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U.S. national water and energy land 
dataset for integrated multisector 
dynamics research
Jillian Sturtevant1, Ryan A. McManamay   1 ✉ & Christopher R. DeRolph   2

Understanding resource demands and tradeoffs among energy, water, and land socioeconomic sectors 
requires an explicit consideration of spatial scale. However, incorporation of land dynamics within the 
energy-water nexus has been limited due inconsistent spatial units of observation from disparate data 
sources. Herein we describe the development of a National Water and Energy Land Dataset (NWELD) 
for the conterminous United States. NWELD is a 30-m, 86-layer rasterized dataset depicting the land 
use of mappable components of the United States energy sector life cycles (and related water used for 
energy), specifically the extraction, development, production, storage, distribution, and operation of 
eight renewable and non-renewable technologies. Through geospatial processing and programming, the 
final products were assembled using four different methodologies, each depending upon the nature and 
availability of raw data sources. For validation, NWELD provided a relatively accurate portrayal of the 
spatial extent of energy life cycles yet displayed low measures of association  with mainstream land cover 
and land use datasets, indicating the provision of new land use information for the energy-water nexus.

Background & Summary
Multi-sector dynamics is a growing field of research aimed at understanding the vulnerabilities and risks of 
stressors and shocks to interdependencies converging at the intersection of energy, water, and land (EWL) sys-
tems1. Through the lens of EWL, MSD research examines natural human-environmental system coupling, meas-
ures dependencies, and evaluates tradeoffs in resources amongst the various economic sectors1. Considerable 
attention has been devoted solely to evaluating critical interdependencies or tradeoffs within the energy-water 
nexus, such as studies on thermoelectric water use2, drinking water supply and distribution3 and wastewater 
treatment4. Although energy and water are critical components of the economy and society, both elements are 
highly dependent upon land5.

Indeed, consideration of food production in sustainability studies has tied landscapes to the energy-water 
nexus6. Beyond the agricultural sector, however, explicit consideration of spatial scales, particularly land 
dynamics within the energy-water nexus, has seen far less attention5. Incorporation of land dynamics within 
the energy-water nexus engenders a common spatial scale within multi-sector evaluations, such as quantifying 
land competition among sectors7, evaluating resource burdens of alternative socioeconomic choices by way of 
life cycle analysis8–10, or understanding distal teleconnections imbedded within energy life cycles resources11.

Understanding the broader environmental impacts among energy technologies requires translating energy 
life cycle components into landscape-relevant measures. Specifically, mapping land use of energy technologies is 
imperative, as it provides an estimation of the environmental footprint of electricity consumption12 by breaking 
down the energy types into their respective life cycle steps; production, processing, power generation, and trans-
mission7,13. One challenge and necessity in linking energy and water to the land is differentiating land cover from 
land use. Traditionally, land cover mapping has relied on remotely sensed multi-spectral imagery to understand 
the extent of natural ecosystems and human activities in the landscape as seen by the cover of the Earth’s surface, 
whereas land use describes the “arrangements, activities, and inputs people undertake within a particular land 
cover type”14.

Although products that represent broad land components of energy sectors (e.g., developed land cover, mining) 
are available for the conterminous United States, current land use data products are limited in their ability to 
capture all (or at least the majority) of life cycle components of energy sector relevant to landscape analysis15. For 
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instance, the national land use dataset (NLUD) is a 30 m product comprised of 79 anthropogenic land use classes 
and provides an extensive categorization of sectors for land use mapping; however, layers pertaining to energy 
life cycles and water sectors are limited16. The national wall-to-wall anthropogenic land use trends (NWALT) 
dataset (60 m) provides 19 classes of anthropogenic land use17. Although it lacks the specificity of NLUD, it spans 
five time periods (1976 to 2012) and contains a critical layer (mining) that portrays a key component of energy 
life cycles17. The national land cover dataset (NLCD) is a high-resolution (30 m) depiction of the land surface 
cover modeled from Landsat imagery and released every five years between 2001 and 201914,18. NLCD depicts 
28 classes of land cover, characterized to show complex land cover change14,18,19. While these land cover and 
land use datasets offer broad classification systems that include elements of energy use, they do not represent the 
majority of the water and land components of energy production life cycles.

