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Groundwater recharge potential 
zonation using an ensemble 
of machine learning and bivariate 
statistical models
Maryam Sadat Jaafarzadeh1*, Naser Tahmasebipour1, Ali Haghizadeh1, 
Hamid Reza Pourghasemi2 & Hamed Rouhani3

Many regions in Iran are currently experience water crisis, largely driven by frequent droughts and 
expanding agricultural land combined with over abstraction of groundwater. Therefore, it is extremely 
important to identify potential groundwater recharge (GWR) zones to help in prevent water scarcity. 
The key objective of this research is to applying different scenarios for GWR potential mapping by 
means of a classifier ensemble approach, namely a combination of Maximum Entropy (ME) and 
Frequency Ratio (FR) models in a semi-arid mountainous, Marboreh Watershed of Iran. To consider 
the ensemble effect of these models, 15 input layers were generated and used in two models and then 
the models were combined in seven scenarios. According to marginal response curves (MRCs) and the 
Jackknife technique, quaternary formations (Qft1 and Qft2) of lithology, sandy-clay-loam (Sa. Cl. L) 
class of soil, 0–4% class of slope, and agriculture & rangeland classes of land use, offered the highest 
percolation potential. Results of the FR model showed that the highest weight belonged to Qft1 rocks 
and Sa. Cl. L textures. Seven scenarios were used for GWR potential maps by different ensembles 
based on basic mathematical operations. Correctly Classified Instances (CCI), and the AUC indices were 
applied to validate model predictions. The validation indices showed that scenarios 5 had the best 
performance. The combination of models by different ensemble scenarios enhances the efficiency of 
these models. This study serves as a basis for future investigations and provides useful information 
for prediction of sites with groundwater recharge potential through combination of state-of-the-art 
statistical and machine learning models. The proposed ensemble model reduced the machine learning 
and statistical models’ limitations gaps and promoted the accuracy of the model where combining, 
especially for data-scarce areas. The results of present study can be used for the GWR potential 
mapping, land use planning, and groundwater development plans.

Over the past half century, the least developed countries population has grown rapidly, and continues to grow 
slowly over the coming decades1. This can lead to a further increase in agricultural activities and consequently, 
putting unprecedented pressure on the surface water and groundwater resources. Over-extraction of ground-
water may result in falling groundwater level2, land-subsidence2,3, salinization4, reduced well-yields5, increased 
pumping costs6,7, and enhances saltwater intrusion7. The result of all these changes was the reduction the surface 
of 60% of major aquifers in many parts of the world8; additionally, one of the great challenges in the twenty-
first century is the change in the global weather patterns which likely impose additional pressures9,10. Another 
problem concerned increase in water demand, which dropped access to adequate water to meet public needs11,12.

Groundwater is one of the sources of water stock which can be used to tackle the problem of water scarcity13,14. 
The social value of groundwater should not be measured by the volume of withdrawal12. Due to its availability 
on a local scale, the possibility of adjusting withdrawal in response to demand fluctuations, high reliability in 
periods of drought, and desirable quality with minimal need for purification, groundwater has higher economic 
value compared to surface water. Therefore, identification of groundwater recharge zones is a critical for the 
sustainable management of groundwater resources15–19. Groundwater recharge is commonly determined by the 
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amount of precipitation and the percolation process. Recharge occurs when water moves through the unsatu-
rated zone20. In semi-arid areas with dry and wet seasons, recharge occurred occasionally after high rainfall. 
Therefore, problems caused by droughts on the one hand, and devastating floods on the other, highlight the need 
for proper water resource management. In this regard, collecting surface water and identifying the groundwater 
recharge zones for storing water are the most important strategies for water resource management, particularly 
in semi-arid areas of Iran.

There are several approaches to groundwater characteristics and groundwater recharge assessment. With 
the variety of techniques available for recharge assessment, selecting the appropriate technique is often not 
easy. Implementing some of these techniques may be restricted by some factors such as the resources available, 
precision level needed21, the space and time scales, reliability/range of recharge evaluation, as well as time and 
cost22,23. The methods can generally be categorized as being either direct or indirect. Direct methods include 
geological and geophysical explorations (seismic, sonic and magnetic) and drilling tests21. These methods in-situ 
investigation is costly and not feasible for estimation at watershed scale. Indirect methods comprise physical and 
numerical modeling, physically based spatially distributed method21 and tracer. Most direct approaches provide 
information over relatively small scale24 and the methods often consider on a single affecting factor for GWR​25. 
Tracer methods for Groundwater recharge assessment are considered the most promising approach but these 
methods are generally expensive, time-consuming, and often need to be integrated due to the large size of data23. 
Numerical models simplify the physical process of recharge and requires a certain measure parameter to obtain 
reliable prediction but the model accuracy relies on possible error in initial data, computational costs and some 
parameters are rarely available in developing countries. Moreover, these models involved many parameters that 
makes it hard to obtain a unique solution26.

Numerous geospatial techniques have been widely used in the past decade and continue to develop new 
techniques especially due to their capability to increase spatial and temporal information. A series of studies 
have been conducted by researchers based on knowledge-driven modeling approach or multi influencing factor 
with integrating various thematic maps on the GWR potential zones using GIS24,27–32. Rajaskhar et al.7 and Dar 
et al.33 used AHP (Analytic Hierarchy Process) for artificial recharge sites identification, as well as GWR potential 
zones in Anantapour and Kashmir Valley, respectively in India. The weights of several thematic maps include 
geomorphology, slope, drainage density, land use, lithology, lineament density, rainfall, and soil texture were 
calculated by the AHP. This method utilizes expert-based opinion and has relatively high potential for error34. For 
example, Mogaji et al35 compared AHP and Evidential Belief Function (EBF) for identification of GWRP zones 
in southwestern Nigeria. They concluded that based on the area under the curve (AUC) measure, EBF, as a data 
driven technique, outperformed the AHP. Chenini and Msaddek36 compared the bivariate statistical analysis 
and logistic regression model (LR) to produce a GWRP map in Qued Guenniche in the north of Tunisia. The 
authors found that the bivariate and multivariate statistical approaches provide more accurate results than the 
AHP. On the other hand, data-driven modeling which is based on statistical and machine learning algorithms 
can be identified and mapped effectively behavior of phenomena. Therefore, recently, there has been a trend 
towards using numerous statistical methods and machine learning methods to map the GWR potential. Moving 
towards more advance algorithms in GWR potential mapping, Pourghasemi et al37 used machine learning algo-
rithms, namely support vector machines (SVM), multivariate adaptive regression splines (MARS), and random 
forest (RF) to map groundwater recharge potential zones in Firuzkuh County, Iran. In this research, infiltration 
rate was measured using double ring infiltrometer with random permeability sampling at eleven lithological 
types. In an attempt to develop sophisticated approaches in phenomena mapping, researchers have developed 
ensemble models with combining statistical models and machine learnings techniques in spatial prediction of 
natural phenomena which improve prediction accuracy. In other words, higher precision and predictive ability 
in comparison with individual machine learning models is the significant property of ensemble models38,39. To 
overwhelming literatures on susceptibility and potential mapping of natural phenomena studies such as gully 
erosion40, groundwater41–43, flood44,45 and landslide46–48 are rich of researches. The advantage of the ensemble 
methods is that achieve higher prediction accuracy by incorporating ideas of multiple learners and reduce bias 
and variance.

