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Abstract
Background: To investigate the effects of computed tomography (CT) reconstruction
slice thickness and contrast-enhancement phase on the differential diagnosis perfor-
mance of radiomic signature in lung adenocarcinoma.
Methods: A total of 187 patients who had been pathologically confirmed with lung
adenocarcinoma and nonadenocarcinoma were divided into a training cohort
(n = 149) and validation cohort (n = 38). All the patients underwent contrast-
enhanced CT and the images were reconstructed with different slice thickness. The
radiomic features were extracted from different slice thickness and scan phase. The
logistic regression (LR) algorithm was used to build a machine learning model for
each group. The area under the curve (AUC) obtained from the receiver operating
characteristic (ROC) curve and DeLong test was used to evaluate its discriminating
performance.
Results: Finally, 34 image features and five semantic features were selected to establish
a radiomics model. Based on the three contrast-enhanced CT phases and four recon-
struction slice thickness, 12 groups of radiomics models showed good discrimination
ability with the AUCs range from 0.9287 to 0.9631, sensitivity range from 0.8349 to
0.9083, specificity range from 0.825 to 0.925 in the training group. Similar results were
observed in the validation group. However, there was no statistical significance
between the different CT scan phase groups and different slice thickness (p > 0.05).
Conclusions: The radiomic analysis of contrast-enhanced CT can be used for the dif-
ferential diagnosis of lung adenocarcinoma. Moreover, different slice thickness and
contrast-enhanced scan phase did not affect the discriminating ability in the radiomics
models.
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lung adenocarcinoma, radiomics, slice thickness, scan phase

INTRODUCTION

Lung cancer is one of the most common malignancies world-
wide. The different pathological subtypes of lung cancer have
distinct biological characteristics; thus, clinical treatment and
prognosis also differ.1 Adenocarcinoma is the dominant
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pathological type, and targeted therapies can significantly
improve the efficacy of treatment for lung adenocarcinoma.2

Therefore, it is helpful to determine the histological subtype of
adenocarcinoma before determining the appropriate therapeutic
strategy.

With the increased uptake of low-dose computed
tomography (CT) screening, an increasing number of lung
lesions are being detected. CT is important for clinical deci-
sion making, but sometimes its ability to provide a differen-
tial diagnosis is limited.3 Radiomics involves the conversion
of images to data of a higher dimension and subsequent
mining of these data to improve decision making.4 Recently,
radiomics studies of pulmonary lesions have differentiated
benign from malignant nodules, defined the pathological
type, predicted lung cancer gene mutations, determined the
prognosis of lung cancer, and evaluated therapeutic efficacy.
Yang et al. constructed a radiomics model to differentiate
pulmonary granulomatous nodules from solid lung adeno-
carcinomas. With this model, radiomic features were
extracted from plain-phase and venous-phase CT images
with a slice thickness of 2.0 mm.5 Zhong et al. also con-
structed a radiomics model to predict occult mediastinal
lymph node metastasis in lung adenocarcinoma. With this
approach, radiomic features were extracted from plain CT
images with a slice thickness of 1.0 mm.6 Moreover, Gu
et al. constructed a radiomics model to predict cell prolifera-
tion (Ki-67 staining) in non-small cell lung cancer. In their
study, radiomic features were extracted from plain or
venous-phase CT images with a slice thickness of 5.0 mm.7

The major limitations of radiomics are the lack of acquisi-
tion parameter standardization, inconsistent radiomic
methods, and lack of reproducibility.8 Although radiomics has
been widely used in previous studies,5–7 there is still no consen-
sus on the image parameters that should be employed to estab-
lish radiomics models. Contrast-enhanced CT images obtained
in different phases (plain, arterial phase, and venous phase)
and with different slice thicknesses may have different effects
on the radiomics results. Therefore, the purpose of this study
was to develop and validate a prediction model using radiomic
features extracted from CT images to differentiate lung adeno-
carcinoma and to investigate the effects of reconstruction slice
thickness and contrast-enhancement phase on the performance
of radiomics to differentially diagnose lung adenocarcinoma.