Herein, we describe the development of a National Water and Energy Land Dataset (NWELD) depicting 
the land use of energy production life cycles and water sources pertaining to energy production in the lower 
48 states. Although the NLCD extends to Alaska and Hawaii, our exclusion of these states are due to the lack of 
other land cover/use rasterized data supporting our analysis, particularly the NLUD and NWALT. The various 
classes of land use in NWELD are, in part, inspired by missing elements shared by NLUD and NWALT, but 
are extended to provide an operable template for MSD research. Depending on the availability and accuracy 
of source information, four methodologies involving geospatial techniques were used to create an 86-layer, 
30m-resolution gridded product.

Methods
Overview of approach.  NWELD’s classification scheme is organized by the energy life cycles of major 
renewable and non-renewable energy sources: coal, hydropower, natural gas, oil, nuclear, bioenergy, solar, and 
wind (Table 1). These energy life cycles include the extraction, construction (siting and development), produc-
tion, storage, distribution, and operation of coal, hydropower, natural gas, oil, nuclear, biomass, and general 
renewable energy sources20; some manufacturing is included where it can be linked to an energy production 
service (i.e., General Renewable Metal Processing Plants). However, NWELD does not include the material acqui-
sition aspects of construction and also excludes decommissioning phases21. This is due to the lack of decommis-
sioning geospatial data from OSM and the inability to allocate upstream goods and services to a single energy 
production source. The inclusion of energy-water life cycles in NWELD are based on relatively simple criteria: the 
life cycle must have a spatial or mappable component supported by available data or reliable estimation methods. 
Only life cycles that occur on the surface of the earth are depicted; for example, only surface mines are repre-
sented, not underground mines or fields. Aside from extraction of essential fuels or elements that can be strictly 
tied to a sub-category, sourcing of other raw materials and manufacturing is not included.

Based on the types of raw datasets available for mapping energy and water features, we conceptualized two 
general paths for developing land-use models, where they could be used interchangeably: 1) a downscaling 
model process whereby a combination of rasterized land-cover products (i.e. surrogates) are used in conjunction 
with information at coarser boundaries to approximate land use for energy in a given area, or 2) direct allocation 
of land use based on proximate, highly accurate, and mutually exclusive vector boundaries that necessarily iden-
tify land use. Part of the problem with the second path lies with the completeness of open-access sources and 
technological limits to harness those sources that provide high spatial fidelity and accuracy. Developing energy 
and water land sector mapping is difficult and data intensive; it requires high-resolution depictions of power 
plants, transmission, and detailed infrastructure in a heavy data format. An example of an accessible data source 
that provides these types of footprints is Open Street Map (OSM)14,22. OSM has become a very popular resource 
since it is user friendly and created by contributors that describe the attributes of the objects created14,23,24. The 
database provides both local and worldwide vectors24 and is edited and improved by thousands of registered 
users so that their edits are stored and made available for others25. OSM provides a valuable resource for devel-
oping land use maps of energy and water infrastructures.

Four methodologies were used depending upon the availability, geometry, granularity, and type of raw data 
used to represent each energy life cycle (Fig. 1, Supplementary Table 1). Essentially, methodologies  vary in their 
approach to obtaining geographic boundaries of energy and water infrastructure (via direct observation or 
estimation) and in how those layers are converted those into a consistent rasterized data product. Geographic 
boundaries included point data associated with polygon data including OSM polygon footprints, approxima-
tions of spatial footprints estimated from models, or manually digitized polygons. Grid cells falling within these 
boundaries were then reclassified using a refining schema involving previous land sector products, NWALT 
and NLCD, or directly obtaining pixels from NLCD and reclassifying them according to the various classes. 
More detailed explanations of the main methodologies are provided in the sections that follow. Detailed step-
wise methods used for each layer are provided in Supplementary File 1. All spatial procedures were conducted 
in ArcMap 10.5, whereas OSM data retrieval was conducted in the R programming environment.