Iran has one percent of the world’s population but the country contains only 0.63 percent of the world’s 
renewable fresh water. In terms of climatic conditions major parts of Iran have been considered as arid and 
semi-arid regions. In addition to low and spatial and temporal distribution of precipitation, the occurrence of 
precipitation with rather high severity, which cause heavy rainfall and destructive floods is another important 
feature of these regions. Declining groundwater level in arid ad semi-arid area like Iran, where groundwater 
provides approximately 80% of the water supply for agricultural and households49 become a serious threat to 
sustainability. In these areas, extra exploitation of aquifers in comparison with natural recharges has caused 
depletion in major aquifers. The semi-arid terrains of Iran such as Varamin, Parishan, Qazvin, Darab, plains are 
among the most constantly increasing agricultural cultivated land areas for maize, cotton, wheat cultivation. The 
stable growth in agriculture is possible by irrigation with shallow local groundwater resources50. However, intense 
groundwater abstraction with limited recharge, resulting in aquifer depletion and increasing pumping costs51. 
Moreover, climate change is expected to impose additional limits to water supply9. Over the last half century, the 
groundwater withdrawals in Iran has tripled. According to SZCEC the groundwater levels have declined from 
by nearly 1 m in the south western to 3 m in the northern and northeastern parts of the Marboreh watershed for 
the last 20 years (SZCEC, 2012) and negative social and environmental effects becoming increasingly evident.

Due to the importance of recharge zones, the identification of appropriate recharge zone is critical for man-
aging aquifer recharge. So far, the ensemble method is applied in different spatial phenomena mapping but to 
our knowledge no prior studies have been applied in GWR potential zones mapping. Therefore, the present 
study aimed to evaluate prediction performance ensemble models based on FR and Maximum Entropy (ME) 
to identify GWR potential mapping in a mountainous watershed, Marboreh in Lorestan Province, Iran, where 
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the groundwater dependency has been largely increased over the last decades. Specifically, the machine learn-
ing (ME) and a bivariate statistical method (FR) were used for assess ensemble of spatial prediction of GWR 
potential scenarios. Whereas, Jackknife test as a simple but effective method utilized for screening important 
casual factors based on the random sampling in training dataset. The performance of spatial prediction models 
was compared by area under curve (AUC) and Correctly Classified Instances (CCI).

Methodology
Study area.  Marboreh Watershed is located between 33o12′ to 33o51′ N and 49o03′ to 49o57′ E in the west of 
Iran, Lorestan Province (Fig. 1). The total area of Marboreh Watershed is about 2560 km2 with a cold semi-arid 
climate. The annual rainfall decreases from south (900 mm) towards eastern (280 mm) parts of the watershed 
with the average annual rainfall and the average annual temperature of 412 mm and 13.8 ℃, respectively (LPMO 
(Lorestan Province Meteorological Organization.)). Rainfall is not uniformly distributed through the year, with 
the majority occurring in March and April. In the summer time, the rainfall mostly occurs once or twice nearly 
every month. Topographically, the region is a part of Zagros Chain with altitude range from 1442 to 4056 m, 
with average altitude of 2749 m. The main river, Marboreh, originates in the Aligudarz Mountains at the east of 
watershed, making its 110.22 km journey westwards along the entire length study area. Smaller tributaries con-
tributing to the river discharge such as Azna, Aligudarz, and Kamandan. Finally, Marboreh River joins to Tireh 
River and form the Sezar, which is one of the main branches of Dez basin that flows in Karun River, the longest 
river in Iran which finally drains into the Persian Gulf. Geologically, the watershed lies within Zagros Fold and 
29 types of geological formation cover this watershed, and the dominate land use is agriculture (49.5%), followed 
by rangeland (42%).

The flowchart shown in Fig. 2, illustrate the method employed in this study and briefly given in the following 
sections:

Permeability samples inventory map.  The key link between surface water and groundwater is ground-
water recharge4 and quantifying the Groundwater recharge is difficult at large scale. On the other hand, the gross 
groundwater recharge rate may be depending on the permeability and soil’s absorption, which make it easier to 
measure52. In order to evaluate the performance of the models in GWR potential mapping, double-ring infil-
trometer method and soil sampling (Fig. 3) were used for understanding the spatial variability of GWR​37,53. The 
double-ring infiltrometer consist of an inner and outer ring that are driven 5-cm into the subsurface ground. The 
inner and the outer rings were filled with water. The head is kept constant during the experiments. The procedure 
continue until the infiltration rate is considered steady and set up by the Sangab Zagros Consulting Engineering 
Company22 standard. Due to the extent of the studied area and the cost of the sampling process, information 
from previous studies22 in the studied area were also used. The percolation points were randomly split into two 
datasets: the first group for model training (70%) and to validate the training dataset, a separate independent set 
of data (30%) to evaluate modelled and observed maps.

GWR influencing factors.  GWR vary significantly in different places depending on topographic factors, 
hydrogeology variables, and climate conditions25,54. Consequently, based on various studies25,27,37,54,55 and data 

Figure 1.   Location of the study area in Lorestan Province, Iran.
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availability, 15 effective factors on GWR potential, namely elevation, slope percent, slope aspect, profile curva-
ture, plan curvature, drainage density, distance from rivers, topographic wetness index (TWI), stream power 
index (SPI), Rainfall, lithology, fault distance, land use (LU), Normalized Difference Vegetation Index (NDVI), 
and soil texture were used. Out of these selected thematic maps, elevation, slope degree, slope aspect, drainage 
density, TWI and SPI were generated from ASTER DEM data with a pixel size of 30 × 30-m, while the remain-
ing maps were extracted from Landsat-8 images and through conventional data, such as soil and geology data.

