
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24346  | https://doi.org/10.1038/s41598-021-03678-x

www.nature.com/scientificreports

Common and diet‑specific 
metabolic pathways underlying 
residual feed intake in fattening 
Charolais yearling bulls
Ezequiel Jorge‑Smeding1, Muriel Bonnet2, Gilles Renand3, Sébastien Taussat3,4, 
Benoit Graulet2, Isabelle Ortigues‑Marty2 & Gonzalo Cantalapiedra‑Hijar2*

Residual feed intake (RFI) is one of the preferred traits for feed efficiency animal breeding. However, 
RFI measurement is expensive and time‑consuming and animal ranking may depend on the nature 
of the diets. We aimed to explore RFI plasma biomarkers and to unravel the underlying metabolic 
pathways in yearling bulls fed either a corn‑silage diet rich in starch (corn diet) or a grass‑silage 
diet rich in fiber (grass diet). Forty‑eight extreme RFI animals (Low‑RFI, n = 24, versus High‑RFI, 
n = 24, balanced per diet) were selected from a population of 364 Charolais bulls and their plasma 
was subjected to a targeted LC‑MS metabolomic approach together with classical metabolite and 
hormonal plasma analyses. Greater lean body mass and nitrogen use efficiency, and lower protein 
turnover were identified as common mechanisms underlying RFI irrespective of the diet. On the other 
hand, greater adiposity and plasma concentrations of branched‑chain amino acids (BCAA) together 
with lower insulin sensitivity in High‑RFI animals were only observed with corn diet. Conversely, 
greater plasma concentrations of BCAA and total triglycerides, but similar insulin concentrations were 
noted in efficient RFI cattle with grass diet. Our data suggest that there are diet‑specific mechanisms 
explaining RFI differences in fattening Charolais yearling bulls.

In a growing world’s human population the efficient use of natural resources becomes a crucial issue for sus-
tainable livestock systems. In growing animals, animal feed efficiency can be defined as the animal ability to 
reach a market or adult BW with the least amount of feed  intake1. Animal feed efficiency is quite variable across 
 individuals2 and moderately  heritable3, leading to the opportunity to genetically select animals for this trait with 
potential impacts on profitability and sustainability of beef production  systems4. Among the metrics for evaluat-
ing animal feed efficiency, residual feed intake (RFI) is one of the more widely used trait within animal breeding, 
enabling us to identify individuals with lower feed intake but similar performances.

As for any other feed efficiency trait, RFI determination is expensive and time-consuming, needing at least 6 
weeks of individual daily feed intake and body weight gain  recording5. For this reason, research aimed at explor-
ing biological markers of RFI has become of scientific interest in the last years as a way to find easier and cheaper 
strategies for identifying individuals with superior feed efficiency. Moreover, the discovery of biomarkers may 
help to gain deeper insights on the physiological mechanisms underlying individual variability in feed efficiency, 
which may contribute to better define genetic selection programs or precision feeding systems.

Metabolomics methodologies leading to high-throughput phenotyping have been used both to explore bio-
markers and to unravel the metabolic mechanisms underlying individual variability of feed  efficiency6,7. Tar-
geted rather than untargeted metabolomic technologies are usually the best option when the identification of 
metabolic pathways and the mechanism associated to a particular condition is  pursued8. However, results have 
not been consistent across studies, and candidate plasma biomarkers still remain to be validated before being 
globally accepted and  used9,10. The lack of universally accepted biomarkers of RFI might be due to the difficulty 
of identifying metabolites driven by the inter-individual variability rather than by dietary treatments, the latter 
having a strong impact on plasma  metabolome6,11. Moreover, the inconsistencies across studies could stem from 
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the use of different types of diets since a potential RFI × Diet interaction has been evoked in a few  works12,13. 
This could mean that biological mechanisms underlying RFI, and thus the associated biomarkers, might differ 
depending on the nature of the diet and finally to the type of absorbed nutrients. This is a crucial issue if RFI 
selection programs are to be applied in beef cattle systems where a wide variety of feeding conditions exists.

Therefore, the aim of this work was both exploring plasma biomarkers and unravelling key metabolic path-
ways that could explain the RFI differences in extreme purebred Charolais yearling bulls, the most representative 
beef cattle breed in France, assigned to two contrasting fattening diets, either a corn-silage diet rich in starch or 
a grass-silage diet rich in fiber. To the best of our knowledge, our study presents the largest experimental set up 
for exploring RFI biomarkers in fattening bulls through a targeted metabolomic approach.

Results
Animal performances. As previously  reported14, the RFI differences between Low and High-RFI animals 
averaged 1.48 kg DMI. Accordingly, the daily intake of organic matter, crude and metabolizable protein, neutral 
detergent fiber and net energy were also lower (− 13 % on average, P < 0.01) for Low- versus High-RFI animals, 
irrespective of diet (Table 1). However, starch intake differed between RFI groups in a different way according 
to the diet (RFI × Diet; P < 0.01) as it was lower for Low- than High-RFI animals only in the corn silage diet 
(Table 1). Estimated net portal appearance of total volatile fatty acids, acetate, propionate and butyrate were 
lower (P < 0.01) for Low- than High-RFI animals in both diets. In agreement with what was observed for starch 
intake, the net portal appearance for glucose differed between RFI groups in a diet-dependent manner (RFI × 
Diet; P < 0.01) as it was lower for Low- than High-RFI animals only in the corn diet (Table 1).

Ultrasound subcutaneous fat depth measured at the end of the RFI test on three different anatomical regions 
was similar (P > 0.05) across diets and RFI groups (Table 2). Hot carcass body weight was higher in Low- versus 
High-RFI animals (+ 6%; P = 0.01) for both diets. In contrast, visceral fat mass (kg or % of body weight) was 
affected by an RFI × Diet interaction (P ≤ 0.07) with less visceral fat in Low- versus High-RFI animals in the 
corn diet but with similar levels with the grass diet.