Data products used to develop each of the land use layers are also provided in Supplementary Table 1. 
Detailed information on raw data used in our analysis, in conjunction with method typologies, are provided in 
Supplementary Table 2 and Supplementary File 1. Of the data products we utilized, Open Street Map (OSM) was 
a critical resource to our project. Not only does OSM supply highly resolved polygon data that accurately repre-
sents footprints of a given energy and water life cycle, but also the OSM data provides a dataset for developing 
predictive models of the geographical footprints of energy and water uses in locations where detailed polygon 
data was unavailable. In the latter case, we used OSM to develop regression equations that estimate the area of 
buffers based on a set of relevant predictor variables (e.g., Megawatt capacity, structure height). We iteratively 
obtained OSM polygons for the conterminous US using state names and other search terms within the OSM 
package26 the R programming environment. Search terms varied depending upon the subclass in question. For 
example, search terms for coal power plants, gas power plants, hydro power plants, nuclear power plants, oil 
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1. Coal 6. Nuclear 10. General Renewable 
Metal Processing Plants 70. Sunflower 80. Substations

16. Surface Coal Mines 34. Uranium Mines 52. Zinc Metal Processing 
Plant 12ab. Biodiesel Refinery 81. Transmission 

Lines

17. Coal Fired Power Plants 35. Uranium In-situ 
Leaching Plant

53. Silver Metal Processing 
Plant 12b. Ethanol 14. Infrastructure

2. Hydropower 36. Uranium Mills and 
Heap Leach Facilities

54. Nickel Metal Processing 
Plant 12bb. Crops for ethanol 82. Railroad Tracks

18. Hydro Dams 37. Nuclear Power 
Plant

55. Magnesium Metal 
Processing Plant 71. Corn 83. Roads, Primary 

and Secondary

19. Hydro Power Plants 7. Solar 56. Lead Metal Processing 
Plant 72. Barley 84. Flood Control 

Dams

20. Hydro Dam/Power Plant 38. Quartz Mine for 
Solar Panels

57. Iron Metal Processing 
Plant 73. Rice Straw 85. Irrigation Dams

21. Hydro Power Reservoirs 39. Cadmium Mine for 
Solar Panels

58. Gold Metal Processing 
Plant 74. Sorghum 86. Navigation Dams

3. Natural Gas/Oil 40. Gallium Mine for 
Solar Panels

59. Copper Metal 
Processing Plant 75. Sugarcane Bagasse 87. Water Supply 

Dams

22. Oil and Gas Wells 41. Germanium Mine 
for Solar Panels

60. Cobalt Metal 
Processing Plant 76. Switch grass 88. Recreation Dams

23. Hydrocarbon Gas Liquid 
Pipeline

42. Tellurium Mine for 
Solar Panels

11. Mines for Lithium Ion
Batteries (Renewables) 12bc. Ethanol refineries 89. Multi-Use Dams

24. Natural Gas/Petroleum Plant 43. Solar Farms 61. Cobalt Mine 12c. Municipal Landfills 
with Gas 15. Water Sources

4. Natural Gas 8. Wind 62. Lithium Mine 12d. Landfills with Waste 
and Gas 90. Water bodies

25. Natural Gas Processing Plant 44. Iron Mine for 
Windmills 63. Nickel Mine 12e. Municipal Solid 

waste 91. Navigable Rivers

26. Natural Gas Storage Facilities 45.Wind Farms 64. Manganese Mine 12dd. Municipal Landfills 92. Small Network 
Rivers

27. Natural Gas Power Plant 9. General Renewable 
Mines 12. Biomass 12de. Municipal Waste 

Plant 93. Ocean

28. Natural Gas Pipelines 46. Aluminum Metal 
Mine 12a. Biodiesel 12f. Woody Biomass 94. Wastewater 

Treatment Plant

5. Oil 47. Copper Metal 
Mine 12aa. Crops for Biodiesel 12ee. Woody Solids

29. Petroleum Refinery 48. Gold Metal Mine 65. Soybean 77. Mills

30. DOE Petroleum Reserves 49. Silver Metal Mine 66. Rapeseed 78. Forests

31. Petroleum Power Plant 50. Zinc Metal Mine 67. Canola 79. Both Mills and Forests

32. Crude Oil Pipelines 51. Lead Metal Mine 68. Mustard 12ef. Wood Waste Plant

33. Petroleum Pipelines 69. Safflower 13. Transmission

Table 1.  Classes and subclasses of energy life cycles within the NWELD (National Water and Energy Land 
Dataset) product. NWELD datasets for each life cycle follow the numeric coding system.