Topographic influencing factors.  Elevation play in key role on vegetation and climate that have connection with 
recharge distribution area. Here, the elevation ranges from 1442 to 4056 m, and the hypsometric map extracted 
from DEM and classified into five classes (Fig. 4a). In groundwater recharge investigations, slope angel is a major 
determinant factor and highlights the importance of topography and the size of runoff-saturated zones56,57. The 
regions of steep slope facilities high runoff, whereas at the lower slope gradients, runoff generation reduced and 
eventually increase infiltration rate and recharge the saturated zone58. The slope map extracted from DEM and 
was classified into 5 classes (Fig. 4b). Slope aspect influences GWR as indicator for solar radiation which strongly 
influences infiltration rate54. Slope aspect is the orientation of slope, measured clockwise in degrees from 0 to 
360. This factor was derived from the DEM in ArcGIS10.6 (https​://www.arcgi​s.com) and classified into five main 
categories (Fig. 4c). Flow distribution on the surface depends on topography, which is represented by profile 
curvature. Profile curvature influences on the overland flow velocity, whereas plan curvature mainly affects flow 
convergence and divergence (Fig. 4d–e).

Hydrological influencing factors.  Drainage density is another effective factor for controlling GWR. The drain-
age density demonstrates the signature of surface to subsurface formation59 and it implies indirectly soil char-
acteristics, which is assigned soil infiltration capacity55. Drainage density was extracted from DEM with help of 
ArcHydro Tool of ArcGIS10.6. Then the extracted drainage networks (km-1) were overlaid on vector digitized 
stream map of LPRWA (Lorestan Province Regional Water Authority.) for improved drainage direction map 
and the area was categorized into five classes (Fig. 4f). The low drainage density indicates low surface runoff and 
hence high infiltration rate57 and consequently a high GWR potential. Rivers are one of the sources of GWR, 
and thus influence GWR potential in a watershed. The Euclidean distance tool from spatial analyst tools in Arc-
GIS10.6 was used to generate distance categories. The distance map was reclassified into five classes (Fig. 4g).

Topographic wetness index (TWI) and stream power index (SPI) are as secondary topographic indices. In 
the GWR potential zone, one of the important secondary topographic factors was TWI. TWI was proposed by 
Moore et al. (1991) to indicate local groundwater potential. TWI relies on upslope area which highlights the 
potential exfiltration groundwater by topography effects; the lower TWI, the greater GWR potential in the spe-
cific class. The TWI of the region ranges from 0.891 to 22.553 and the TWI was further classified in five classes 
(Fig. 4h). SPI index describes stream power and its value ranges from 6.257 to 26.100. Five categories of SPI values 
were generated based on the natural break method as (< 9.04), (9.04–10.75), (10.75–12.46), (12.46–15.02), and 
(> 15.02). (Fig. 4i). The mean annual rainfall was used to determine the groundwater recharge investigations of 

Figure 2.   Flowchart of carrying out the methodology in this study.

https://www.arcgis.com
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the Marboreh watershed. The mean annual rainfall over the study area was interpolated based on the Kriging 
method from 12 gauging station. The mean annual rainfall ranges from 280 to 900 mm (Fig. 4o.).

Geological influencing factors.  The geological factors generally demonstrate the distribution of various rock 
units, which have a notable effect on GWR and water availability through hydraulic conductivity60. In this study, 
the lithological map was extracted from the national geological map of Iran at a 1:100,000-scale, and encom-
passed 26 major lithological groups (Fig. 4j). Fault map (Fig. 4k) was extracted from the national geological map 
of Iran at a 1:100,000-scale. This layer was used to infer groundwater storage and in regional scale, ground water 
flow direction is controlled by fault systems.

Ecological influencing factors.  Land use (LU), NDVI, and soil are ecological parameters, which are commonly 
used factors for GWR potential zones27,37,54,55. The LU types can be significantly effective on runoff, permeability, 

Figure 3.   Double-ring infiltrometer method in the study area.
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Figure 4.   The condition factors maps used in FR and ME models (maps layouts were prepared in ArcGIS 10.6 
software).
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Figure 4.   (continued)
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and evapotranspiration. As stated by Gee et al61, recharge in vegetated areas is much lower than non-vegetated 
areas. In addition, recharge is greater in agricultural lands and grass lands than perennial lands including, shrub 
and forest areas62. The Landsat8 data (downloaded from https​://www.earth​explo​rerus​gs.gov; column 165 and 
row 37, 17 June 2018) were used to determine the types of LU. Also, LU was classified by a supervised classifica-
tion technique according to the maximum likelihood approach into 8 classes, namely; agriculture, bare land, 
forest, orchard, rangeland, rocky areas, urban, and water. LU within the study area is dominated by agriculture 
(49.6%) and rangeland (43.4%) (Fig. 4l). The vegetation density and coverage were represented using the Nor-
malized Difference Vegetation Index (NDVI) map. The NDVI layer was prepared in ENVI 5.3. The value range 
of NDVI is -1 to 1, and higher value of NDVI represents dense vegetation. NDVI values were grouped based on 
the natural break method into five classes, namely (< 0.11), (0.11–0.17), (0.17–0.23), (0.23–0.33), and (> 0.33) 
(Fig. 4m).

Soil texture is another effective factor used to specify sites suitable for recharge. Soil type is a major criterion 
in groundwater recharge and agricultural production. Soil texture provides essential information on infiltra-
tion rate29. For example, sandy soils have high permeability, which consequently might cause in reduced GWR. 
The soil map was obtained from Agricultural Research, Education, and Promotion Organization of Lorestan 
Province in 1:250,000-scale. The most prominent soil type in region were Loamy-sandy and Silty-loamy which 
cover 15.2% and 14.3%, respectively of the study area. The soil texture map of the study area was classified into 
9 soil texture classes (Fig. 4n).

Models.  Maximum entropy (ME) model.  We applied a family of machine learning techniques based on 
multinomial logistic regression know as maximum entropy (ME) to yield the potential of GWR from ground 
base observation and the condition factors. Jaynes introduced ME technique in 1957 based on probability distri-
bution of maximum entropy to derive the probability of given number of individuals occurrence across the any 
given area based on a set of condition factors. The MaxEnt software (version 3.3.3 k), which is based on the ME 
approach, is conducted for GWR potential mapping. Groundwater potential mapping63,64, flood30, landslide65,66, 
rangeland67,68, earthquake69, species distribution70, springs and wells71, and groundwater quality72.

Frequency ratio (FR) model.  The FR model, as the probability of incidence for a special attribute, is a simple 
geospatial assessment tool and is used to compute the eventual relation between GRW potential and GWR´s 
effective factors30. In specifying the frequency ratio, the recharge occurrence ratio in each conditioning factors 
sub-class is obtained toward the total recharge. Then, each class’s surface ratio is computed compared to the total 
area of the watershed.