Plasma concentrations of metabolites, hormones and vitamins. Among the classical plasma bio-
chemical parameters here analyzed, only plasma urea concentration differed across RFI groups, being greater for 
High- versus Low-RFI animals (+ 21%; P = 0.01; Table 2). In relation to the diet effect, the corn diet promoted 
greater (P < 0.01) plasma concentrations of glucose, urea and β-hydroxbutyrate (BHB) compared to the grass 
diet. Differences across RFI groups on plasma insulin levels and the Revised Quantitative Insulin Sensitivity 
Check Index (RQUICKI) were diet-dependent (RFI × Diet; P ≤ 0.04) with lower values in efficient versus inef-
ficient RFI animals only when they were fed the corn diet. As expected, higher insulin levels were found in corn 
versus grass-based diets (P < 0.01). No effect of diet or RFI group on plasma IGF-1 concentration was found 
(P > 0.05). Blood B vitamins concentrations here analyzed, vitamins B2 and B6 sums as well as ratios between 
vitamins, were not statistically different across RFI groups (P > 0.05; Table 2). However, the plasma concentra-
tions of pyridoxal (PA) were significantly lower for animals fed grass than for those fed corn (− 11%; P < 0.02).

Table 1.  Nutrients intake and absorption in high versus low residual feed intake (RFI) young bulls fed 
corn- or grass-silage diets. a,b: Means are compared only within each diet. Different letters means significant 
differences according to Tukey test (P < 0.05). 1: Measures based on DMI and diet composition, OM Organic 
matter intake, CP Crude protein, MP Metabolizable protein, NDF Neutral detergent fibre, NE Net energy. 
2: Estimated according to Loncke et al.63.

Corn Grass

SEM

P-value

High-RFI Low-RFI High-RFI Low-RFI RFI Diet
RFI 
× Diet

a. Measured nutrient intakes1

OM (kg/day) 9.98 8.55 8.77 7.96 0.330 < 0.01 < 0.01 0.20

CP (kg/day) 1.53 1.30 1.34 1.21 0.051 < 0.01 < 0.01 0.20

NDF (kg/day) 3.49 2.99 4.67 4.24 0.142 < 0.01 < 0.01 0.72

Starch (kg/day) 3.14a 2.69b 0.39a 0.35a 0.081 < 0.01 < 0.01 < 0.01

b. Estimated nutrient intake and absorption

NE (Mcal/day) 17.0 14.6 14.9 13.5 0.57 < 0.01 < 0.01 0.20

MP (kg/day) 0.90 0.77 0.77 0.70 0.032 < 0.01 < 0.01 0.20

Net portal appearance (mmol/h kg BW)2

Total Volatil fatty acids 1371 1175 1376 1247 49.0 < 0.01 0.27 0.34

Acetate 928 795 993 900 34.2 < 0.01 < 0.01 0.42

Propionate 325 278 301 273 11.2 < 0.01 0.08 0.26

Butyrate 73 62 55 50 2.3 < 0.01 < 0.01 0.13

Glucose − 0.046b − 0.054a − 0.097a − 0.098a 0.0005 < 0.01 < 0.01 < 0.01
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Metabolomic profiling and multivariate analysis. Only 271 out of 630 metabolites assayed (Supple-
mentary Table S1 online) by the MxP� Quant 500 kit were effectively quantified (i.e. metabolite plasma con-
centration greater than the limit of detection in at least 80 % of the 48 plasma samples, Supplementary Table S2 
online). The principal component analysis (PCA) performed on these 271 metabolites clearly discriminated 
individuals according to the diet they were fed on, but failed to discriminate individuals according to their RFI 
group (Fig. 1). According to partial least squares discriminant analysis (PLS-DA), no model for predicting the 
RFI group was obtained for the corn diet (Q2 = − 0.07, 1st component model; Supplementary Fig. S1 online) 
and only a poor predictive model was obtained for grass diets (Q2 = 0.30, R2 = 0.54 for 1st component model; 
Supplementary Fig. S1 online). Consequently, no RFI discriminant metabolites based on variable importance in 
projection (VIP) values could be proposed at this step.

Detailed information on the 271 metabolites identification, their plasma concentrations and ANOVA sta-
tistics on experimental factors is available in the Supl. Table S2. ANOVA revealed that creatinine, β-alanine, 
trans-4-hydroxyproline, p-cresol sulphate and three specific triglycerides (TG) (TG17:0_34:1, TG16:0_33:1 and 
TG20:3_34:0) were increased while phosphatidylcholine (PC) ae 30:1 was decreased (FDR < 0.05) in Low- versus 
High-RFI bulls irrespectively of the diet (Table 3).

In contrast, the three BCAA (isoleucine, leucine, and valine) as well as PCA ae 38:2 were significantly affected 
by RFI (Table 3) but in a different way according to the type of diet (RFI × Diet; FDR < 0.05). The plasma con-
centration of the 3 individual BCAA was greater for High- versus Low-RFI in the corn diet but similar in the 

Table 2.  Animal performances and plasma biochemical parameters in High versus Low residual feed intake 
(RFI) young bulls fed corn- or grass-silage diets. a,b: Means are compared only within each diet. Different 
letters means significant differences according to Tukey test (P < 0.05). 1: Body weight at the begining and 
the end of the RFI test. 2: Kindey, pelvic and mesenteric fat. 3: NEFA Non-esterified fatty acid, BHBA β
-hydroxybutyrate, IGF-1 Insulin growth factor-1; RQUICKI index.

