˛Ni

ykj
;

where yij represents the normalized gene expression level (be-

tween 0 and 1) of gene I and cell j, and N(i) is the neighborhood

of node I in the network. Each gene is assigned a local energy

state Eij. The local energy is then normalized for each cell. The

normalized single-cell energy is projected on the PCA pattern

space to obtain the Waddington landscape reconstruction. To

identify the distinct cell states (attractors), structural clustering is

performed using an unsupervised framework called single-cell

interpretation via multikernel learning.158 A probabilistic directed

graph network is reconstructed by the scEpath algorithm to infer

cell state transitions on the Waddington landscape.
Although such Waddington landscape reconstruction algo-

rithms exist, they remain vastly unutilized in cancer gene expres-

sion datasets, both static (single-time frame) and time series (the

absenceofwhich itself is the grandproblem). Todemonstrate their

applicability, the scEpath-generated epigenetic landscapes of the

various GBM patient samples are shown in Figures 8A–8D. The

vertical axis, scEpath, denotes the energy potential of the epige-

netic landscape, i.e., ameasure of the cell fate’s differentiation po-

tential,whereas thePCAcomponents1and2 indicate the reduced

coordinates of the transcriptome (i.e., state-space analog). The

cell states from a few GBM patients’ energy landscape shows

distinct cell fates, the colors indicating tumor heterogeneity in

Figure 8A, corresponding to the same data visualized in

Figure 3A. The higher the cell states are on the energy landscape,

thehigher their potency (differentiationpotential).Due to the lackof

time series gene expression analysis, the cell states are stuck in

their valleys (i.e., fixed-point attractors). Nonetheless, in time se-

ries, certain cell fates may fluctuate within or in between distinct

valleys periodically (i.e., limit cycles) or exhibit aperiodic trajec-

tories on the energy landscape with a fractal dimension (i.e.,

strange attractors). Figure 8B shows the Waddington landscape

of a single GBM patient corresponding to the results in Figures

4B and 6A–6C (slingshot results). As seen in Figures 8B and 8A

dynamical structure can be inferred even without time series by

the energy distribution of cell states. The landscape topography

explains the two different pseudotime trajectory curves seen in

Figures 6A and 6B. These two trajectory inference curves can be

superimposed on the trajectory inference seen on Figure 8B. The

energy landscape of a few adult GBM patient samples is shown

in Figure 8C. There seems to be three or four distinct cell states,

which can be interconnected by a lineage bifurcation from the

cell clusters at the top of the landscape to the two local minima.

Finally, recall that Richards et al.3 found that the transcriptional

states of their 28 adult GSC sampleswere divided into two distinct

states.When the scRNA-seq counts of a single adult GSC sample

were analyzed using the Seurat algorithm, as shown in Figure 3C,

their findings are confirmed. However, their data looked at the

dimensionally reduced clustering of the cells. In Figure 8D, when

the same data count matrix for a single GSC sample is visualized

on the energy landscape in three-dimensions using the scEpath

algorithm, a dynamical structure connecting the two-states is in-
ferred, indicating that they may not be two distinct states but

rather a dynamical attractormay intertwine them. To truly visualize

these cells as dynamical systems and test the presenceof dynam-

ical attractors in their energy landscape, the dynamical structures

inferred from these results shownmust be verifiedwith time series

datasets. When observing these energy landscapes, think of how

will they look if they were played as a video instead of being

observed as a single picture.

All discussed network inference and Waddington landscape

reconstruction algorithms must be applied to time series cancer

datasets to infer causal structures and experimentally detect the

presence of chaotic attractors. It would be of significant clinical in-

terest to perturb the cancer biopsy of a patient with a target-spe-

cific therapy identified by the network clustering algorithms and

obtain a time series transcriptomics of the patient’s cancer cell

population under the therapy response. Therapies can be of any

form, ranging from target-specific drugs to immunotherapy regi-

mens. The epigenetic landscape can be reconstructed for these

therapy-perturbed samples, and their corresponding attractor dy-

namics can be visualized corresponding to their molecular

network dynamics. If chaotic attractors are observed, the genes/

proteins corresponding to the emergence of these patterns can

be identified using these network approaches. The identified tar-

gets responsible for the emergence of chaotic attractors are pre-

dicted to confer cancer stemness, tumor relapse, and therapy

resistance.