The FR values were identified using Eq. (1) for each sub-class of GWR potential effective factors based on 
their correlation with GWR potential inventory:

where α is the number of recharge pixels in each subclass, β is the total number of pixels in the area, γ is the total 
number of recharge pixels of the entire area. ɘ indicates the number of pixels in every subclass of conditioning 
factors, θ represents the percentage of recharge occurrences in any sub-class of conditioning factors, and ɷ is 
the relative percentage of the area of each subclass.

Ensemble modeling.  In data analytics and predictive modeling, an individual model based on one data sample 
could have great variability, a large number of inaccuracies, or extensive biases, which affect the reliability of 
results73 (Rokach, 2010). The effects of these restrictions can be reduced by analyzing multiple samples or com-
bining various models which can help provide better information to decision makers and improve modeling 
algorithms39,73. In the current study, we integrated the ME and FR models in various scenarios using basic math-
ematical operations (Table 1) in ArcGIS10.6. 

FR=αβ/ɤɘ θɷ (1)

Table 1.   Predictive performance of models in ensemble scenarios.

Scenario Ensemble model AUC (0 to + 1) CCI (0 to 100)

Scenario 1 (ME + FR)/2 0.987 83.1

Scenario 2 (2 × FR) + ME 0.987 76.7

Scenario 3 (2 × ME) + FR 0.984 54.6

Scenario 4 FR + ME 0.987 55.1

Scenario 5 FR × ME 0.990 90.7

Scenario 6 (ME + FR)/3 0.986 68.9

Scenario 7 ((ME × AUC ME) + (FR × AUC FR)/(AUC ME + AUC FR)) 0.984 83.8

Scenario 8 individual ME model 0.986 84.2

Scenario 9 individual FR model
Odel 0.963 58.4

https://www.earthexplorerusgs.gov
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Conditioning factors importance and marginal response curves (MRCs).  The Jackknife test can be used to reduce 
bias of an estimator. This test removed one factor at a time and model created, here MaxEnt, with the remaining 
factors. In this study, the Jackknife tests were performed to determine individual conditioning factors impor-
tance for MaxEnt predictions. Accordingly, the influencing factor contribution in the analysis can be identified74. 
We also ran an MRC to quantify the conditioning factor’ behavior. MRCs were calculated and plotted for all 15 
variables by the ME model to depict the role of each variable in the occurrence of GWRP in Marboreh Water-
shed. Plots represent the correlations of predicted sites with each independent variable relative to the dependent 
variable, showing how the individual predictor variables are related to the modeled class. On vertical axes of 
plots, values closer to 1 demonstrate the preferred range of the class.

Validation of the built models.  The accuracy of predictive models should be analyzed by comparing the gener-
ated data with a training and testing dataset (existing GWR percolation points). To assess the performance of 
individual and ensembles models, we utilized the area under the Receiving Operator Curve (AUC-ROC)74,75 and 
the Correctly Classified Instances (CCI)76,77. The AUC value ranges from 0 to 1, in which the higher the value, 
the greater perfect discrimination37. The CCI derived from the corresponding confusion matrix that calculated 
true positive (TP), true negative (TN), false positive (FP), false negative (FN), with a range from 1 to 100. The 
greater CCI value, the more accurate prediction78,79.

Result
Conditioning factors importance.  The Jackknife test was implemented during MaxEnt model building 
to identify conditioning factors contribution (Fig. 5). According to Fig. 5, soil provided the most critical con-
ditioning factor in GWR potential prediction, and lithology was second important having high training gain 
contained most unique information when they used independently. Also, DEM and rain conditioning factors 
provided high gain when used independently. While, distance from fault, drainage density, distance from river, 
slope and NDVI had moderate gains respectively, when used alone. Furthermore, soil and lithology reduced 
training gain the most when was excluded from the model, thus had the most information that were not present 
in other conditioning factors.

Application of MaxEnt.  Firstly, we examined the response of GWR potential to effective factors. Response 
curves identified the quantitative relationship between the logistic probability of the GWR potential and effec-
tive factors. MRCs include curves representing the separate effect of each independent factor on the dependent 
variable (i.e. GWR potential). According to these graphs (Fig. 6), the highest probability of percolation was seen 
at elevations between 1810 and 1820 m, with a probability of 77% (Fig. 6a). These conditions are in accordance 
with the inverse relationship between elevation and percolation since percolation level is higher at the lowest 
points or in the plains, and decreases with increasing altitude. Due to the altitude range of the area, this elevation 

Figure 5.   The Jackknife of regularized gain for GWR potential zones in Marboreh watershed.
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Figure 6.   Marginal response curves for the quantitative conditioning factors (y-axis: predicted probability of 
GWR potential related to each conditioning factors). (a) Elevation; (b) slope degree; (c) slope aspect; (d) profile 
curvature, (e) plan curvature, (f) drainage density; (g) distance from river; (h) TWI; (i) SPI; (j) lithology; (k) 
distance from fault; (l) LU; (m) NDVI; (n) Soil texture and rain (o) (prepared in maxent 3.3.3 k software).
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class has the most suitable conditions for GWR. Slope and aspect are also among the significant considerations 
in site selection for groundwater recharge. Steep slopes concentrate water on the lower slopes and contribute to 
the buildup of hydrostatic pressure80. Runoff on lower slopes has a better opportunity to concentrate and perco-
late. In Marboreh watershed, the slope layer was classified into five class and the highest probability (67%) was 
observed for the 1st class, which ranges from 0 to 4% (Fig. 6b). This slope range comprises the suitable slopes for 
recharging. Aspect does not directly affect runoff. Its role is in determining the rate of runoff generation due to 
the difference in microclimate on the different slopes. The highest probability of percolation (66%) was recorded 
for the southwest aspects (Fig. 6c). In order to determine the geomorphometric characteristics of shapes, the 
second derivative is used in digital elevation (curvature) model. This characteristic is associated with geomor-
phologic processes and has two distinct types of curvature with vertical properties that are called plan and profile 
curvature. Areas with concave morphology have the most potential for percolation. Concave morphology can 
concentrate water and moisture and create suitable areas for GWR​81.