Corn Grass

SEM

P-value

High-RFI Low-RFI High-RFI Low-RFI RFI Diet
RFI 
× Diet

a. Performance and carcass traits

Initial BW1  (kg) 390 397 372 367 13.2 0.38 0.26 0.81

Final BW1  (kg) 730 725 650 698 19.1 0.26 0.01 0.19

Final back fat depth (mm)

12–13th rib 2.98 2.68 2.71 2.54 0.331 0.32 0.39 0.77

Lumbar 3.59 3.03 2.93 2.90 0.330 0.21 0.10 0.26

Gluteal 3.36 3.28 3.77 3.19 0.732 0.53 0.75 0.64

Hot carcass weight (kg) 431 444 410 449 10.3 0.01 0.41 0.20

Visceral fat2 (kg) 7.13a 5.28b 6.79a 7.89a 0.661 0.57 0.09 0.03

Visceral fat2 (%) 0.96a 0.73b 1.00a 1.10a 0.083 0.34 0.01 0.07

b. Metabolites and hormones

Urea (g/L) 0.21 0.18 0.15 0.12 0.010 0.01 < 0.01 0.82

NEFA (mol/L) 0.121 0.121 0.122 0.153 0.0182 0.40 0.36 0.37

BHB (mol/L) 0.344 0.311 0.238 0.241 0.0201 0.45 < 0.01 0.36

Glucose (g/L) 0.77 0.79 0.66 0.71 0.031 0.29 < 0.01 0.51

Insulin ( µIU/ml) 30.7a 20.7b 13.4a 15.7a 3.03 0.19 < 0.01 0.04

IGF-1 (ng/mL) 456 430 398 444 25.4 0.70 0.38 0.16

RQUICKI 0.28b 0.33a 0.36a 0.31a 0.021 0.79 0.16 0.02

c. Vitamins

FAD ( µmol/L) 0.22 0.22 0.22 0.22 0.009 0.64 0.99 0.58

Ribo ( µmol/L) 0.02 0.02 0.02 0.02 0.002 0.84 0.40 0.51

B2 total ( µmol/L) 0.24 0.23 0.24 0.24 0.010 0.70 0.87 0.69

FAD:B2 total 0.94 0.93 0.93 0.93 0.042 0.73 0.31 0.37

Ribo:B2 total 0.06 0.07 0.07 0.07 0.013 0.73 0.31 0.37

FAD:Ribo 15.0 14.0 14.0 14.2 1.21 0.68 0.60 0.50

P5P ( µmol/L) 0.38 0.39 0.38 0.33 0.030 0.49 0.13 0.14

PA ( µmol/L) 0.028 0.029 0.025 0.027 0.0021 0.29 0.02 0.70

B6 total ( µmol/L) 0.41 0.42 0.40 0.36 0.030 0.55 0.11 0.16

P5P:B6 total 0.93 0.93 0.94 0.93 0.004 0.28 0.79 0.13

PA:B6 total 0.07 0.07 0.06 0.07 0.004 0.28 0.79 0.13

P5P:PA 13.7 14.4 15.8 13.2 0.12 0.33 0.63 0.09
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grass diet, except for valine showing significant greater concentration in Low- versus High-RFI in the grass diet. 
Conversely, the PC ae 38:2 was greater for Low- versus High-RFI animals only in the grass diet.

In order to gain a better understanding, the sums of key metabolic families as well as some ratios between 
metabolites were calculated a posteriori (Supplementary Table S2). Among them, only the sum of non-essential 
amino acids (NEAA) was significantly affected by RFI (FDR < 0.05) as it was greater for Low- versus High-RFI 
animals irrespective of the diet. In addition, only total BCAA were affected by the RFI × Diet interaction (FDR 
= 0.01), as total BCAA were greater for High- versus Low-RFI animals in corn diet, but lower in grass diet. Total 
triglycerides also tended to be affected by the RFI × Diet interaction (FDR = 0.06) as they were greater for Low- 
versus High-RFI animals only in the grass diet.

Figure 1.  Score plots for principal components analysis (PCA) comparing Low-RFI versus High-RFI animals 
fed corn- or grass-silage diets based on all quantified metabolites

Table 3.  Blood plasma concentration of metabolites quantified through LC-MS and differing (FDR < 0.05) 
between extreme RFI young bulls (Low versus High RFI) fed either corn- or grass-silage diets. a,b: Means are 
compared only within each diet. Different letters means significant differences according to Tukey test (P < 
0.05). 1: Plasma concentration (μM) are presented as mean and SEM. 2: Metabolite’s names for these acronyms 
are available in Supplementary Table S1.

Corn1 Grass1

SEM RFI Diet
RFI × 
DietHigh-RFI Low-RFI High-RFI Low-RFI

Leu2 133a 106b 104a 116a 15.4 0.36 0.07 0.01

Val 234 a 205b 192b 217a 21.6 0.90 0.04 0.01

Ile 128a 110b 110a 124a 14.1 0.75 0.65 0.04

PC ae C38:2 2.83a 2.49a 3.18b 3.89a 0.441 0.72 < 0.01 0.03

Creatinine 183 218 152 185 22.9 < 0.01 < 0.01 0.79

Trans-4-Hydroxyproline 37.1 44.0 38.6 42.7 5.42 0.05 1.00 0.53

β-Alanine 2.03 2.60 1.91 2.38 0.501 0.05 0.32 0.80

p-Cresolsulphate 60.4 68.1 48.2 56.2 8.23 0.05 < 0.01 0.78

PC ae C30:1 0.83 0.60 1.27 1.01 0.256 0.04 < 0.01 0.54

TG17:0_34:1 0.55 0.51 0.37 0.53 0.130 0.04 0.16 0.14

TG16:0_33:1 0.50 0.49 0.43 0.60 0.118 0.05 0.92 0.13

TG20:3_34:0 0.24 0.26 0.23 0.25 0.110 0.05 < 0.01 0.78
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Results from a PCA performed a posteriori only from those variables significantly different across RFI (Fig. 4) 
indicated that plasma concentration of insulin and BCAA, and visceral fat mass were positively correlated with 
RFI in the corn diet (PCA first component; 38.7%). In contrast, these same variable as well as plasma triglycerides 
showed a negative association with RFI in the grass diet (PCA first component; 42.6%) (Fig. 2).