Does the geometry of the original data match that of
the desired end product? 

Are there OSM polygons that correspond to the
dataset?

Can the footprint be drawn accurately from aerial 
imagery? 

Is there a rasterized land cover/use dataset that 
provides unique land classifica�on that could 

accurately represent land footprint? 

New Methodology

Original Data Methodology

OSM/Regression Buffer 
Methodology

Drawn Polygon 
Methodology

Theissen Polygon 
Methodology

Yes No

Yes No

Yes No

Yes No

Fig. 1  Workflow for developing NWELD based on availability of source information relative to desired end 
product.
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power plants, and solar farms were structured after that of Dunnet et al.22. Examples of R code for various states 
and subclasses are provided in the SI text.

Method types.  Original data.  In cases where the geographic boundaries of a given energy life cycle or 
water footprint were readily available and accurately represented the final geometry (e.g., roads, railroads, and 
transmission lines), we extracted rasterized land cover within those known geographic boundaries. This method-
ology was commonly used for datasets with polygon or line geometry, but also occasionally used with point data if 
underlying infrastructure had a very small footprint (e.g., natural gas wells) (Supplementary File 1). Polyline and 
point data were used to extract NLCD raster pixels to convert geometries to a 30 m final product. Depending on 
the desired end product, the extracted NLCD pixels were reclassified to attain final energy life cycle classes (e.g., 
wastewater treatment facility polygons were reclassified into “facilities” and “water”). In some cases, source data 
represented infrastructure with varying widths (ex. roads and transmission lines). In these instances, data was 
separated according to a particular size class (e.g., transmission voltage category, primary vs secondary roads). To 
determine widths for each size class, a subset (n = 40) of features for each class were selected and aerial imagery 

Fig. 2  An example of an OSM stepwise process. (a) OSM polygons representing a given energy life cycle are 
obtained using R programming script, (b) OSM polygons are associated with other source data (example: green 
data point) to build regression equations estimating spatial footprints of a given life cycle based on attributes of 
an energy asset. (c) Once spatial footprints are identified, NLCD rasters are extracted and then, (d) reclassified 
to represent the final end product.

Fig. 3  An example of a Regression Buffer stepwise process. (a) Point data representing a given energy life cycle 
are obtained (in this case, a substation). OSM polygons are associated with other source data (example: green 
data point) to build regression equations estimating spatial footprints of a given life cycle based on attributes 
of an energy asset. (b) The regression equation is applied to produce a buffer (c) Once the buffer appropriately 
encompasses the energy life cycle footprint, NLCD rasters are extracted and then, (d) reclassified to represent 
the final end product.

https://doi.org/10.1038/s41597-022-01290-w
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was used to manually record the width of land surrounding each line, which was then averaged for the entire 
subset and used to create buffers. Buffered lines were then used to extract NLCD raster pixels, representing the 
infrastructure.

OSM/Regression buffer.  The second methodology used OSM polygons in two main ways. First, OSM polygons, 
when available and accurate, were used to directly allocate all land surfaces falling within the geographic bound-
ary of a given energy life cycle at a location (e.g., Fig. 2). In situations where OSM polygons were unavailable 

Fig. 4  An example of a Theissen Polygon stepwise process (in this case, coal mining) where (a) point data 
representing a given energy life cycle are obtained, (b) Theissen polygons are created using ESRI ArcGIS and 
polygons are separated based on mine classification (c) Once spatial footprints are identified, NWALT rasters 
are extracted and reclassified to represent the final end product.