CAUSALITY INFERENCE VIA MACHINE INTELLIGENCE

Perhaps the most celebrated cybernetic method designed to

study the time series of complex systems are Artificial Neural Net-

works (ANNs).161 Single-cell datasets are highly noisy and sparse.

Thus, the above-discussed network visualization and epigenetic

landscape reconstruction algorithms should be paired with a

more robustmachine intelligence capable of deciphering patterns

in noisy time series datasets. ANNsmayprovide the solution. They

resemble multipartite graphs where the graph is separated into

different sets of nodes, and the nodes in each set can share edges

between different sets but not within itself.161,162 Each set of no-

des corresponds to a layer in the network architecture, which

can be arranged in a multitude of ways. The data propagation

can be feedforward or backward through the network. If the

ANN learns to recognize patterns as the information is iterated

through its multi-layers, we call it deep learning.163

The design of the ANNmimics the brain’s neuronal information

processing, in a simplified (linearized) manner. To illustrate,

consider the linear equation: y = mx +b, as the neuron structure

of a simple ANN, such as a perceptron. Here, the output y is the

sum of the bias (b) and the input data (x) times theweight (m). The

activation function, such as tanh, (leaky) ReLu, sigmoid, softmax,

etc., then decides if a given neuron’s output y is activated to

propagate the information toward the function.164 The coupling

of a collection of such neurons forms a layer, and a bunch of

stacked layers forms the ANN allowing the neural network to

pass the information toward a value that is closer to the target

(label) data on which the network is trained on. The training is

done via adjusting the weights with a loss function, such as the

minimization of the error using gradient descent learning, nearest

neighbors optimization, or backpropagation algorithms.162,164
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Figure 8. Waddington landscape reconstruction of GBM and GSC samples
(A) Energy landscape of a few pediatric GBM patients. scEpath energy landscape for a few pediatric GBM patient samples.
(B) Energy landscape of a single pediatric GBM patient. scEpath energy landscape for a single pediatric GBM sample.
(C) Energy landscape of few adult GBM patients. scEpath Waddington landscape for a few adult GBM samples.
(D) Energy landscape of a single GSC sample. scEpath epigenetic landscape for a single GSC sample.
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In addition toadjustable parameters, there are hyperparameters

that specify the global properties of the ML system, such as the

learning rate, regularization, duration of memory, strength of

nonlinearity, and layers of neuronal architecture. The amount of

weight adjustment to minimize the loss function is defined as the

optimization function, and various hyperparameter tunings are

required to settle to the optimal solution, which is by default an

NP-hard problem requiring user-defined trial-and-error tuning.165

Neural networks may exhibit many of the general problems faced

byML, such as overfitting, bias-variance trade-off, training gener-

alization in pattern recognition, etc. The problem of overfitting is

overcome with performance predictors, such as cross-validation

and hyperparameter tuning, in addition to reproducible, large

sets of data needed for the training.

Machine algorithms and in specific, neural networks, are

emerging as state-of-the-art approaches in time series fore-

casting and classification of complex systems, including gene
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expression dynamics.166 Once again, none have been applied in

cancer research due to the lack of cancer time series datasets.

In principle, the neural networks discussed below can and should

be utilized to study attractor dynamics from time series cancer da-

tasets. Commonmachine algorithms for computing attractors are

stochastic searching algorithms, those which start with a

randomly selected initial state and finish with exhaustive search

of the state space of a network, such as Monte Carlo algorithms

and tree-based search algorithms. The computational complexity

of thesemethods can grow exponentially with respect to the num-

ber and length of the attractors. Despite that, recent advance-

ments in searching algorithms in combination with deep learning

architectures can potentially overcome these barriers. For

instance, one of the most concrete examples of adaptive emer-

gent behaviors in artificial intelligence (AI) is Google DeepMind’s

AlphaGo algorithm (and more recently the AlphaFold algorithm).