Metabolic pathway analysis. Metabolic pathway analysis revealed 7 and 16 metabolic pathways differ-
ing (FDR < 0.05) between RFI groups in the corn and grass diets, respectively (Table 4, Fig. 3). Among these 
metabolic pathways, pantothenate and CoA biosynthesis, and pyrimidine metabolism were shift-regulated 
between RFI groups in both diets. While pyrimidine metabolism was up-regulated in Low-RFI animals in both 
diets, pantothenate and CoA biosynthesis was down-regulated in the corn diet and up-regulated in the grass 
diet (Fig. 4). In the corn diet, most of metabolic pathways were associated with lower plasma concentration 

Figure 2.  Loading plots of principal component analysis conducted a posteriori according to variables highly 
involved in shared and diet-dependent metabolic pathways underlying RFI variation in corn- (a) and grass-
silage (b) diets. TG_n denote triglycerides with increasing saturations (0, 1, or more for TG_0, TG_1 and TG_2, 
respectively); t-4-OH-Prol: trans-4-hydroxyproline; 3MH/creatinine: 3-methylhistidine to creatinine ratio; 
1-MH: 1-methylhistidine, 3-MH: 3-,methylhistidine; SDMA: symmetric dimethyl arginine; ADMA: asymmetric 
dimethyl arginine; PCaa: total diacyl-phosphatidylcholine, PCae: total acyl-ethyl-phosphatidylcholines

Figure 3.  Metabolic pathway analysis comparing Low versus High-RFI animals in corn- (a) and grass-silage 
(b) diets according to Bos taurus KEGG database. Numbers indicate metabolic pathways differing between RFI 
groups within each given diet. More red tones denote lower P values, while greater circle sizes denote greater 
impact values



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24346  | https://doi.org/10.1038/s41598-021-03678-x

www.nature.com/scientificreports/

of metabolites in Low-RFI such as those involved in BCAA metabolism, pantothenate and CoA biosynthesis, 
lysine degradation and biotin metabolism (Fig. 4). The opposite trend was found for the grass diet, where most 
of the metabolites involved in the identified metabolic pathways had greater plasma concentrations for Low-RFI 
than High-RFI animals (Fig. 4).

Discussion
Before implementing genetic programs for improving animal feed efficiency several issues should be first 
addressed. One is related to the potential interaction between genetics and environment (G× E), such that 
animals with superior performance may not be the same across different environments. For instance, this may 
be a concern for improving feed efficiency through selection if the animal ranking changes with the quality of 
the offered diet, the latter differing highly across beef production systems. In this sense, several studies have 
pointed at a re-ranking of beef cattle in terms of RFI when energy-dense diets were shifted to more grass-based 
diets or vice  versa13,15. In this context, the aim of our study was to use targeted metabolite analysis to evaluate the 
biological mechanisms underlying RFI variation in beef cattle fed a classical energy-dense fattening diet based 
on corn silage (high-starch) versus a grass silage diet (high-fiber) . Our results suggest that both shared and 
diet-specific mechanisms underlying RFI may exist. As further discussed, some interactions between RFI and 
the type of diet for several plasma metabolites involved in protein and lipid metabolic pathways were observed. 
On the other hand, many common metabolites and pathways were found to diverge between RFI groups across 
the two diets suggesting that some features and process such as body composition, muscle protein degradation 
and N use efficiency are likely common determinants of RFI variations irrespective of the diet.

Among the few metabolites showing FDR significant differences across RFI groups, and irrespective of the 
diet, there were creatinine and trans-4-hydroxyproline (concentrations + 16 % for Low- versus High-RFI on aver-
age). These two metabolites reflect directly or indirectly changes in muscle body mass. Creatinine, is a breakdown 
product of creatinine phosphate in  muscle16, and its plasma/blood concentration has been proposed and used as 
a proxy of muscle mass in  ruminants17. The higher plasma values of creatinine in Low-RFI animals for both diets 

Figure 4.  Effectively detected and quantified metabolites involved in metabolic pathways differing between RFI 
groups fed the corn (a) or the grass (b) diet. Metabolic pathways references are stated next to the correspondent 
panel. Significant differences (Tukey’s test < 0.05) between Low versus High-RFI within the given diet are 
depicted with *, whenever RFI × Diet interaction significant effect (FDR < 0.05 in the ANOVA analysis). Cells’ 
color code depict metabolites concentrations for Low- versus High-RFI animals (red: increased, blue: decreased)
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agree with previous reports in beef  cattle9,15,18 indicating higher muscle body mass in efficient versus inefficient 
cattle. Likewise, trans-4-hydroxyproline, a major component of collagen, showed higher plasma concentration 
in efficient RFI animals. Plasma trans-4-hydroxyproline has been proposed as a biomarker of total collagen 
body  mass19, and thus its plasma concentration might indirectly reflect differences in the amount of connective 
tissues associated to the musculoskeletal system. In this regard, plasma trans-4-hydroxyproline was found in 
greater concentration in beef steers with higher growth rate and lean  mass20. Additionally, β-alanine was also 
consistently higher in Low-RFI animals across the two diets. Even if it is considered to be at the crossroad of 
many metabolic pathways, higher β-alanine (i.e. a breakdown product from the muscle-rich dipeptides anserine 
and carnosine) in plasma of Low-RFI animals might also agree with greater body muscle mass. According to a 
recent review, RFI trait is negatively associated with lean body  mass1 and recent genetic studies demonstrated 
that carcass muscle content was negatively correlated to RFI in Charolais  bulls21. Taken together, the differences 
in plasma concentration across RFI groups for these three endogenous metabolites support a contrasted body 
composition across RFI groups whatever the diet is used. However, it is noteworthy to mention that these differ-
ences in body composition were not reflected by the real-time ultrasound echography in our conditions (i.e. late 
maturing breed). Our findings highlight the need for other proxies of body composition in Charolais yearling 
bulls to be used in the RFI model.