Fig. 5  Manually Digitized Polygons stepwise process. (a) Point data representing a given energy life cycle are 
obtained, (b) Polygons are developed using ARCGIS tools and aerial imagery as a reference.
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but point locations of a given energy life cycle were available, we used predictive models to estimate buffer sizes, 
which were then applied to points (e.g., Fig. 3). NLCD rasters were then extracted under each buffered area and 
modified to attain the desired geometry. Using subsets of data where OSM polygons could be paired with ancil-
lary data from other sources, we developed linear regressions to estimate the footprint of an energy life cycle at a 

Fig. 6  Examples of contextual aerial imagery (left) and the representation of NWELD features (right). (a,b) 
petroleum powerplant, refineries, water sources, and associated infrastructure, (c,d) hydropower dam, power 
plant, and waterbodies, (e,f) solar and wind farms and associated infrastructure, (g,h) coal fired powerplant and 
associated infrastructures.
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given location based on attributes of the location. As one example, OSM polygons were unavailable for the spa-
tial footprint of many hydropower facilities. For instances where OSM polygons provided a footprint of the dam 
and powerplant, we calculated the OSM area and then paired that information with data on each facility, such 
as dam height and generating capacity. These variables were then used in regressions to estimate total area of the 
spatial footprint and were applied to estimate the spatial footprint of points lacking OSM polygons. Total areas 
were then converted into buffer radii (r) using the circular area equation (A = πr2). Instances of missing OSM 
data are summarized in Supporting Information 2. Additionally, regression equations for buffer radii and any 
buffer modifications for energy life cycles are provided in Supporting Information 2.

Theissen polygons.  In cases where regional segregation was required to differentiate among similar land use 
types (e.g., different types of mining activity), theissen polygons27 were used to generate polygon boundaries 
around clusters of points representing similar land uses (e.g., Fig. 4). This case was particularly important when 
land use for an energy life cycle was regionally distributed (e.g., mining) and not isolated to patchy instances 
of land use around individual entities (e.g., power plant). For instance, mining is generally conducted through 
an entire region, although mines used for different purposes (e.g., coal, minerals) may be clustered in the same 
area (Fig. 4). Therefore, we could not generally assume that “mining” land classification directly translated into a 
given energy life cycle simply using regional deduction of resource-rich geology (i.e., coal beds). In these cases, 
we used theissen polygons to distinguish proximal regions by building polygonal boundaries around clusters 
of data points (e.g. mines used for same purpose), which represented different energy uses. Rasters underlying 
each polygon sub-region were then extracted to obtain the desired land product (see Supplementary File 1 for 
more details).

Manually digitized polygons.  Finally, there were situations in which required datasets were either unavailable or 
lacked the specificity to utilize the previous three methodologies. This generally arose if source datasets had very 
few observations or there was a complete lack of OSM polygons for a life cycle component. In these cases, we 
manually digitized spatial footprints using aerial imagery, after which subsequent raster processing followed one 
of the first two methods (e.g., Fig. 5). For some datasets, sufficient point observations were available and were 
randomly sampled for manually digitizing footprints. From these samples, linear regressions could be developed 
and used to estimate buffer radii (as in the second methodology).

Fig. 7  Associations among NWELD layers (y axis) and the NLCD (National Land Cover Dataset) layers (x axis) 
as a measure of the percent of NLCD pixels associated with a given NWELD layer.

https://doi.org/10.1038/s41597-022-01290-w
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Data Records
Each step of the energy life cycle is a sub-category in the National Water and Energy Land Dataset or NWELD 
(Table 1). NWELD is a 5-GB (1.32-GB compressed size), 30 m rasterized dataset that can be obtained through 
figshare28. The data is organized according to energy production and water source type, where each layer (sur-
face coal mines, nickel mines, etc.) has an associated gridded integer raster product projected within the North 
American Datum 83 Conus Albers coordinate system. In total, NWELD has 86 layers for coal, hydropower, 
natural gas, petroleum, solar, wind, biomass, general renewable, infrastructure, and water sectors as they apply 
to energy production (Table 1). The layers in each general section (coal, hydropower, etc.) are numbered sequen-
tially to accurately represent the flow of the energy life cycle according to each producer (Table 1). As an exam-
ple, a series of samples of these sub-layers displayed in Fig. 6 to show the spatial fidelity and differentiation 
among footprints between the various stages of energy production.