Permeability will be higher in areas with lower drainage densities because drainage by conduction of water 
on the ground prevents its penetration into the depths and thus reduces underground recharge82. The range for 
the drainage density factor at the studied watershed was between 0 and 1.39 km. The results showed that most 
places with recharge potential had drainage densities (with 67% probability) between 0.56 and 0.58 km (Fig. 6f). 
Results indicate that the probability of percolation in areas close to rivers was greater. The range of distance from 
rivers spanned 0–5.36 km (Fig. 6g). For the variable distance from river, the curve represents a steep decline with 
increasing distance, indicating that the more percolation area located near the river. In this study, the highest 
probability of percolation was observed at a distance of 0.52 km from rivers, with 0.67 percent. The curve shows 
a steep decline with increasing precipitation, indicating that this species likely prefers drier areas.

The TWI index is mainly used for quantitative topographic assessment of hydrological processes as well 
as showing the effect of topography on the position and size of groundwater flow, soil moisture, and saturated 
sources of runoff production. The higher index resulted in higher recharge potential (Fig. 6h). The stream power 
index, assuming the proportion of drainage to the surface area of the watershed, is a topographical combina-
tion feature. In this study, the highest percolation probability (69%) was seen in areas with SPI values in the 4–6 
range (Fig. 6i).

The lithology of the studied area includes 26 geomorphic units. Areas with Qft2 quaternary lithology had the 
highest percolation potential because these layers are more closely associated with foothills and alluvial fans, and 
have high absorbance and percolation (Fig. 6j). This type of lithological unit, covering 33.65% of the watershed, 
is the largest lithological section in the region. Faults, due to the creation of crushed areas and the formation of 
water conduits, are very important in the development of morphology and the formation of subsidence in the 
region54,83. Faults facilitate the penetration of water to lower levels and increase the potential for the formation 
of underground liquidation cavities. The range of distance from faults was 0–28.9. The highest probability of 
percolation was 0.7% (Fig. 6k).

Croplands and rangelands (constituting 93% of the watershed’s land use) are known to be conducive to GWR 
due to presence of vegetation and permeable soil textures. According to the results, the highest percolation and 
recharge probability occurred in agricultural land and rangeland (Fig. 6l) where the soil crust of farmlands being 
broken by plowing and vegetation cover reducing the velocity of rain or surface water and providing more time 
for percolation. Cropland and rangelands, especially in areas with other suitable effective factors such as slope, 
elevation, and geology, show the highest recharge potential. Vegetation is a good sign of underground water and 
has a direct relationship with percolation potential; the greater the amount of vegetation in a region, the greater 
the permeability. NDVI was used to measure vegetation cover (ranging from 0.6 to 0.68). As depicted in Fig. 6m, 
the highest probability of recharge potential based on NDVI was found to be 70%. In Marboreh watershed, nine 
soil texture classes were identified. The sandy clay loam (Sa. Cl. L) class has the highest probability of percolation 
with 57% (Fig. 6n). Soil texture greatly influences water percolation, permeability, and water-holding capacity. The 
Sa. Cl. L class, due to its combination of coarse and fine grains, is one of the most permeable textures. Accord-
ing to the response curve of annual rainfall, the probability of GWRP occurrence (78%) increased in area with 
600 mm and decreased smoothly after that (Fig. 6o).

Application of FR model.  The outcomes of FR model calculated for each class of 15 effective factors based 
on their relationship with GWR potential locations are presented in Fig. 7, and a larger FR value means a higher 
probability on GWR potential of the corresponding effective factor. The ratio of the area with GWR potential to 
the entire area was calculated. In terms of elevation, high potential occurs mainly in the elevation range between 
1442 and 1964.8 m. In the case of slope aspect, the FR weights were the highest for the north area (2.26) and flat 
area (1.19), while the West aspects have the lowest value of 0.01. For slope degree, the values of FR were decreas-
ing through to increasing the slope degree. According to the FR, weights of profile curvature, convex, flat, and 
concave are 1.53, 0.77, and 0.64, respectively. For plan curvature, concave class had the highest GWR potential. 
In term of the drainage density, the class 0.28–0.56 had the greatest FR value of 1.96, while the class 1.11–1.39 
had the lowest value of 0.24. Among various distance in the river network, the area closes to river had the most 
correlation with GWR potential, while the greatest distance from river had no GWR potential. TWI with higher 
values have larger weights of FR., while SPI with higher values have smaller weights of FR. The relationship 
between GWR potentials and the annual rainfall show that the high annual rainfalls have a high frequency of 
GWR potentials. The highest FR value (1.99) was observed for class > 622.5 mm.

Lithology FR conditioning factor was the highest in Qft1 (9.39) and has the highest FR value than other 
conditioning factors. Furthermore, Qft2 also had a high FR value of 2.82. In the study area, 0.40% and 33.7% 
of the area were covered by Qft1 and Qft2, respectively. Result showed that among the fault distance classes, 
the second class (5.78–11.56) and the third class (11.56–17.34) with FR values of 1.68 and 1.41 had the highest 
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impact on GWR potential in Marboreh watershed. The results obtained in the present study showed that among 
the land use types, agricultural land (1.32) and range land (0.78) had the highest probability of GWR potential. 
According to the NDVI, the greater NDVI value had the higher potential for GWR. Another factor affecting 
GWR potential is the soil texture. The result revealed that the Sa. Cl. L soil texture weighing 4.66 had the highest 
probability on GWR potential and might indicate the high possibility of GWR potential in this thematic layer.

Groundwater recharge mapping and validation of the built models.  The Maxent model per-
formed well for predicting the GWR potential with the given set of training and test data with overall of 0.993 
for AUC and 86.5 for CCI in testing data (Table 1). The GWR probability index was divided into four potential 
classes of low, moderate, high, and very high using a natural break method as seen in Fig. 8a. The model pre-
dicted approximately 7.26% of the studied region included very high GWR potential area (Table 2). The GWR 
with high and moderate potential encompass 8.59 and 29.45 percent of the studied area (Table 2). Through the 
AUC and CCI techniques the obtained map using the FR was evaluated. In the present study, the AUC value 

Figure 7.   Spatial correlation between effective factors and GWR potential using FR model.
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show 0.975 which revealed an “excellent” predictive accuracy in the model prediction. Also, the validation using 
CCI in total was 61.50% which has a satisfactory prediction. Ultimately, the map was generated and classi-
fied into four potential classes by natural break classification method, i.e., low, moderate, high and very high 
(Fig. 8b). Around 2.92% of the studied area falls into the very high GWR potential zone, while 36.63% of the 
land belongs to the low GWR potential category (Table 2). Based on the FR model, most parts of the studied area 
(45.20%) have a moderate GWR potential.