Because efficient RFI animals eat less protein (as here reported) but retain equal (or greater) amount of 
 protein22 it could be expected that the N use efficiency (i.e. N retention/N intake) will be improved. This has 
been empirically confirmed in dairy cows with contrasted RFI  values23. However, milk N secretion is easier 
to measure than N accretion in growing animals. In growing cattle, most studies have failed to prove this link 
through N balance  measurements24,25. However, results from our team using a novel isotopic approach applied 
to this same experimental setup (n = 48) suggested that more efficient animals in terms of RFI also show higher 
N use efficiency compared to less efficient RFI  animals26. Data from the present study showed that plasma urea 
concentration, a confirmed biomarker of N use  efficiency27, was decreased in more efficient animals in agreement 
with some  reports18,22,28 but unlike  others6,29. Interestingly, a non-targeted metabolomics approach applied to 
the plasma of growing beef heifers revealed the urea cycle as a metabolic pathway underlying RFI  differences30. 
Furthermore, the metabolic pathways analysis identified the pyrimidine metabolism as the unique pathway 
shifting across RFI groups in the same way in both diets. Pyrimidine biosynthesis is intimately linked to the urea 
cycle pathway through carbamoyl phosphate and pyrimidine catabolism and it has been suggested to contribute 
to the N use efficiency in dairy  cows31.

Despite our observation that efficient RFI animals had a greater muscle mass, our results indicated a trend for 
a lower fractional protein degradation rate of skeletal muscle as indicated by the lower plasma 3-methylhistidine 
to creatinine ratio (FDR = 0.10; Supplementary Table S2). Plasma 3-methylhistidine to creatinine ratio has been 

Table 4.  Identified metabolic pathways associated with RFI differences in young bulls fed either corn- or 
grass-silage diets. 1: Total number of metabolites theoretically considered by the KEGG database for identify 
metabolic pathways. 2: Metabolites effectively quantified in the current study (Figs. 3, 4). 3: FDR > 0.05 is 
depicted by “–”. 4: Topological analysis of impact of the current metabolic pathway.

Pathway TC1 Hits2

Corn Grass1

FDR3 Impact4 FDR Impact

β-Alanine metabolism 21 5 – – 0.01 0.5

Valine, leucine and isoleucine degradation 40 3 0.01 0.00 – –

Valine, leucine and isoleucine biosynthesis 8 4 0.03 0.00 – –

Pyrimidine metabolism 38 2 0.03 0.00 0.03 0.00

Purine metabolism 66 1 – – 0.01 0.00

Propanoate metabolism 23 1 0.03 0.00 – –

Porphyrin and chlorophyll metabolism 30 2 – – 0.01 0.00

Pantothenate and CoA biosynthesis 19 4 0.03 0.02 0.01 0.02

Nitrogen metabolism 6 2 – – 0.01 0.00

Lysine degradation 25 2 0.05 0.14 – –

Histidine metabolism 16 6 – – 0.01 0.36

Glyoxylate and dicarboxylate metabolism 32 5 – – 0.01 0.17

Glycerophospholipid metabolism 36 1 – – 0.01 0.03

Glutathione metabolism 28 4 – – 0.01 0.11

D-Glutamine and D-glutamate metabolism 5 2 – – 0.01 1.00

Butanoate metabolism 15 1 – – 0.01 0.00

Biotin metabolism 10 1 0.05 0.00 – –

Arginine biosynthesis 14 6 – – 0.01 0.48

Arginine and proline metabolism 38 5 – – 0.03 0.39

Aminoacyl-tRNA biosynthesis 48 20 – – 0.03 0.17

Alanine, aspartate and glutamate metabo-
lism 28 5 – – 0.01 0.53
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reported to be a useful index to evaluate myofibrillar protein  degradation32 and creatinine allows normalizing 
by unit of muscle mass. Similar studies looking at this ratio in urine from beef cattle did not, however, find any 
difference and concluded that the muscle degradation rate was similar across RFI  groups18,33. In contrast, evidence 
of lower protein turnover rate in efficient RFI animals have been reported in  cattle34,35 and  swine36 using indirect 
molecular approaches. Similarly, Carvalho et al.37 found greater muscle abundance of Heat Shock Protein β 1 
(HSPB1) in skeletal muscle for Low- than High-RFI animals and suggested this difference may account for an 
increased actin and myosin degradation and protein breakdown, and therefore greater protein turnover in skeletal 
muscle of less efficient animals. Because of the energy cost of protein turnover, our results would agree with the 
fact that Low-RFI animals have a lower metabolic rate and energy expenditure compared to High-RFI  animals1.

Finally, the p-cresol concentrations were greater in Low- versus High-RFI animals regardless the diet. P-cresol 
is a rumen metabolite of  tyrosine38 which may further undergo a sulphation reaction by the host’s cells into 
p-cresol  sulphate39. Higher plasma levels of p-cresol sulphate in efficient RFI animals may translate a higher 
rumen fermentation rate of feed proteins (tyrosine) because of their expected higher rumen retention  time1.

Besides common candidate biomarkers of RFI regardless of the diet, our data strongly suggest that there 
may exist diet-specific metabolic pathways underlying RFI. Interestingly, among the only 4 metabolites show-
ing significant RFI × Diet interactions, three of them belonged to the family of BCAA (Ile, Leu and Val; FDR < 
0.05). In this regard, a meta-analysis on genomic regions associated to RFI in beef cattle, mainly fed high-energy 
dense diets, concluded that the only and unique significant pathway underlying RFI differences was related to 
BCAA  degradation40. Similarly, Foroutan et al.10 recently reported greater plasma concentrations of BCAA for 
High- than Low-RFI Angus steers when they were fed on an energy-dense diet. Despite that the first step in 
BCAA degradation relies on transaminases using B6 vitamin as  cofactor41 no changes in blood concentration of 
B vitamin across RFI groups were found in the present study. However, other relevant data potentially related to 
BCAA metabolism showed a similar RFI × Diet interaction (i.e. insulin, fat visceral mass) than those observed 
for BCAA. Results from a PCA only including the most significant biological variables explaining RFI differences 
(Fig. 4) showed that whereas visceral fat mass and plasma concentration of BCAA and insulin were positively 
correlated with RFI in the corn diet, all of them along with plasma triglycerides were negatively correlated with 
RFI in the grass diet. Therefore, cause and effect relationships between RFI, BCAA metabolism, and energy and 
lipid metabolism, remain unclear.