AlphaGo can optimize the possibilities of a vast search space
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effortlessly during the Go game. By use of a Monte Carlo tree

searchalgorithm it finds itsmoves basedonknowledge previously

acquired by a deep learning ANN.167 These progresses in ma-

chine intelligence demonstrate pairing deep learning algorithms

with search tree algorithmsmay provideways to find context-spe-

cific causal dependencies in complex (cancer) datasets.

Recently, deep learning architectures have shownapplications

in inferring gene expression patterns. The following studies are

surveyed here to stimulate the use of such neural network algo-

rithms in the investigation of time series cancer datasets. Some

examples include the use of convolutional neural networks

(CNNs)168 and the Decode algorithm.169 To decode differential

gene expression, the Decode algorithm predicts personalized

(patient tissue-specific) gene-regulatory interaction modules.

Co-expression analysis of transcriptomic data is achieved via

XGBoost-based hyperparameter tuning and training of the

deep learning network.169 The AttentiveChrome algorithm shows

consistent improvement over its predecessor DeepChrome’s

predictive performance in assessing positional histone informa-

tion ingeneexpression analysisbycoupling aCNN tohierarchical

long short-term memory (LSTM) modules.170

Another deep learning algorithm, D-GEX, was shown to

outperform classical ML classifiers, such as linear regression

and KNN clustering algorithms in gene expression analysis.

Starting with a smaller input set of genes, it can predict the

output of a higher number of target genes. For upscaling

gene expression, D-GEX uses a multi-task multi-layer feedfor-

ward neural network with a nonlinear activation function (tanh)

and hyperparameter tuning.171 Schmauch et al.172 used deep

learning algorithms to reconstruct RNA-seq gene expression

profiles from whole-slide tumor sections demonstrating a

potent application of digital pathology for gene expression

inference. HE2RNA, the deep learning algorithm, was devised

for the prediction of specific molecular phenotypes containing

microsatellite instabilities and the transcriptomic profiles from

the corresponding high-definition whole-slide images.172 In

essence, these algorithms can be adapted to time series tumor

imaging techniques.

Deep learning architectures using capsule networks called

scCapsNet were shown to reconstruct single-cell gene expres-

sion modules via identifying hierarchical relationships in cellular

sub-types from single-cell transcriptome analysis.173 The

scCapsNet algorithm used two-dimensional PCA on the internal

weight parameters in the feature extraction layer and two-

dimensional t-SNE visualization for the embedding representa-

tion of all the genes and clustered modules.173 Nevertheless,

the implementation of capsule networks depends critically

upon the availability of large, high-quality datasets. The problem

of zero counts or low RNA captures in the technique also remain

as technical roadblocks. In addition, in the scCapsNet’s mathe-

matical framework, the leakage transcription rate and degrada-

tion rates of different proteins were considered identical. A

random search for chaotic states in the network was found to

be a rare event (low in frequency). The Hill equations used in

this deep learning algorithm further iterate how both theoretical

and experimental/computational methods must be merged to

decipher complex systems. The set of Hill equations used in

scCapsNet are as follows:
dpi

dt
= fiðpÞ � pi; where fiðpÞ=

8<
:

AiðpÞ
RiðpÞ
AiðpÞRiðpÞ

ðpÞ = ðp1;.;pNÞ

AiðpÞ = Acthi
Acthi +Kh

; RiðpÞ= Kh

Reph
i +Kh

Acti =
XN
j =1

aijpj; Repi =
XN
j = 1

bijpj; ði; j = 1;2;.NÞ:

In this simplified gene expressionmodel, pi ˛½0;1� denotes the
expression level of gene I, the adjacency matricesaij and bij
determine the network structure of the system defined such

that 0<aij<1 if gene j activates gene i, and 0<bij<1 if gene j inhibits

the i-th gene, and both equal zero when there is no regulation of

the i-th gene by the j-th gene. Act andRep correspond to the sum

of active/repressive transcriptional factors to node i. The regula-

tory interactions are defined by Hill functions with the Hill (coop-

erativity) coefficient h and activation coefficient K. This model

demonstrates that, in principle, one can adopt any of the earlier

discussed mathematical models for gene expression inference

or pattern formation mapping into a deep learning framework.