Technical Validation
The validation of our data product is comprised in four main ways. First, we evaluate the explanatory power 
(i.e., accuracy) of buffer radii linear regressions used to estimate spatial footprints – this information can be 
used in future evaluations of spatial footprint assessments in addition to examining potential sources of error 
in NWELD. Second, we compare NWELD classes to those of NLCD, NWALT and NLUD to differentiate our 
depiction of energy life cycles from standard land cover and land use products. Third, we used a random strat-
ification process to spot check instances of each energy life cycle layer to determine how well the final product 
accurately depicts the observed energy use in aerial images. Finally, we compared the aerial footprint of energy 
technologies in NWELD to comprehensive reviews conducted by Fthenakis and Kim29 and Jordaan et al.13. 
Applicable life cycles were compared in terms of total area and land use intensity for each technology. A sum-
mary of validation results is provided here; however, for the full details of our technical validation, please refer 
to Supplementary File 3.

The explanatory power of linear regressions for buffer radii varied widely according to energy life cycles; the 
majority of linear regressions had R2 < 0.5. Models with higher performance included natural gas storage facil-
ities (R2 = 0.61), solar farms (R2 = 0.62), and flood control dams (R2 = 0.55). Examples of layers with moderate 

Fig. 8  Associations among NWELD layers (y axis) and NWALT (National Wall-to-Wall Anthropogenic 
Land Use Trends) dataset layers (x axis) as a measure of the percent of NWALT pixels associated with a given 
NWELD layer.
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explanatory power include petroleum refineries (R2 = 0.22), several of the layers depicting dams used for various 
purposes (R2 = 0.24–0.46), and substations (R2 = 0.39).

On a pixel-to-pixel basis, NWELD was compared to NLCD, NWALT, and NLUD via Cramer’s V analysis. 
This specific analysis was chosen to quantify how much NWELD explains the variability of the other rasterized 
land use models, or, alternatively, the degree of association between NWELD and NLCD, NWALT, and NLUD. 
Cramer’s V is represented on a scale of 0 to 1 representing the strength of association between two variables, 
where 0 indicates no association and 1 is perfect association30. Our results indicate that NWELD has little associ-
ation with previous land use and land cover datasets. Cramer’s V values were 0.210, 0.203, and 0.174 for compar-
isons between NWELD with NLCD, NWALT, and NLUD, respectively. A visual depiction of this discontinuity 
between NWELD and contemporary land use-land cover datasets can be seen for nine of the NWELD layers 
(Figs. 7–9). These cross-comparisons show the level of differentiation that NWELD layers provide relative to the 
other land classification schemes.

Third, as a measure of overall accuracy, NWELD layers were spot checked against aerial imagery and ranked 
on how well they represented a specified energy use. We used a 4-km grid of the US as a template for randomiz-
ing the selection of spatially heterogenous areas for our accuracy assessment. For each NWELD layer, a subset 
of 10 grids were selected (only where that layer was present) to conduct a visual comparison of the accuracy in 
the raster layer’s representation of edges and extent of a given energy life cycle compared to aerial imagery (e.g., 
power plant, surface mine, reservoir, dam). Each sample was assigned a score from 1 to 3, indicating poor to 
excellent representation, respectively. Average scores are reported by layer (Fig. 10) and by energy production 
type (transmission, biomass, solar, etc.) (Supplementary File 3, Table S8).

General renewable metal processing plants are very well represented by NWELD and ranked highest. 
Nuclear was the second best represented (2.97), followed by wind (2.8), transmission (2.75), natural gas/oil (2.5), 
water sources (2.37), oil (2.3), biomass (2.26), natural gas (2.1), infrastructure (1.93), coal (1.8), hydropower 
(1.77), and solar (1.6). The above process included 50 of the 86 NWELD layers. The remaining layers, such as 
underground mines/pipes, biomass crops, and biomass forests/mills were excluded because they were unsuitable 
for aerial assessment (i.e., aerial information could not reliably identify these features).