Our data strongly suggest there may exist diet-specific metabolic pathways underlying RFI. While greater 
amino acid absorption was estimated in less efficient RFI animals irrespective of the diet (i.e. higher theoretical 
MP intake), only greater net portal absorption of glucose was estimated in efficient RFI animals when fed the corn 
diet (Table 1). It seems, thus, that differences in insulin sensitivity associated with RFI would only appear when 
providing glucogenic and high starch diets. Indeed, the lowest RQUICKI score values observed for High-RFI 
animals fed the corn diet are indicative of lower insulin sensitivity in these  animals42. This agrees with previous 
 reports43,44 showing that inefficient animals may require more insulin for the uptake of glucose by peripheral 
tissues compared to the efficient ones. Insulin together with BCAA concentrations, two cell-exogenous signals 
translating greater energy and AA availability, are known to jointly upregulate the mechanistic target of rapamy-
cin (mTOR), which is a master regulator of cell growth and metabolism involved in protein and lipid  synthesis45. 
It is important to mention that the mTOR upregulation depends on the synergy of both nutrient signals (insulin 
and BCAA)46 and thus could explain the observed contrasted BCAA profile across RFI phenotypes depending on 
the nature of diet (glucogenic vs. ketogenic). Although the exact mechanisms linking BCAA plasma concentra-
tions and insulin sensitivity are far from being well understood in ruminants, it seems reasonable to infer from 
human  studies47 that this link is regulated through the mTOR pathway. In this sense, the mTOR pathway has been 
previously demonstrated to be upregulated in tissues from inefficient RFI beef cattle fed corn-based  diets35. Our 
data can be interpreted as the greater glucogenic nutrients and BCAA absorption in High-RFI animals fed the 
corn diet would have led to a chronic activation of the mTOR pathway and thus to a lower insulin  sensitivity48,49 
and higher BCAA catabolism. Catabolic intermediates of BCAA could have promoted lipogenesis in High-RFI 
animals fed the corn  diet50, and thus contributing with insulin to explain their higher visceral fat mass, when 
compared to Low-RFI animals. Taken together, our results lead us to believe a key role of BCAA and insulin 
sensitivity for explaining the diet-specific effects on the link between body composition and RFI phenotype.

Unlike what was observed in the corn-based diet, three specific features were noted for the grass-based diet 
when comparing extreme RFI groups: similar plasma insulin concentration (and likely insulin sensitivity as 
regarded by the RQUICKI index) and visceral fat mass across RFI groups, but greater plasma concentration of 
total triglycerides in more efficient animals. Few studies evaluated body composition in contrasted RFI animals 
fed high-fiber diets. However, among them none have reported significant differences in fat thickness and body 
condition score across RFI  groups15,51 unlike what it is usually observed with more energy-dense  diets52,53. 
Previous results from our team also pointed at similar visceral fat mass and carcass fat score across divergent 
RFI animals fed high-fibre  diets6 which may support the concept of contrasted adiposity across RFI groups 
depending on the diet. Interestingly, Trujillo et al.54 observed that Low-RFI compared to High-RFI heifers had a 
greater proportion of body fat when animals were tested in grazing conditions. In an experiment with divergent 
RFI lines in pigs fed two contrasted diets (low vs. high fibre) a significant trend was observed for perirenal fat 
content to be higher in low versus high-RFI pigs when using high-fibre, high-fat diets whereas the opposite was 
observed with low-fibre, low-fat  diets55.

Lastly, regarding the use of plasma metabolites to assist genetic selection, it is important to mention that 
those metabolites which were found to be affected by the RFI group in a diet-dependent manner should not be 
considered as universal biomarkers in genetic selection programs. However, several metabolites (e.g.: creatinine. 
trans-4-hydroxyproline, β-alanine, p-cresolsulphate) were found to be different across RFI groups regardless the 
diet. Therefore, we think these metabolites may be potential candidates for biomarker-assisted genetic selection 
strategies. Further studies across different breeds and diets are required in order to validate these candidate RFI 
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biomarkers. It is noteworthy to say that, alongside with metabolomics, arising technologies are showing that 
miRNA and mRNA can be useful for feed efficiency biomarkers discovery in  cattle56. In this sense, it could be 
imagined that future studies will combine metabolomics and genomic analysis, as complementary approaches 
rather than exclusive technologies to search biomarkers.

Conclusions
Although common metabolic pathways underlying RFI were found irrespective of the diet consumed, our data 
also suggests that there are diet-specific mechanisms explaining RFI differences in Charolais yearling bulls. 
Among shared mechanisms, we identified muscle mass, protein metabolism and the N use efficiency as the 
most important common drivers of RFI for both high-starch and high-fibre diets. Concerning diet-specific 
mechanisms underlying RFI we identified that the pathway linking BCAA catabolism and lipid metabolism was 
associated to RFI in a diet-dependent manner: when using the high-starch diet the contrasted insulin plasma 
concentration and sensitivity across RFI groups seemed be positively associated with BCAA plasma concen-
tration and adiposity, while the opposite was observed in the grass diet. We speculate that the mTOR pathway 
could explain many of the RFI × Diet interactions here observed. More studies are warranted to confirm our 
results, especially in other breeds and production systems, and investigate the role of BCAA catabolism and 
mTOR pathways in the contrasted body composition observed across RFI groups when nutrient supply varies.

Methods
This study was carried out in compliance with the ARRIVE guidelines and the French legislation on animal 
care. All procedures were carried out in accordance with relevant guidelines and regulations, approved by the 
regional ethics committee (Auvergne-Rhône-Alpes, France) and subsequently validated by the French Ministry 
of Agriculture under the authorization number APAFIS#2930-2015111814299194v3.