As discussed, classical chaos detection tools, such as Lyapu-

nov exponent estimates, fractal dimension, and entropy rates,

can confirm the presence of chaotic attractors from time series

datasets only if such attractors are detected. Classical chaos

detection methods, such as Lyapunov exponents and fractal di-

mensions, can be applied on the time-embedded signal to infer

chaotic attractors. Furthermore, these general techniques may

only apply to low-dimensional systems, such as analyzing the

time series of a single gene, a well-defined network of very few

genes, a single TF’s oscillation, or the time trace of a small

network of proteins. How do we infer Lyapunov exponents

from the time series of a large-scale, multi-dimensional system

(think of thousands of gene expressions or protein oscillations

in thousands of cells at once)? RNNs and deep learning networks

are emerging as robust solutions to this problem. Recurrent neu-

ral networks (RNNs) are recently emerging as the state-of-the-art

machine algorithms for the spatiotemporal prediction/fore-

casting of chaotic dynamics and attractor reconstruction in com-

plex time series. For example, reservoir computing (RC), a type

of RNN has recently demonstrated applicability in the prediction

of multi-dimensional time series of spatio-temporally chaotic

systems, such as the forecasting of the Kuramoto-Sivashinsky

equation up to a few multiples of the Lyapunov time.174,175

Pathak et al.174,175 exploited the reservoir dynamics to find the

Lyapunov exponents of high-dimensional dynamical systems,

from which chaotic attractors could be reconstructed. RC is an

implementation of ANN, where the reservoir is a network of D

neuron-like units. Each node of the reservoir i has multiple inputs

and outputs, and a scalar state denoted by riðtÞ. The weighted

connections between the nodes are represented by an adja-

cency matrix A: D x D. The input is coupled to the reservoir

through a fixed randomly generated input matrix. The training

phase is given by: rðt +DtÞ = tanhðArðtÞ +WinuðtÞÞ, where W is
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the weights, and u(t) is the training dataset, following which we

find the output weight matrix that minimizes the loss function:P0
t =�T ½normðWoutrðtÞ � uðtÞÞ�2:175 Such methods remain to be

explored in cancer time series datasets and are suggested

here as possibly the most powerful algorithm discussed in this

paper prospective of capturing cancer attractor dynamics.

While autoregression models are better suited for short-term

time series forecasting in low-dimensional systems, deep learning

algorithms are the state-of-the-art approaches for time series

gene expression forecasting in higher-dimensional systems.166

Furthermore, neural network algorithms used in turbulence fore-

casting may be of great interest in the application to cancer dy-

namics prediction. If the AI can predict causal patterns, such as

strange attractors in turbulent flows, then it should (in principle)

within cancer datasets as well. A general AI-based approach to

forecast turbulence-like chaotic systems is to perform singular

value decomposition followed by dimensionality reduction and

dynamic mode decomposition (SVD/PCA/DMD) on the time se-

ries dataset. RNN architectures, such as RC or LSTM, can then

be used to forecast the evolution of the coefficient of the

modes.176 Another approach would be to use CNNs, for which

backpropagation through time (BPTT) algorithmsare used instead

of RC computing.176,177 Regularization procedures utilizing BPTT

were also shown to be more effective in chaotic attractor recon-

struction.176,177 CNN-based methods may be better suited for

the classification of time series gene expression dynamics, while

RNN algorithms, such as RC, are best for time series forecasting/

attractor reconstruction.166 RC is computationally cheaper to train

in the case of full-state information acquisition whereas, gated ar-

chitectures are better for reduced order states/observables.