Application of hybrid model.  The ensemble method, where a set of simple mathematic scenarios repre-
sented in Table 1 combining different base models to get better predictive performance compared to an indi-
vidual model. Thus, to provide the GWR potential map with the ensemble model, the weights obtained from 
FR model and ME model were integrated to acquire a better GWR potential classifier. Seven ensemble classi-
fier models were identified for GWR potential zones. AUC and CCI were considered as measures of models’ 
effectiveness. Table 1 showed AUC and CCI measures for seven classification models assessed. Compared with 
individual models (scenario 8 and scenario 9), it is relatively obvious that the proposed ensemble models outper-
formed with respect to AUC. CCI is also applied to assess the performance of the models, for which our results 
exhibited a satisfactory performance for GWR potential mapping. For the different scenarios, AUC and CCI 
ranged from 0.984 to 0.990 and 54.6 to 90.9, respectively (Table 1).

Effective classification of ensemble models in comparative to individual models indicated that the best ensem-
ble classifier, scenario 5, is characterized by better validation measures in both training datasets and testing data-
sets. In addition, the results of both individual models clearly indicated satisfactory output for GWR prediction, 
while the FR model attained slightly lower predictive performance than ME model.

The best ensemble model in terms of performance was scenario 5. Then, GWR potential map of scenario 5 
was developed using ArcGIS10.6 software. Each pixel has a value that represents the occurrence of GWR poten-
tial. Consequently, the map was divided into four classes of low, moderate, high and very high based on natural 
break method (Fig. 9). The area of each class in scenario 5, was represented in Table 2. Based on the scenario 5, 
most parts of the studied area had a low GWR potential (73.79%). A very high GWR potential is only found in 
3.01% studied area.

Discussions
Nowadays, groundwater depletion became a critical global problem with serious consequences for sustainability 
of water supplies. Knowledge of spatial ground water recharge potential zones has placed considerable emphasis 
to addressing effectively planning and better managing water resources. Correspondingly, there has been growing 
numbers of research addressing zoning of groundwater recharge potential in recent years19,27,29,36,37,54,55. Although 

Figure 8.   GWR potential zone map, (a) ME model and (b) FR model (maps layouts were prepared in ArcGIS 
10.6 software).

Table 2.   The classes and area percentage of each class by scenario 5.

Class ME FR Ensemble (Scenario 5)

Very high 3.7 0.4 3.01

High 5.29 11.7 8.84

Moderate 32.8 70.5 14.36

Low 58.21 17.4 73.79
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there still remains much work to understanding the effect of multiple drivers on the distribution and pattern of 
GWR potential. Population growth along with increased development led to heavy withdrawals from the plain 
aquifer system of the Lorestan province and subsequently decline in water table. Mountainous areas play a criti-
cal role in delivering water flow to the lowlands; therefore, it is extremely important to understand the GWR 
potential zones. Depending on hydrogeology, climate, physiography, and groundwater consumption, the volume 
of stored groundwater may vary considerably in different places19,29,84,85. While physical models are promising 
to quantitative estimation of natural recharge rates to aquifer system, they often require large hydrogeological 
data which are not easily measurable in the field86 and require numerically intensive simulation of the behavior. 
Furthermore, in-depth physical knowledge of the relevant hydrological process is requiring when developing 
physical based models (Kim et al., 2015). Moreover, many developing countries suffer from lack of information, 
accordingly susceptibility and potential mapping with help of statistical methods and machine learning methods 
which requiring few parameters without an explicit need about the underlying physical process becomes a useful 
tool to subdivide area into regions with significant GWR potential zone. Nevertheless, significant improvements 
in model prediction and decreased the prediction uncertainty through an ensemble approaches were recently 
published by researchers32,41,44,46. The current state of scientific researches on disaster susceptibility and natural 
potential by an ensemble models are in the early stage of development.

In our study, GWR potential zones were investigated in Marboreh watershed in Lorestan province, Iran, using 
a combination of the machine learning (ME) and a bivariate statistical method (FR), into one predictive model 
in order to improve predictions. These two individual methods are commonly used by researchers in the field 
of Groundwater potential mapping41,43, landslide47,48, flood44,45. In order to make clearly accurate evaluations of 
the ensemble methods, FR and ME were also performed independently. The result showed that the ensemble 
method in scenario 5 performed “excellent’ with AUC and CCI values of 0.990 and 0.907, respectively. This 
supports the previous findings from Tehrany et al74; Razavi-Termeh et al28 and Di Napoli et al87 that ensemble 
classifiers allow more accurate prediction than classical models and alternative to the individual models in 
susceptibility and potential mapping. A research carried out in Qued Guenniche in the north of Tunisia to pro-
duce a GWR potential map by Chenini and Msaddek36. The authors found that the bivariate and multivariate 
statistical approaches provide more accurate results than the AHP. Pourghasemi et al37compared a number of 
machine learning methods to investigate groundwater recharge potential zones in Firuzkuh County, Iran. The 
results showed that SVM and MARS outperformed RF in terms of accuracy based on the data from 2000 double 
ring infiltrometer.

Here, we also address importance effective factors of GWR potential. Precisely, to quantify effects of topo-
graphical, hydrological, geological and ecological factors on GWR potential using data from 850 observations. 
Jackknife test was applied to evaluate the relative importance of each causal factors. The result indicated that 
soil had the highest training gain. This is followed by lithology, aspect and DEM. Our findings are in agree with 
pervious researches that highlight the influence of the soil, lithology, elevation, aspect and drainage density in 
GWR potential identification29,55. Similar results were found by Pourghasemi et al37 in the Firuzkuh County, 
Iran, who noted that the mean annual rainfall, drainage density, elevation and slope angel are dominate factors 
that influence groundwater recharge. Rainfall data have been widely used in understanding the GWR potential 
zones21,25,29,37,55,88. The spatial distribution of the final GWR potential map is consistent with the findings of sev-
eral studies. Patil and Mohite88, Senanayake et al29, Yeh et al25, de Costa et al21 and Pourghasemi et al37 obtained 

Figure 9.   GWR potential zone map of ensemble method by scenario 5 (map layout was prepared in ArcGIS10.6 
software).
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the high effective GWR potential in gentle slope. In contrast, the least GWR potential can be found in higher 
drainage density zones25,54. Additionally, high altitude along with steep slope areas could identified poor GWR 
potential. Furthermore, based on Jackknife test, SPI, plan and profile curvatures have no particular impact on 
GWR potential in studied area. Moreover, the final GWR potential maps indicated that the areas with high per-
colation potential are mainly distributed along the south and southwestern parts of the study area.