METHODS

Patients

This retrospective study was approved by Shandong Provin-
cial Hospital Affiliated to Shandong First Medical University.
The study protocol was approved by the institutional review
board of our institution. The requirement for informed
patient consent was waived due to the retrospective nature of
the study. We reviewed the records of 187 patients who
underwent chest CT at our institution from January 2019 to
December 2020. The inclusion criteria were (a) patients with

available CT images in the picture archiving and communica-
tion system; (b) patients with images that could be
reconstructed; and (c) patients in whom lung lesions were
examined pathologically. The exclusion criteria were
(a) patients who underwent treatment before CT and
(b) patients with intrapulmonary metastases.

CT image acquisition

All patients underwent contrast-enhanced CT of the entire tho-
rax. CT examinations were performed using a Toshiba 640-slice
CT scanner and the GE Flash 256-slice CT scanner. The scan-
ning parameters were as follows: tube rotation time, 0.75/0.5 s;
pitch, 0.9; detector collimation, 128 � 0.625; tube voltage,
120 kV; tube current, 160–300 mA; field of view, 350 mm;
matrix, 512 � 512; reconstruction interval, 1 mm; convolution
kernel, B; slice thickness, 1 mm and 2 mm; voxel spacing
(X and Y directions), 0.68–0.87 mm. Images were normalized to
isometric voxels (1 mm) using cubic interpolation. All of the
original images (plain-phase, arterial-phase, and venous-phase
images) were reconstructed with a standard convolution kernel
at four slice thicknesses (0.5, 1.0, 2.0, and 3.0 mm).

Region of interest segmentation

Twelve groups of images were uploaded to the Deepwise
multimodal research platform (https://keyan.deepwise.com,
V1.6.2) in Digital Imaging and Communications in Medicine
format for region of interest (ROI) segmentation, semantic
feature annotation, and further radiomic analysis.8 The
lesions were segmented in each CT slice by a radiologist with
more than 10 years of CT imaging experience. The lesions
were segmented manually to obtain the ROI according to the
following rule: the ROI should include the full lesion region,
including the lesion edges, and avoid the peripheral blood
vessels, pleura, atelectasis, and cavity if possible. Figure 1
demonstrates the ROI delineations of two patients, one with
adenocarcinoma and one without adenocarcinoma. The
semantic features were as follows: (1) lobulated sign
(no lobulated sign, shallow lobulated sign, deep lobulated
sign), (2) maximum diameter (diameter ≤1.0 cm,
1.0 cm < diameter ≤3.0 cm, diameter>3.0 cm), (3) spiculated
sign (no spiculated sign, short spiculated sign, long spiculated
sign), (4) pleural indentation (no pleural indentation, pleural
indentation), (5) lesion density (pure ground-glass nodules,
mixed ground-glass nodules, solid nodules) and (6) pathologi-
cal type (adenocarcinoma, nonadenocarcinoma).

Radiomics research

Image preprocessing

According to the ROI labeled by the radiologist in the original
CT images, we used the B-spline interpolation sampling
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technique to resample the images with different resolutions to
guarantee that all of the images had the same resolution after
resampling to [1,1,1]1.9 Different methods (LoG, Sigma,
Wavelet, Square, SquareRoot, Logarithm, Exponential, Gradi-
ent, LBP2D) were used for image transformation.10