On a final note, with regard to AI, in 2019, Google confirmed its

quantum processors had reached quantum supremacy.178 Quan-

tum supremacy is the alleged claim that quantum computers can

perform certain computational tasks or solve certain problems

exponentially faster on a quantum processor than on a classical

processor in a feasible amount of time.179 Quantum computing

(QC) allows a vast search space for solving combinatorially com-

plex optimization and decision problems, via exploiting the funda-

mental properties of quantum mechanics, such as superposition

and the entanglement of information (i.e., allows parallel computa-

tion). While a lower time complexity than classical algorithms is

implied, whether there are any computability advantages remains

highly debated and anticipated. The prospects of QC and quan-

tummachine learning in biological networks/attractor reconstruc-

tion can only be verified in time.
KOLMOGOROV COMPLEXITY

Current approaches to the inference of cancer networks have

computational complexity-imposed limitations. For instance,

the hyperparameter optimization of machine learning algorithms

andmodularity optimization in community detection areNP-hard

problems, requiring user-defined brute-force searching and heu-

ristics. Furthermore, these methods may reveal some of the sta-

tistical properties of complex networks, but not necessarily their

dynamics. Information theoretic measures, such as the maximal

Shannon entropy and entropy production rates, are powerful in-

dicators of chaotic dynamics in time series analysis when com-
30 Patterns 2, April 9, 2021
bined with other approaches, such as Lyapunov exponents and

energy landscapes. Entropy allows us to visualize the state-

space dynamics in terms of information flows in phase space.

However, Shannon’s entropy is not a robust measure of a graph

network’s complexity. It fails to capture the algorithmic content

of a complex system. There remains a powerful tool in computa-

tional complexity theory, vastly unexplored in the causality infer-

ence of cancer networks. The Kolmogorov complexity, also

known as algorithmic complexity, is a descriptive measure of a

network/data object’s complexity.180 K-complexity is analogous

to the Occam’s razor, wherein the simpler or more compressible

a data object, the shorter the program length p required to

compute it or capture its information content when run onto a

universal Turing machine.180,181

Assume there is a certain dataset (e.g., a gene expression ad-

jacencymatrix) that can be represented as a binary encoded text

or string for some universal Turing machine. The length of the

shortest program in a defined language that can generate this

string (data object) as its output, denoted as s, is defined as

the Kolmogorov complexity K(s).182 That is, K(s) is the length of

the shortest description of the data object (network or system)

in program space. Despite that, the Kolmogorov complexity of

the system is in principle, incomputable (can only be esti-

mated).182 Then, the expected probability P(s) that a random

program p running on the Turing machine produces the string

s upon halting is given by the Solomonoff-Levin algorithmic

probability measure: PðsÞ = P
p:TðpÞ= s

1
2jpj. The algorithmic probabil-

ity is a mathematical method of assigning a prior probability to a

given observation.183 The coding theorem method (CTM), then

establishes an equality between the algorithmic probability P(s)

and the Kolmogorov complexity K(s), formally expressed as:

PðsÞ = 2�KðsÞ + c;

where c is some constant or, equivalently, KðsÞz� log2PðsÞ.
The CTM states that an object of a short computer program is

more likely to be generated at random than an object generated

by a longer computer program (i.e., complex systems).184

Due to the incomputability ofK(s), computational algorithms are

required for indirectly approximating the K-complexity, such as

lossless compression algorithms (such as the Lempel-Ziv-Welch

algorithm), the Block Decomposition Method (BDM), Minimal In-

formation Loss Sparsification, and Maximal Algorithmic Random-

ness Preferential Attachment.182,185 The lossless compression al-

gorithms are similar to Shannon entropy (a poor estimate of K-

complexity). Their applications in estimating graph complexity

remain limited. BDM is the most robust of all techniques for esti-

mating the K(s) complexity of a graph network (see BDM code

in the data and code availability section). K-Complexity approxi-

mation algorithms are emerging in the detection of causal struc-

tures in complex networks within algorithmic information dy-

namics (AID). AID is a branch of algorithmic information theory

emerging as an AI platform for causality inference in complex da-

tasets.182 AID is a promising tool for studying the cybernetics and

attractor landscapes of complex disease networks using pertur-

bation analysis in software space.182,185 A higher K-complexity

implies non-randomness (if not lower than the bits of information

encompassing the system). As such, complexity measures allow
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us to distinguish chaos from randomness. It is proposed as an