Conclusion
Marboreh Watershed continue to an experience water scarcity, largely driven by frequent droughts and expanding 
agricultural land combined with over abstraction of groundwater. Therefore, there is a need to identify potential 
groundwater recharge zones to help prevent water scarcity. In this study to address water scarcity issue we discuss 
the combination of the predictions achieved by FR and MA models in the ensemble in order to develop a GWR 
potential zones for the Marboreh watershed in Lorestan province, Iran. Moreover, the spatial mapping for man-
aged aquifer recharge based on topographic factors, hydrological factors, geological factors and ecological factors 
and assessing their likely contribution on GWR is explored. The results of the research reveal that evaluating the 
individual’s models using the AUC and CCI indices reach relatively high performance. The ensemble classifier 
with scenario 5 may achieves more accurate result than other ensemble models and individual models with AUC 
and CCI values of 0.990 and 0.907, respectively. Additionally, GWR potential areas were found to vary largely 
based on soil, lithology, aspect and elevation. The results of the study revealed that about 11.85% of the Marboreh 
watershed was found to have a very high to high recharge potential and 73.79% falls in the low zone class.

It has been generally recognized that, the accuracy of the outputs of interest is dependent mainly on the 
input uncertainty. There are large uncertainties in soil spatial information, insufficient knowledge of underlying 
groundwater system and inadequate of data measurements. Additionally, higher uncertainties are associated 
with aquifer characteristics and recharge process needs to be address of further studies. Here, since there were 
no available data for hydraulic conductivity, double-ring infiltrometer method was used to identify varying 
groundwater recharge potential. Thus, priority needs for validate model predictions in area with monitoring 
wells and resistivity imaging of water movement in vadose zone.

The results of this study could be used in the planning, management, and control of surface runoff in high-
discharge events. It is recommended to construct aquifer recharge facilities in areas with “high” and “very high” 
percolation potential. Using these findings, it is possible to obtain higher quantities of surface water and recharge 
aquifers, as well as managing water deficit. The studied area heavily relies on the abstraction of groundwater to 
sustain irrigated agriculture. Consequently, identifying the groundwater recharge zones is promising, especially 
for future droughts, but requires more scientific support and supervision to succeed. The studied area is suf-
fering from a combination of water crisis and groundwater pollution. Therefore, identifying zone with a high 
GWR potential is critical to enhance water storage and taking acting by local managers to define conservation 
priorities areas to reduce nutrient losses and enhances aquifer recharge.

Received: 10 January 2020; Accepted: 14 January 2021

References
	 1.	 Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., & Bay, G. World population stabilization unlikely this 

century. Science 346(6206), 234–237 (2014).
	 2.	 Ortiz‐Zamora, D., & Ortega‐Guerrero, A. Evolution of long‐term land subsidence near Mexico City: Review, field investigations, 

and predictive simulations. Water Resour. Res. 46(1) (2010).
	 3.	 Chaussard, E., Wdowinski, S., Cabral-Cano, E. & Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-

series. Remote Sens. Environ. 140, 94–106 (2014).
	 4.	 Werner, A. D., Bakker, M., Post, V. E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., & Barry, D. A. Seawater intrusion processes, 

investigation and management: Recent advances and future challenges. Adv. Water Resour. 51, 3–26 (2013).
	 5.	 Kulkarni, H., Shah, M. & Shankar, P. V. Shaping the contours of groundwater governance in India. J. Hydrol. Region. Stud. 4, 

172–192 (2015).
	 6.	 Harou, J. J. & Lund, J. R. Ending groundwater overdraft in hydrologic-economic systems. Hydrogeol. J. 16(6), 1039 (2008).
	 7.	 Qureshi, M. E., Reeson, A., Reinelt, P., Brozović, N. & Whitten, S. Factors determining the economic value of groundwater. Hydro-

geol. J. 20(5), 821–829 (2012).
	 8.	 Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a T otal G roundwater S tress framework. Water Resour. 

Res. 51(7), 5198–5216 (2015).
	 9.	 Haghighi, A. T., Darabi, H., Shahedi, K., Solaimani, K. & Kløve, B. A scenario-based approach for assessing the hydrological impacts 

of land use and climate change in the Marboreh Watershed, Iran. Environ. Model. Assess. 25(1), 41–57 (2020).
	10.	 Rouhani, H. & Jaafarzadeh, M. S. Assessing the climate change impact on hydrological response in the Gorganrood river basin, 

Iran. J. Water Clim. Change 9(3), 421–433 (2018).
	11.	 Adnan, M. S., Ali, N. C., Erfen, Y., Rahmat, S. N., Razi, M. A. M., & Musa, S. Analysis the impact of bridges existance for the segamat 

river using infowork RS. In IOP Conference Series: Materials Science and Engineering Vol. 136(1) 012080. (IOP Publishing, 2016).
	12.	 Moe, C. L. & Rheingans, R. D. Global challenges in water, sanitation and health. J. Water Health 4(S1), 41–57 (2006).
	13.	 Ayob, S., & Rahmat, S. N. Rainwater harvesting (RWH) and groundwater potential as alternatives water resources in Malaysia: A 

review. In MATEC Web of Conferences Vol. 103 04020. (EDP Sciences, 2017).
	14.	 Carmon, N. & Shamir, U. Water-sensitive planning: Integrating water considerations into urban and regional planning. Water 

Environ. J. 24(3), 181–191 (2010).
	15.	 Braune, E. & Xu, Y. The role of ground water in Sub-Saharan Africa. Groundwater 48(2), 229–238 (2010).
	16.	 Howard, K. W. Sustainable cities and the groundwater governance challenge. Environ. Earth Sci. 73(6), 2543–2554 (2015).
	17.	 Machiwal, D. & Jha, M. K. Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate 

statistical analyses and GIS-based geostatistical modeling techniques. J. Hydrol. Region. Stud. 4, 80–110 (2015).
	18.	 Mogaji, K. A., Lim, H. S. & Abdullah, K. Regional prediction of groundwater potential mapping in a multifaceted geology terrain 

using GIS-based Dempster-Shafer model. Arab. J. Geosci. 8(5), 3235–3258 (2015).



16

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5587  | https://doi.org/10.1038/s41598-021-85205-6

www.nature.com/scientificreports/

	19.	 Souissi, D. et al. Mapping groundwater recharge potential zones in arid region using GIS and Landsat approaches, southeast Tunisia. 
Hydrol. Sci. J. 63(2), 251–268 (2018).