Feature extraction and quantification

To obtain stable image features, we performed preliminary
feature selection. First, we examined the intraobserver repro-
ducibility of radiomic features with 30 randomly chosen
patients to exclude human error caused by multiple labeling.
The same radiologist repeated ROI segmentation twice at an
interval of 1 week. The image features of each delineated
ROI were measured and recorded, and the intraclass correla-
tion coefficients (ICCs) were calculated.11,12 Features with
an ICC >0.9 were retained. Then, the Pearson’s correlation
coefficients of these features were calculated, and the fea-
tures with correlation coefficients <0.9 were retained for fur-
ther feature selection. Second, we summarized the semantic
features and retained the CT radiomic features. We used the
F-test for feature selection and two sets of data to calculate
the sample standard deviation of the square. We then calcu-
lated the sample standard deviation of the two groups of
data of square (F value https://statisticsbyjim.com/anova/f-
tests-anova/). We compared the calculated F value with the
F value in the table; if the calculated F value was less than
the F value from the table, no significant difference between

the two groups was concluded. Finally, we retained 10% of
the imaging radiomic features to construct clinical semantic
imaging radiomics models.

The radiomic features of the transformed images were
extracted,13 including first-order features based on the pixel
values of the original image or the preprocessed image; the
features describing the lesion shape; and the features
describing the internal and surface texture of the lesion,
including the gray level co-occurrence matrix, the gray level
run length matrix, the gray level size zone matrix, and the
gray level dependence matrix (https://pyradiomics.
readthedocs.io/en/latest/features.html).

Finally, a total of 1 648 radiomic features were extracted
from each ROI and standardized using the Z-score.14 Fea-
ture extraction was performed using PyRadiomics, which is
a comprehensive open-source platform that enables the
processing and extraction of radiomic features from medical
images and is implemented in Python.

Constructing the radiomics model

All datasets were randomly split and divided into the train-
ing cohort and the validation cohort at a ratio of 7:3.
Machine learning models for the identification of adenocar-
cinoma and nonadenocarcinoma were constructed, and the
models were evaluated and compared.

The influence of contrast-enhanced CT phases and slice
thicknesses on the differentiation of adenocarcinoma and

a

b

F I G U R E 1 The receiver-
operating characteristics (ROI)
delineations for two patients
respectively. One patient (a) was
diagnosised with adenocarcinoma
and another patient (b) was
diagnosised with
nonadenocarcinoma.
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nonadenocarcinoma was evaluated by constructing radiomics
models. In the training stage, we used the global super
parameter search method to traverse different parameter set-
tings for feature filtering. Eleven simple and integrated
machine learning algorithms,15 including LogisticRegression,
SVM, LinearSVC, DecisionTree, RandomForest, AdaBoost,
GradientBoosting, XGBoost, BernoulliNB, GaussiaNNB, and
KNearestNeighbors, were evaluated for their classification
performance in the training and test sets, and the area under
the curve (AUC), accuracy, sensitivity, specificity, and num-
ber of modeling features were compared.

Finally, we used the logistic regression (LR) algorithm to
build 12 machine learning classifiers representing the 12 sets
of chest CT images with different imaging parameters, as fol-
lows: plain phase, 0.5 mm (P0.5); plain phase, 1.0 mm (P1.0);
plain phase, 2.0 mm (P2.0); plain phase, 3.0 mm (P3.0);
arterial phase, 0.5 mm (A0.5); arterial phase, 1.0 mm (A1.0);
arterial phase, 2.0 mm (A2.0); arterial phase, 3.0 mm (A3.0);
venous phase, 0.5 mm (V0.5); venous phase, 1.0 mm (V1.0);
venous phase, 2.0 mm (V2.0); venous phase, 3.0 mm (V3.0).
The above 12 models were compared and discussed in detail
according to different CT thicknesses and phases. Figure 2
shows the radiomic analysis workflow.

Statistical analysis

Based on R and the Deepwise DxAI platform (https://
dxonline.deepwise. com),the mean, frequency, and percent-
age were used to describe variables. When differences
between groups were analyzed, the independent-samples t-
test was used for normally distributed numerical variables,
while the chi-square test was used for categorical variables.

Receiver operating characteristic (ROC) curves were con-
structed using Python. The AUC, accuracy, sensitivity,
and specificity were used to describe the classification per-
formance of the different models, and the DeLong test was
used to determine whether differences in the AUC between
models were significant.16 In the bilateral significance test, a
p-value <0.05 was considered statistically significant.