Finally, to examine the robustness of our geospatial methods, we compared applicable NWELD layers to the 
mathematical calculations of previous reviews of land used for electricity13,29 (Fig. 11). First, we cross referenced 
NWELD to each review and chose land uses that were directly comparable. Following this selection method, 

Fig. 9  Associations among NWELD layers (y axis) and NLUD (National Land Use Dataset) layers (x axis) as a 
measure of the percent of NLUD pixels associated with a given NWELD layer.
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we assessed the following energy technologies and determined their area (km2) per Terawatt-hour: coal, natural 
gas, nuclear, hydropower, wind, and solar. To calculate land intensity values for NWELD, we obtained electricity 
consumption estimates for the conterminous US from the Energy Information Administration (https://www.eia.
gov/totalenergy/data/annual/). See Supplementary File 3 for more details on calculations. 

In terms of land transformation (km2 TWh−1), NWELD’s estimates are larger than the literature, with wind 
as the exception (Fig. 11). The literature calculations depict coal (0.46), natural gas (0.27), solar (0.39), and 
nuclear (0.09), as being lower than two renewable technologies - hydroelectric (13.68) and wind (1.95). NWELD 
reflects a similar trend, in which coal (3.92), natural gas (1.42), nuclear (1.02), and wind (0.07) are lower than 
the renewable technologies hydroelectric (35.38) and solar (10.89). Generally, hydroelectric technology has the 
largest land transformation from both sources. According to NWELD, wind has the lowest land transformation, 
whereasnuclear has the lowest land transformation according to the literature.

Usage Notes
NWELD offers a rasterized dataset depicting the land use of energy resource extraction, transportation, pro-
duction, and operations, as well as the land use of water sources related to energy production. Each raster layer 
is provided at 30-m resolution and depicts the spatial distribution of a respective energy life cycle category, 
where the spatial extent only maps a life cycle’s presence, denoted as 1. Raster layers can be summarized using 
a number of spatial statistics, such as agglomerating grid results to coarser regions (e.g., zonal statistics, area 
tabulation using ESRI ArcMap or Raster package31 in the R programming environment. Additionally, by way of 
map algebra (ESRI) or raster math (raster package, R), NWELD’s raster surfaces can be translated into measures 
of flux or risk surfaces.

NWELD is a dramatic improvement in understanding land use for energy production and transmission, 
whereas previous land use/cover rasterized datasets such as NLCD, NWALT, and NLUD provide rather vague 
land uses/covers that do not differentiate amongst these detailed uses. The granularity and specificity of land use 
data afforded by NWELD could be used to compare and validate previous spatial footprint calculation methods 
used to compare energy technologies32,33. Additionally, NWELD could be helpful in updating power density 
models32, more accurately calculating greenhouse gas (GHG) emissions21, studying the energy sector’s socioeco-
nomic impacts33, or investigating the most compatible energy types for specific urban areas34. NWELD also pro-
vides a resource for land use planning. Specifically, land management organizations can utilize NWELD to create 
innovative land use plans that consider the effect of energy consumption, production, and resource extraction 
on local ecosystem integrity and habitat fragmentation. NWELD provides a means to explore regional heteroge-
neity in the land-use efficiencies of energy technologies to cross-compare energy resource assessments with land 
consumption and minimize future deployment impacts by avoiding regions where land-use efficiency is low.

Among the limitations of NWELD are that it approximates area coverage. Therefore, NWELD is not intended 
to be used as a site-by-site assessment of the precise layout of the US’s energy infrastructure, but rather, a spatial 
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product for regional assessment, modeling, and nexus applications. Approximations of the energy life cycle foot-
prints are based on the layer’s methodology, underlying datasets, including the accuracy of rasterized datasets 
used to refine the final product. As indicated, we used linear regressions to estimate the area of polygon buffers, 
i.e., the footprint of a given energy life cycle. While this is undoubtedly a source of error, these models could 
also be useful for predicting land area requirements or projecting future land use development related to energy 
resource deployment.

Code availability
Geospatial processing was primarily conducted using pre-existing tools within ESRI ArcMap 10.5. However, 
data retrieval, specifically OSM data, was obtained using code within the OSM package of the R programming 
environment. Technically, the code primarily utilized pre-existing routine function calls supported within the 
OSM library, specifically determining bounding geographies (in our case, US states) for OSM feature retrieval 
and using search terms for “keys” (major groups of objects) and “values” (sub-classifications of keys). Keys and 
values were varied and dependent upon each energy life cycle. Reproducible examples of code are provided in 
Supplementary File 2, Tables S2-3.
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