alternative approach for detecting strange attractors and inferring

chaotic solutions in cancer datasets, in addition to the ANN-based

approaches discussed above. The algorithms for approximating

the Kolmogorov complexity K(s) should be incorporated into the

machine learning pipelines and algorithms for single-cell gene

expression dissection.

CONCLUSIONS

To conclude, a blueprint of chaotic dynamics and their patterns

in the state space of time series cancer signaling is provided.

Cancers are complex cybernetic systems which may exhibit

strange attractors in their gene expression signaling and

pattern formation (i.e., reaction-diffusion systems). The descrip-

tion of complex systems, such as cancer stemness networks

requires a fundamental understanding of nonlinear dynamics,

fractals, and chaos. Chaos, despite appearing to be random-

like, may serve as a robust biomarker for tumor complexity

and is bound to well-defined pattern structures in state space:

strange attractors. Chaotic dynamics are efficient methods to

control the gene expression of lowly activated downstream

genes and signaling cascades (cross-talks) required for com-

plex cellular processes involved in homeostasis, development,

phenotypic plasticity, and survival. Chaotic attractors may be

the hallmarks of therapy resistance, tumor recurrence, and can-

cer stemness. Although mathematical cancer models have

demonstrated that the emergence of chaotic attractors may

be indicators of aggressive (adaptive) cancer states, their

detection from empirical datasets remains primitively explored.

As such, it is suggested herein that the study of chaotic dy-

namics and the detection of strange attractors in the signaling

state space of cancer stemness networks, at the cellular level

and at the individual gene/protein levels, via the pairing of

empirical and computational approaches, may provide a fruitful

direction for precision oncology. Time series molecular data-

sets (gene expression profiling and protein quantification) is

severely lacking in cancer research. Therefore, the generation

of time series scRNA-seq and bulk RNA-seq from cancer pa-

tients are strongly encouraged.

The mathematical models pertaining to the complex dynam-

ical processes governing cancers have been revealed in this

paper to serve as a primer for the empirical investigation of

chaotic dynamics in cancer processes. Various algorithms for

the detection of chaotic attractors in time series cancer data-

sets have been surveyed. The general road map to detecting

a chaotic attractor (if it exists) in cancer signaling dynamics is

as follows. First the time traces of the signal of interest, such

as the gene expression or protein oscillation, is acquired. The

time series is then subjected to a time-delay coordinate

embedding to be visualized in a three-dimensional space.

Following, the fractal dimension and positive Lyapunov expo-

nent(s) can be computed on the time-embedding to verify if

the detected attractor (if it exists) is chaotic. Empirical dynamic

modeling (e.g., CCM), Waddington landscape reconstruction,

deep learning architectures, RNNs, and AID are suggested as

powerful tools for complex attractor reconstruction, which

remain vastly unexplored in deciphering cancer time series da-

tasets. The various algorithms and tools discussed in each sec-
tion should be combined and contrasted for realistic cancer

modeling.

The investigation of cancers as dynamical systems may pro-

vide innovative targeted therapies for relapsed/refractory can-

cers in the emerging frontier of computational oncology. Finally,

in principle, if strange attractors are empirically verified in the

state-space dynamics of cancer regulatory networks, and chem-

ical pattern formation, the control of chaos may pave the reprog-

ramming of cancers (stem) cells to benign/healthy cell fates

(Box 1). More precisely, the detection of globally existent strange

attractors in the state space of cancer stemness networks are

suggested as the directions pattern scientists should take to

reprogram cancer (stem) cells to benignity.
Data and code availability
Source codes for scRNA-seq datasets

Columns are cell barcodes, row names are genes, in all expres-

sion (count) matrices.