RESULTS

Patient characteristics

A total of 187 patients with lung lesions were included in this
study. Patient characteristics and lung lesions characteristics
are provided in Table 1. There were significant differences
between the nonadenocarcinoma and adenocarcinoma
groups in most of the semantic features (maximum diameter,
lobulated sign, lesion density, and pleural indentation) and
sex (p < 0.05 for all).

Radiomics models

For each ROI in each image group, 1 648 image features and
five semantic features were extracted. We removed 149 fea-
tures with intraobserver instability according to the ICC, as
well as 1 300 highly linearly correlated features according to
Pearson’s correlation coefficient (>0.9). We retained 365 fea-
tures for feature selection and machine learning. Using the
homogeneity test of variance, we used 34 image features and
five semantic features to construct the logistic regression
models, and the performance of each model was evaluated.

F I G U R E 2 The radiomic analysis workflow
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T A B L E 1 Distribution of patients and lung lesions characteristics

Patients (n = 187)

Nonadenocarcinoma (n = 50) Adenocarcinoma (n = 137) p-value

Age (year � SD) 58.04 � 12.357 57.036 � 9.896 0.355a

Sex 0.001b

Female 16 (32.0%) 81 (59.1%)

Male 34 (68.0%) 56 (40.9%)

Maximum diameter (cm) 0.003b

d ≤ 1.0 13 (26.0%) 27 (19.7%)

1 < d < 3 22 (44.0%) 94 (68.6%)

d > 3 15 (30.0%) 16 (11.7%)

Lobulated sign <0.001b

No 7 (14.0%) 1 (0.7%)

Shallow 30 (60.0%) 71 (51.8%)

Deep 13 (26.0%) 65 (47.4%)

Spiculated sign 0.083b

No 35 (70.0%) 75 (54.7%)

Short 13 (26.0%) 43 (31.4%)

Long 2 (4.0%) 19 (13.9%)

Density of lesion <0.001b

pGGO 2 (4.0%) 23 (16.8%)

mGGO 9 (18.0%) 68 (49.6%)

Solid nodules 39 (78.0%) 46 (33.6%)

Pleural indentation <0.001b

No 32 (64.0%) 62 (45.3%)

Stripe 10 (20.0%) 2 (1.5%)

Yes 8 (16.0%) 73 (53.3%)

Abbreviations: SD, standard deviation; mGGO, mixed ground-glass opacity; pGGO, pure ground-glass opacity.
aIndependent samples t-test.
bChi-square test/calibration Chi-square test.

F I G U R E 3 The receiver-operating characteristics (ROC) curve in each group. Different slice thickness in arterial phase (a), venous phase (b) and normal
phase (c) of the training cohorts. Different slice thickness in arterial phase (d), venous phase (e) and normal phase (f) of the validation cohorts
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The ROC curves of the training and validation cohorts
in each group are shown in Figure 3, and the model perfor-
mances are summarized in Tables 2 and 3. The DeLong test
was used to compare the AUC of the ROC curve between
the two groups, and the results are summarized in Table 4.

As shown in Tables 2–4, in the training cohort, when
comparing the four slice thicknesses in the plain-phase
group (P0.5, P1.0, P2.0, and P3.0), the maximum AUC was

T A B L E 2 The model performances of the training cohort

Plain-phase Artery-phase Vein-phase

LR - 0.5 mm

AUC (95% CI) 0.9571 0.9459 0.9466

Accuracy 0.8926 0.8792 0.8926

Sensitivity 0.8807 0.8624 0.8899

Specificity 0.925 0.925 0.9

LR - 1.0 mm

AUC (95% CI) 0.9433 0.9521 0.9479

Accuracy 0.8859 0.8792 0.8658

Sensitivity 0.8899 0.8807 0.8716

Specificity 0.875 0.875 0.85

LR - 2.0 mm

AUC (95% CI) 0.9397 0.9601 0.9555

Accuracy 0.9128 0.8725 0.8792

Sensitivity 0.9083 0.8716 0.8807

Specificity 0.925 0.875 0.875

LR - 3.0 mm

AUC (95% CI) 0.9287 0.95 0.9631

Accuracy 0.8322 0.8389 0.8859

Sensitivity 0.8349 0.844 0.8807

Specificity 0.825 0.825 0.9

Abbreviations: LR, logistic regression; AUC, area under curve; CI, confidence interval.