Feed efficiency test and experimental diets. This study is part of a large program aiming to explore 
plasma biomarkers of RFI in Charolais beef cattle. Details on the feed efficiency test, experimental diets and 
basic data on animal performances as DM intake, average daily gain and feed efficiency ranking have been 
previously  reported26. Briefly, this study used 364 pure bred Charolais young bulls (380 ± 58 kg body weight) 
tested in 3 different experimental farms. The feed efficiency trials lasted on average 210 ± 16 d (mean ± SD) and 
were conducted between 2015 and 2018 in 7 independent cohorts (farms × period) hosting between 48 and 63 
young bulls each one. Animals were housed indoors in pens of 5 to 8 animals of similar body weight and evenly 
allocated to either a high-starch corn silage diet (corn diet) or a high-fibre grass silage diet (grass diet) as previ-
ously  detailed26. Diets were similar between farms and were formulated with a forage to concentrate ratio close 
to 65:35, providing a minimum of around 1.50 Mcal NE /kg DM, and meeting the recommended metabolizable 
protein to net energy ratio according to the INRA feeding  system57. Feed were offered in two daily meals as total-
mixed rations. The individual dry matter intake (DMI) was recorded daily using automatic recording troughs 
(Biocontrol, Rakkestad, Norway). The body weight was determined fortnightly at 0200 pm. The average daily 
gain (ADG) of each animal was calculated as the slope of body weight regressed on time. Ultrasound echography 
(Easi-Scan, BCF Technology Ltd., Vienne, France; equipped with a linear probe) was conducted in three differ-
ent anatomical regions at end of the RFI test as previously  described14. Distances analyzed from each anatomical 
place were the skin (D0) and back fat thickness (D1) that include both subcutaneous tissues and skin. The thick-
ness of subcutaneous adipose tissue and connective tissues was calculated as D1-D0. The RFI was calculated 
as the difference between the actual and predicted DMI. Predicted DMI was calculated based on the ADG, the 
mean metabolic body weight and the effect of the contemporary  group58, the latter defined at the level of the pen 
within each cohort. No significant effects were found for the back fat depth to predict DMI variation beyond the 
effects of mean metabolic body weight and ADG and thus this variable was not included in the final RFI model.

Blood sampling. Because the ultimate objective of our research program was to explore RFI biomarkers to 
assist genetic selection programs, blood was not sampled at the end of the RFI test to be able in field conditions 
to identify and select future sires long before slaughters. Therefore, blood samples were obtained from each 
animal one month before the end of each RFI test, which corresponds to an average age of 17.2 months (± 0.51), 
blood samples were obtained from each animal to explore RFI biomarkers. Blood samples (9 mL) were taken by 
coccygeal venipuncture using heparinized tubes (BD Vacutainer, Plymouth, UK) before the meal distribution in 
the morning. Samples were immediately centrifuged (2500 × g, 15 min, 4 ◦C), and the plasma was harvested and 
stored at − 80 ◦ C until analysis.

To increase the chance of finding RFI biomarkers, analyses were conducted only from 48 extreme animals in 
terms of RFI values (12 Low-RFI and 12 High-RFI per diet) as usually performed in studies aiming at explor-
ing  biomarkers9,59. Moreover, to minimize the strong cohort effect on plasma  metabolome6, the 48 extreme RFI 
animals were selected from 3 out 7 cohorts while maximizing the RFI differences across RFI groups. Our selec-
tion was balanced for the effects of diet, cohort and RFI group and so included 4 animals per diet × cohort × RFI 
group condition. As previously  reported26, the RFI differences between Low and High-RFI animals averaged 
1.48 kg DMI (− 0.71 vs. 0.78 kg DMI of RFI in corn diet for Low and High-RFI respectively, − 0.78 versus 0.77 
kg DMI of RFI in grass diet for Low and High-RFI , respectively).

Animal performances at the slaughterhouse. Animals from the same cohort were slaughtered in the 
same commercial slaughterhouse when the pen they belonged to approached an average body weight of 720 
kg and corresponding to a target market carcass weight of around 430 kg. This corresponded to 22 animals 
slaughtered right at the end of the RFI test, mostly those fed the corn diet, and the remaining 26 slaughtered 
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several days thereafter (50 ± 14 d) when they reached the targeted body weight. The number of animals within 
each cohort slaughtered at each time was completely balanced for the RFI groups. Thus, performances at the 
slaughterhouse were compared at similar body weight and no corrections were performed for differences in age 
or fattening length. Weights of hot carcass and visceral fat mass (kidney, pelvic and mesenteric fat together) were 
recorded for each animal.

Plasma concentrations of metabolites, hormones and vitamins. Blood plasma samples were sub-
jected to spectrophotometrical quantification of glucose (glucose oxidase method), urea (glutamate dehydroge-
nase method), non-esterified fatty acids (NEFA, acyl-CoA synthase method) and BHB (D-β-hydroxbutyrate-
dehydrogenase method). Determinations were carried out with commercial kits (Thermo Scientific References #
981379, #984325 and #981818 for glucose, BHB and urea, respectively and Sobioda Reference #W1W434-91795 
for NEFA) using an autosampler spectrophotometer (Arena 20XT, Thermo Fisher Scientific, Cergy Pontoise, 
France). Intra- and inter-assay coefficients of variation were 1.4 and 3.1% for glucose, 5.9 and 8.5% for urea, 
2.1 and 3.0% for NEFA, 4.5 and 5.5% for BHB. Plasma insulin (mean intra-assay coefficients of variation were 
6.9% for 5.88 µUI/mL and 1.8% for 36.7 µUI/mL; Porcine Insulin RIA, MI-PI-12K, Merck KGaA, Darmstad, 
Germany) and IGF-1 (mean intra- and inter-assay coefficients of variation were 8.8% and 11.5%, respectively for 
60.5 ng/mL; IGF-I RIA-CT, Ref IGF-R22, DiaSorin, Saluggia, Italy) were determined using radioimmunoassays. 
Blood vitamin B2 (flavin adenine dinucleotide (FAD) and riboflavin), and plasma vitamin B6 (pyridoxal-
5’-phosphate (P5P) and pyridoxal), were quantified using the ClinRep Complete kit according to manufacturer’s 
recommendations (Recipe, Munich, Germany) and extracts were analyzed by UPLC (Waters, Milford, MA, 
USA) as previously detailed by Meale et al.6. Intra- and inter-assay coefficients of variation determined using a 
reference bovine blood sample analysed repeatedly for 3 years were 3.3 and 17.5% for FAD, 3.3 and 13.4% for 
riboflavin, 1.0 and 6.1% for P5P, and 2.7 and 6.4% for pyridoxal.