(1) https://singlecell.broadinstitute.org/single_cell/study/

SCP393/single-cell-rna-seq-of-adult-and-pediatric-

glioblastoma#study-summary.2 Expression Matrix

(Expression Matrix [log2(TPM/10 + 1)] (Smartseq2):

IDHwtGBM.processed.SS2.logTPM.txt.gz

(2) https://singlecell.broadinstitute.org/single_cell/study/

SCP503.3

Count matrix. Richards_NatureCancer_GSC_scRNAseq_-

counts.csv.gz.

The corresponding metadata files can be used to subset the

countmatrix to cells from a single sample. A subsetted raw count

matrix was used in the analysis, GSC sample (BT127_L, 500

random cells). All cells in the gene expression matrix are malig-

nant. All samples are of good technical quality and have been

quality checked (see the Methods sections in corresponding ci-

tations). Refer to Figures 1 and 2 in Richards et al.,3 to determine

which GSC sample is of your interest based on cluster number,

gradient position, etc.

Source codes for demonstrated algorithms

https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html (Stuart

et al.142) [Seurat Algorithm];

http://www.bioconductor.org/packages/release/bioc/html/

slingshot.html (Street et al.143) [Slingshot algorithm]

https://github.com/sqjin/scEpath (Jin et al.158) [scEpath al-

gorithm]

https://mran.microsoft.com/snapshot/2018-06-22/web/

packages/rEDM/vignettes/rEDM-tutorial.html (Sugihara

et al.148) (rEDM package and tutorial for Convergent Cross

Mapping)

http://complexitycalculator.com/(Zenil et al.182) (BDM

calculator).

Figure codes

The Lorenz attractor on Figures 1 and 2 were rendered from the

Wolfram Demonstrations Project.186 Thanks to Rik Bhattacharja

for redesigning these two figures, the graphical abstract, and

Figure 7. Figure 7 was rendered from the rEDM package and

tutorial website given above.148 All other (data) figures corre-

sponding to the Seurat, Slingshot, and scEpath algorithms

were generated by the author.
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Box 1. Glossary

Attractors: as the word implies, they are regions or shapes in phase-space to which the trajectories of a dynamical system are

attracted to (pulled towards) for a wide range of initial conditions. Attractors are universal patterns characteristic of a dynamical

system’s evolution in state space. They may correspond to cell states on an epigenetic landscape or patterns at the single-mo-

lecular dynamics, such as the oscillation of a single gene or transcription factor (note: repellors are the opposite analog of attrac-

tors, where the dynamical trajectories (flow) is in the opposite direction of an attractor).

Cancers: cancers are diseases caused by the uncontrolled cell division of malignant cells. The malignant cells emerge from ge-

netic mutations/translocations and result in aberrant (dysregulated) gene expression patterns. These patterns revert the tumor

microenvironment partially or completely to an embryonic-like developmental state (dedifferentiation). Emergent hallmarks of can-

cers include uncontrolled cell division, telomerase overexpression/re-lengthening, immune system hijacking, apoptosis/death

evasion, rewired (epi)metabolomes, and metastatic invasion.21

Cancer stemcells: stem cells are immature cells that exhibit unlimited replicative potential (self-renewal) and the ability to develop

(differentiate) into many other cell types (i.e., potency). Embryonic stem cells have the highest potency and can differentiate into

any somatic (adult) cell type, by the combined expression of a relatively few transcription factors. Similarly, a subset of cancer pop-

ulations, expressing specific stemness-related transcription factors and surface markers have stem cell properties, analogous to

an embryonic stem cell. These cells are known as cancer stem cells (CSCs). The interconvertibility of non-stem (mature) cancer

cells and CSCs, make cancers a complex dynamical system.

Cell fate-transitions: also referred to as state transitions or phenotypic switching. In developmental biology and cancer pro-

cesses, this refers to the differentiation of a cell from one phenotype to another. Stochastic models naively assume cell state tran-

sitions can be modelled by Fokker-Planck equations. This review outlines that these are complex dynamical systems requiring the

study of attractors dynamics.