T A B L E 3 The model performances of the validation cohort

Plain-phase Artery-phase Vein-phase

LR - 0.5 mm

AUC (95% CI) 0.6643 0.8393 0.65

Accuracy 0.6316 0.8158 0.7368

Sensitivity 0.6429 0.8571 0.8214

Specificity 0.6 0.7 0.5

LR - 1.0 mm

AUC (95% CI) 0.6643 0.775 0.7393

Accuracy 0.7105 0.7632 0.7105

Sensitivity 0.7143 0.8214 0.75

Specificity 0.7 0.6 0.6

LR - 2.0 mm

AUC (95% CI) 0.6143 0.8321 0.75

Accuracy 0.7632 0.8158 0.7105

Sensitivity 0.8571 0.8214 0.7857

Specificity 0.5 0.8 0. 5

LR - 3.0 mm

AUC (95% CI) 0.6964 0.8071 0.7786

Accuracy 0.7105 0.7895 0.7632

Sensitivity 0.75 0.7857 0.8214

Specificity 0.6 0.8 0.6

Abbreviations: LR, logistic regression; AUC, area under curve; CI, confidence interval.

TAB L E 4 The p-value results comparing the difference in AUC of
receiver-operating characteristic (ROC) between groups,

Training cohort Validation cohort

0.5 mm slice thickness

A0.5 mm vs. V0.5 mm 0.9631 0.027

A0.5 mm vs. P0.5 mm 0.3895 0.0727

V0.5 mm vs. P0.5 mm 0.4410 0.8800

1.0 mm slice thickness

A1.0 mm vs. V1.0 mm 0.7127 0.6746

A1.0 mm vs. P1.0 mm 0.4894 0.2165

V1.0 mm vs. P1.0 mm 0.7287 0.2260

2.0 mm slice thickness

A2.0 mm vs. V2.0 mm 0.7007 0.2961

A2.0 mm vs. P2.0 mm 0.2035 0.0574

V2.0 mm vs. P2.0 mm 0.4302 0.1564

3.0 mm slice thickness

A3.0 mm vs. V3.0 mm 0.2471 0.7186

A3.0 mm vs. P3.0 mm 0.1955 0.1377

V3.0 mm vs. P3.0 mm 0.0148 0.1606

Artery-phase

A0.5 mm vs. A1.0 mm 0.6343 0.2949

A0.5 mm vs. A2.0 mm 0.1976 0.9194

A0.5 mm vs. A3.0 mm 0.7771 0.7564

A1.0 mm vs. A2.0 mm 0.5016 0.5957

A1.0 mm vs. A3.0 mm 0.8637 0.8063

A2.0 mm vs. A3.0 mm 0.3960 0.7767

Vein-phase

V0.5 mm vs. V1.0 mm 0.9228 0.0789

V0.5 mm vs. V2.0 mm 0.4429 0.2717

V0.5 mm vs. V3.0 mm 0.1909 0.1640

V1.0 mm vs. V2.0 mm 0.5954 0.8877

V1.0 mm vs. V3.0 mm 0.2160 0.6169

V2.0 mm vs. V3.0 mm 0.4820 0.6050

Plain-phase

P0.5 mm vs. P1.0 mm 0.3061 1.0000

P0.5 mm vs. P2.0 mm 0.3232 0.4872

P0.5 mm vs. P3.0 mm 0.0705 0.7563

P1.0 mm vs. P2.0 mm 0.7684 0.4578

P1.0 mm vs. P3.0 mm 0.2617 0.6994

P2.0 mm vs. P3.0 mm 0.4209 0.4355

Note: p < 0.05 was statistically significant (Delong test)
Abbreviations: ROC, receiver operating characteristic; AUC, area under curve; A,
artery-phase; V, vein-phase; P, plain-phase.
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observed in the P0.5 group (AUC: 0.9571 vs. 0.9433
vs. 0.9397 vs. 0.9287, respectively); however, there were no
significant differences between the four slice thicknesses
(p > 0.05). When comparing the slice thicknesses in the
arterial-phase group (A0.5, A1.0, A2.0, A3.0), the maximum
AUC was observed in the A2.0 group (AUC: 0.9459
vs. 0.9521 vs. 0.9601 vs. 0.950, respectively); however, there
were no significant differences (p > 0.05). In the venous-
phase group (V0.5, V1.0, V2.0, V3.0), the maximum AUC