A useful and easy-to-determine index of insulin sensitivity (RQUICKI index) proposed by Holtenius and 
 Holtenius42 was estimated. In brief, it was calculated based on plasma concentrations of glucose, insulin and 
NEFA according to Eq. (1). Increased values of RQUICKI are indicative of increased insulin sensitivity.

Additionnaly, several ratios between vitamins concentrations reflecting the vitamin activation levels were also 
determined for vitamins B2 and B6 to state their role in feed efficiency as already explored for vitamin D vitam-
ers and  diabetes60.

Targeted metabolomic analysis and data acquisition. Frozen plasma samples were thawed over-
night, centrifuged and the supernatant subjected to metabolomic profiling analysis at the core lab of Biocrates 
Life Science AG (Innsbruck, Austria). A targeted metabolomic approach was carried out using a commercially 
available kit (MxP Quant 500 kit, Biocrates Life Sciences, Innsbruck, Austria) for the quantification up to 630 
metabolites belonging to 26 metabolites classes after derivatization by flow injection analysis-tandem mass 
spectrometry (FIA-MS/MS) in the case of lipids and hexoses, while small molecules were quantified by liquid 
chromatography-tandem mass spectrometry (LC-MS/MS). Both FIA-MS/MS and LC-MS/MS were performed 
using a 5500 QTRAP instrument (AB Sciex, Darmstadt, Germany) with an electrospray ionization (ESI) source. 
Data were quantified using a specific mass spectrometry software (Sciex Analyst) and further analysed using the 
Biocrates MetIDQTM. A complete list of analysed metabolites is available in Suppl. Table S1.

A cleaning data procedure was performed on raw data in order to exclude metabolites with missing values or 
concentration below the limit of detection (LOD). Metabolites were excluded when values were under the LOD in 
≥ 20% of measured samples within each experimental group (RFI × Diet combination). In case of missing values 
among the retained metabolites, imputed values were added by replacing values below LOD by values between 
LOD and LOD/2 using a logspline imputation  method61. Finally, the imputed database ( µmol/L concentration 
data) was transformed by log 2 in order to avoid heteroscedasticity and any skewed distributions of  data62.

Calculations and statistical analysis. Intakes of organic matter, crude protein, neutral detergent fibre 
and starch were calculated on the basis of the observed DMI and analysed chemical composition of diets as 
reported in Cantalapiedra-Hijar et al.26. Diets were characterized by the INRA feeding  system57 from analysed 
chemical composition and observed animal feeding level. Net energy intake and metabolizable protein intake 
were estimated, as well as rumen fermentation parameters (rumen fermentable OM and NDF) and starch digest-
ibility (starch digested in the small intestine) as they are needed to estimate the net portal appearance of total 
volatile fatty acids, acetate, propionate, butyrate and glucose according to equations proposed by Loncke et al.63.

Prior to statistical analysis, all data -including cleaned metabolomic data set- were adjusted for the effect of 
the cohort by using a linear model with cohort as the only fixed effect. Adjustment consisted of adding up the 
average metabolite concentration from the whole population (i.e. intercept) to the individual residuals obtained 
in that model. Because the obtained residuals represent the variation of each observation from the average of 
its respective cohort, the between-cohort variation was in this way removed from raw values. Then, nutrient 
intakes, performance data and classical metabolic parameters were analysed by ANOVA considering diet, RFI 
group and their interaction as fixed effects. For performance, classical metabolites, hormones and vitamins, the 
analyses were performed using the R software (R development Core Team, 2015) and significance was set at P ≤ 
0.05, and tendency was declared at 0.05 < FDR ≤ 0.10. For metabolomic data, the same univariate analyses were 
performed using the MetaboAnalyst  software64 (https:// www. metab oanal yst. ca/). The obtained raw-P values 

(1)RQUICKI =
1

log[glucose (mg/dL)] + log[NEFA (mmol/L)] + log[insulin (µU/mL)]

https://www.metaboanalyst.ca/
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were adjusted by the Benjamini-Hochberg65 false discovery rate (FDR) correction as previously  suggested66. 
Significance threshold was set at FDR ≤ 0.05, and tendency was declared at 0.05 < FDR ≤ 0.10. We aimed to 
compare how Low- and High-RFI metabolite profiles contrasted over the two diets. Therefore, when a significant 
RFI × Diet interaction was detected, pairwise comparisons performed by Tukey’s honestly significance difference 
were only applied within each diet (sliced comparisons) as previously  reported64,67. Given the relatively small 
change in the plasma metabolite concentration expected across individuals fed the same diet but differing in 
RFI, no restrictive threshold fold-change cut-off was applied when interpreting FDR significant  metabolites10,68.

Metabolomic data was additionally submitted to multivariate analyses. These included both clustering analy-
sis by principal component analysis and classification models assessment by partial-least square discriminant 
analysis. The quality of prediction from PLS-DA models were evaluated through the Q2 criteria. In addition, 
after univariate analysis, PCA analyses were performed a posteriori in order to explore the associations between 
RFI, and those classical and metabolomic variables with the greater significant differences across RFI groups 
within each diet. Finally, in order to gain deeper insights on mechanisms underlying RFI differences, metabolic 
pathways analysis, based on the Bos taurus KEGG database (https:// www. genome. jp/), were performed combin-
ing the Global test and a topology analysis based on betweenness  centrality64. In brief, Global test determines 
whether a set of metabolites that participate in a specific metabolic pathway present or not a global trend when 
comparing two treatments. Finally, it gives a global P value for the given metabolic pathway after the evaluation 
of the effect of treatment on each  metabolite69. In addition, betweenness centrality estimates how frequently a 
node (a given compound) is on the shortest pathways between every pair of compounds for detecting bottlenecks 
in a network. In other words, it gives an idea of how well interconnected (short biochemical connections) are the 
compounds measured for each given metabolic  pathway64. Significant enrichment of metabolic pathway was set 
at FDR ≤ 0.05, and only metabolic pathways with at least two metabolites quantified in the current data set were 
further considered for discussion purposes.
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