Chaos: chaos is aperiodic, irregular long-term behavior in a system that exhibits sensitive dependence on initial conditions and

exponential trajectory separation. Chaotic dynamics exhibit causal structures, namely, dense fractal attractors bound in state

space (i.e., strange attractors).

Complex systems: complex systems are irreducible dynamical systems composed of many interconnected parts, the collective

behaviors, and properties of which are more than the sum of its local interactions (i.e., nonlinear).

Complexity science: complexity science, also known as complex systems theory or sometimes complexity theory, is the

emerging interdisciplinary study of complex systems through computational physics. It evolved from dynamical systems theory

and now comprises of the study of patterns in complex systems through the lens of nonlinear dynamics, chaos, fractals, nonequi-

librium systems, networks, and algorithms. As such, herein it is also referred to as pattern science. Complexity science merges

large-scale empirical data on complex systems with computational algorithms and mathematical modelling.

Ecosystem: the ecological relationships (e.g., predator-prey dynamics) among the various cell types and environmental factors

composing the tumor microenvironment. It resembles a stem cell niche, however, and includes the non-stem (mature, differenti-

ated) cancer cells, healthy cells, and the abiotic signaling factors (e.g., molecules, proteins, secretory vesicles, circulating tumor

DNA, epigenetic modulators, etc.).

Fractal: a geometric structure or pattern observed in chaotic systems in which each part exhibits a statistical self-similarity to the

whole acrossmany length scales (or scale-invariance). Some examples include snowflakes, trees, coastlines, tumor contours, and

fluid turbulence. The latter two are considered multifractal systems. The fractal dimension is a non-integer dimension to charac-

terize fractals. When a single fractal dimension is insufficient to describe the fractal geometry of a system/structure, it is considered

a multifractal.

Glioblastomamultiforme: a type of glioma. Gliomas, deadly lethal diseases responsible for cancer-related pediatric mortality, is

used as a model system to describe cancer networks as dynamical systems herein. Three clinically distinguished glioma types

exist, namely, oligodendroglioma (isocitrate dehydrogenase [IDH]-mutated and 1p/19q co-deleted), IDH-mutated astrocytoma,

and IDH wild-type astrocytoma, which include the most malignant glioma-type, glioblastoma (GBM).4

Pseudotime: a measure of how a cell transitions between different states in some cancer-related process. Examples include the

trajectory of a cell on an epigenetic landscape during differentiation, in response to environmental stimuli, a drug perturbation or

decision-making processes. Only with time series datasets can real attractor dynamics and cell state trajectories be visualized.

State space: also referred to as phase -space or attractor space is the space in which all possible states of a dynamical system are

represented. The axes correspond to the specified variables of the dynamical system, and the state of the system can be repre-

sented by a state vector X.

Strange attractors: also known as chaotic attractors, are attractors of certain nonlinear, aperiodic systems which exhibit sensi-

tivity to initial conditions (i.e., chaotic systems). Trajectories on a strange attractor appear to be random-like in time series. How-

ever, they have a defined causal structure to which the trajectories of the dynamical system are bound to in state space. The

strange attractor has a fractal dimension. In hyperchaotic systems, strange attractors may exhibit multifractality.

Trajectory inference: also known as pseudo-temporal ordering is a computational algorithm used in single-cell transcriptomic

data processing pipelines to infer the patterns of a dynamic cellular process (e.g., differentiation).

(Continued on next page)
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Box 1. Continued

Waddington’s landscape:Waddington’s epigenetic landscape is an abstract metaphor frequently used to represent the relation-

ship between gene-regulatory network dynamics and their corresponding cell fates during developmental processes. Here, the

epigenetic landscape is used as a state-space projection of cancer-related processes in which cell fate transitions can occur.

As such, the terms attractor landscape and energy landscape are also interchangeably used.Most often, the epigenetic landscape

is the transcriptomic state-space reconstruction of gene expression datasets, with some energy function (quasi-potential) as its

vertical axis defining the landscape topography.
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