was observed in the V3.0 group (AUC: 0.9466 vs. 0.9479
vs. 0.9555 vs. 0.9631, respectively); however, no significant
differences were noted (p > 0.05). Although the AUCs of the
four slice thicknesses differed within one CT scan phase, no
statistically significant differences were noted.

When comparing the CT scan phases, in the 0.5-mm
slice thickness group (P0.5, A0.5, V0.5), the maximum AUC
was observed in the P0.5 group (0.9571). In the 1.0-mm slice
thickness group (P1.0, A1.0, V1.0), the maximum AUC was
observed in the V1.0 group (0.9521); in the 2.0-mm slice
thickness group (P2.0, A2.0, V2.0), the maximum AUC was
observed in the A2.0 group (0.9601); and in the 3.0-mm
slice thickness group (P3.0, A3.0, V3.0), the maximum AUC
was observed in the V3.0 group (0.9631). No statistically sig-
nificant differences were observed (p > 0.05). The same
observations were made in the validation cohort.

DISCUSSION

Radiomics is used to diagnose pulmonary lesions, but the
reproducibility of published research is poor, and wide-
spread clinical application has been limited, possibly because
of the lack of standardized image acquisition and quality
control approaches. The consensus among researchers is
that thin slices are beneficial to display the details of lesions
when performing pulmonary lesion radiomics; however, the
signal-to-noise ratio of CT images is significantly reduced
with the reduction in CT image layer thickness. Conse-
quently, quantitative feature extraction is affected, and the
diagnostic efficiency of the radiomics model is reduced.17 It
will be necessary to provide standards for images used in
radiomics if the field is to realize its potential.

Our study constructed radiomics models for 12 groups
of CT images in three dynamic contrast-enhanced CT
phases (plain-phase, arterial-phase, and venous-phase CT)
and at four slice thicknesses (0.5, 1.0, 2.0, and 3.0 mm) for
the differential diagnosis of adenocarcinoma and non-
adenocarcinoma. The diagnostic performance of these
approaches was compared with the DeLong test. The results
demonstrated no significant difference between groups
within one phase with different slice thicknesses. Moreover,
there was no significant difference between groups within
one slice thickness in different phases. In addition, the train-
ing cohort of 12 radiomics models showed high diagnostic
efficiency with a minimum AUC of 0.9287 and a maximum
AUC of 0.9631. The AUC values in the validation cohort
were generally lower than the AUC values in the training

cohort, probably because of the small sample size. Overall,
this study demonstrated that the phase of dynamic contrast-
enhanced CT and the thickness of chest CT images had no
significant effect on the efficacy of the radiomics models.

Li et al. constructed a radiomics model to predict epider-
mal growth factor receptor mutation status in primary lung
adenocarcinoma using two slice thicknesses (thin: 1 mm;
thick: 5 mm). In their study, the prediction model that used
thin slices (1 mm) was better than the prediction model that
used thick slices (5 mm), and the effect of the convolution
kernel was not significant.18 He et al. constructed a radiomics
model to discriminate benign and malignant solitary pulmo-
nary nodules using noncontrast and contrast-enhanced CT
images and two reconstruction slice thicknesses (thin:
1.25 mm; thick: 5 mm). The results demonstrated that the
radiomic signature acquired with noncontrast-enhanced CT,
thin slices, and the standard convolution kernel was better for
the differential diagnosis of solitary pulmonary nodules.19

Compared with the present study, the difference between the
layer thicknesses used in each of these studies (4.0 and
3.75 mm, respectively) was greater than in the present study,
and the maximum layer thickness (5.0 mm) was greater than
in our study. Our study used four slice thicknesses (0.5, 1.0,
2.0, and 3.0 mm), and the difference between these slice
thicknesses was smaller, with a maximum slice thickness of
3.0 mm. The results demonstrated that compared with the
3.0-mm slice thickness, a thickness of less than 3.0 mm (0.5,
1.0, or 2.0 mm) did not significantly improve the diagnostic
performance of the radiomics models. Therefore, there is no
need to choose a thinner CT image slice thickness to con-
struct pulmonary lesion radiomics models, because thinner
slices will increase the workload of researchers in terms of
ROI segmentation, as well as the storage load of the images.

He et al. demonstrated that a radiomic signature based on
noncontrast-enhanced CT images showed better performance
in the differential diagnosis of solitary pulmonary nodules than
a radiomic signature based on contrast-enhanced CT images.19

The underlying reason may be that the biological heterogeneity
within the tumor that can be depicted by radiomic features
may be confounded by intravenous injection of contrast mate-
rial; however, this conclusion is not consistent with our study.
Although different phases of dynamic contrast-enhanced CT
have been used in previous studies,5–7,20 most of the studies
obtained a positive prediction result. Combined with the results
of our study, these results show no significant difference
between the groups within one slice thickness with different
phases. This suggests that researchers could select plain-phase
CT images to construct pulmonary lesion radiomics models,
which would reduce the complexity of image acquisition, as
well as the financial burden on patients.

The goal of radiomics is to convert images into mineable
high-fidelity and high-throughput data.21 A radiomics study
can be structured in five phases: data selection, medical
imaging, feature extraction, exploratory analysis, and model-
ing, each with its own challenges. Standardization of acquisi-
tion parameters using consistent radiomics methods and
improving their reproducibility across multiple sites are
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important for classification model validation.8 Furthermore,
human–machine-assisted interpretation studies are needed
to explore how the use of radiomics alongside radiologists
will improve diagnostic accuracy, reduce costs by decreasing
the need for further testing, and decrease the time that radi-
ologists spend performing scans.22 We designed this study
from a clinical perspective to explore the potential CT image
criteria. The results suggest a simplified and economical
method for CT image selection in radiomics studies.

Our study has some limitations that should be noted. First,
the sample size in this study was small. Further large-sample
studies are needed to improve the accuracy of the results. Sec-
ond, we did not group the lesions according to the lesion diam-
eter. For lesions smaller than 1 cm in diameter, it will be
important to determine whether the predictive performance of
the radiomics models significantly improves when using a thin-
ner slice thickness. In future studies, we will arrange pulmonary
lesions into groups based on their maximum diameter. Third,
this study was internally validated, and all patients attended the
same hospital; thus, external validation will be needed to
improve the credibility and reproducibility of the model.23

In conclusion, our study demonstrated that the radiomic
analysis of contrast-enhanced CT images can be used for the
differential diagnosis of lung adenocarcinoma. Moreover, the
radiomic signature built based on 12 groups of CT images
showed no significant differences. Different slice thicknesses
and contrast-enhanced CT scan phases did not affect the dis-
criminative ability of the radiomics model. Thus, clinicians
may choose plain-phase CT with an adequate slice thickness to
establish the radiomics-based database for chest CT. However,
the results need to be confirmed in prospective, randomized,
multicenter clinical trials with larger sample sizes.
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