	20.	 Freeze, R. A., & Cherry, J. A. Groundwater (No. 629.1 F7) (1979).
	21.	 De Costa, A. M., de Salis, H. H. C., Viana, J. H. M., & Leal Pacheco, F. A. Groundwater recharge potential for sustainable water 

use in urban areas of the Jequitiba River Basin, Brazil. Sustainability 11(10), 2955 (2019).
	22.	 Sangab Zagros Consulting Engineering Company (SZCEC). Comprehensive studies of Azna and Aligodarz watershed, Lorestan 

Province, Project report; Regional Water Company of Lorestan Province: Lorestan, Iran (2012).
	23.	 Sashikkumar, M. C., Selvam, S., Kalyanasundaram, V. L. & Johnny, J. C. GIS based groundwater modeling study to assess the effect 

of artificial recharge: A case study from Kodaganar river basin, Dindigul district, Tamil Nadu. J. Geol. Soc. India 89(1), 57–64 
(2017).

	24.	 Scanlon, B. R., Healy, R. W. & Cook, P. G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 
10(1), 18–39 (2002).

	25.	 Yeh, H. F., Cheng, Y. S., Lin, H. I. & Lee, C. H. Mapping groundwater recharge potential zone using a GIS approach in Hualian 
River, Taiwan. Sustain. Environ. Res. 26(1), 33–43 (2016).

	26.	 Keese, K. E., Scanlon, B. R., & Reedy, R. C. Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. 
Water Resour. Res. 41(6) (2005).

	27.	 Benjmel, K. et al. Mapping of groundwater potential zones in crystalline terrain using remote sensing, GIS techniques, and mul-
ticriteria data analysis (case of the Ighrem Region, Western Anti-Atlas, Morocco). Water 12(2), 471 (2020).

	28.	 Razavi-Termeh, S. V., Sadeghi-Niaraki, A. & Choi, S. M. Groundwater potential mapping using an integrated ensemble of three 
bivariate statistical models with random forest and logistic model tree models. Water 11(8), 1596 (2019).

	29.	 Senanayake, I. P., Dissanayake, D. M. D. O. K., Mayadunna, B. B. & Weerasekera, W. L. An approach to delineate groundwater 
recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci. Front. 7(1), 115–124 (2016).

	30.	 Siahkamari, S., Haghizadeh, A., Zeinivand, H., Tahmasebipour, N. & Rahmati, O. Spatial prediction of flood-susceptible areas 
using frequency ratio and maximum entropy models. Geocarto Int. 33(9), 927–941 (2018).

	31.	 Somodi, I., Lepesi, N. & Botta-Dukát, Z. Prevalence dependence in model goodness measures with special emphasis on true skill 
statistics. Ecol. Evolut. 7(3), 863–872 (2017).

	32.	 Tran, Q. Q., Willems, P. & Huysmans, M. Coupling catchment runoff models to groundwater flow models in a multi-model 
ensemble approach for improved prediction of groundwater recharge, hydraulic heads and river discharge. Hydrogeol. J. 27(8), 
3043–3061 (2019).

	33.	 Dar, T., Rai, N., & Bhat, A. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geol. 
Ecol. Landsc. 1–16 (2020).

	34.	 Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., & Melesse, A. Landslide susceptibility mapping 
using different GIS-based bivariate models. Water 11(7), 1402 (2019).

	35.	 Mogaji, K. A., Omosuyi, G. O., Adelusi, A. O. & Lim, H. S. Application of GIS-based evidential belief function model to regional 
groundwater recharge potential zones mapping in hardrock geologic terrain. Environ. Process. 3(1), 93–123 (2016).

	36.	 Chenini, I. & Msaddek, M. H. Groundwater recharge susceptibility mapping using logistic regression model and bivariate statistical 
analysis. Q. J. Eng. Geol. Hydrogeol. 53(2), 167–175 (2020).

	37.	 Pourghasemi, H. R. et al. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Sci. Rep. 
10(1), 1–11 (2020).

	38.	 Althuwaynee, O. F., Pradhan, B. & Lee, S. A novel integrated model for assessing landslide susceptibility mapping using CHAID 
and AHP pair-wise comparison. Int. J. Remote Sens. 37(5), 1190–1209 (2016).

	39.	 Chen, W. et al. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial 
prediction of landslide susceptibility. CATENA 151, 147–160 (2017).

	40.	 Tien Bui, D., Shirzadi, A., Shahabi, H., Chapi, K., Omidavr, E., Pham, B. T., & Bin Ahmad, B. A novel ensemble artificial intelligence 
approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors 19(11), 2444 (2019).

	41.	 Avand, M., Janizadeh, S., Tien Bui, D., Pham, V. H., Ngo, P. T. T., & Nhu, V. H. A tree-based intelligence ensemble approach for 
spatial prediction of potential groundwater. Int. J. Digit. Earth 1–22 (2020).

	42.	 Chen, W., Li, H., Hou, E., Wang, S., Wang, G., Panahi, M. & Xiao, L. GIS-based groundwater potential analysis using novel ensemble 
weights-of-evidence with logistic regression and functional tree models. Sci. Total Environ. 634, 853–867 (2018).

	43.	 Kordestani, M. D. et al. Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeol. J. 27(1), 211–224 
(2019).

	44.	 Choubin, B. et al. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regres-
sion trees, and support vector machines. Sci. Total Environ. 651, 2087–2096 (2019).

	45.	 Tien Bui, D., Khosravi, K., Shahabi, H., Daggupati, P., Adamowski, J. F., Melesse, A. M., & Pradhan, B. Flood spatial modeling in 
northern Iran using remote sensing and gis: A comparison between evidential belief functions and its ensemble with a multivariate 
logistic regression model. Remote Sens. 11(13), 1589 (2019).

	46.	 Hong, H., Liu, J. & Zhu, A. X. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing 
attributes with the bagging ensemble. Sci. Total Environ. 718, 137231 (2020).

	47.	 Pham, B. T., Jaafari, A., Prakash, I. & Bui, D. T. A novel hybrid intelligent model of support vector machines and the MultiBoost 
ensemble for landslide susceptibility modeling. Bull. Eng. Geol. Environ. 78(4), 2865–2886 (2019).

	48.	 Pradhan, A. M. S., Kang, H. S., Lee, J. S., & Kim, Y. T. An ensemble landslide hazard model incorporating rainfall threshold for 
Mt. Umyeon, South Korea. Bull. Eng. Geol. Environ. 78(1), 131–146 (2019).

	49.	 Mousavi, S. N. & Gharghani, F. Assessing policies of irrigation for groundwater by positive mathematical programming (PMP) 
case study: Eghlid. Econ. Res. 11(4), 65–82 (2012).

	50.	 Döll, P., & Flörke, M. Global-scale estimation of diffuse groundwater recharge: Model tuning to local data for semi-arid and arid 
regions and assessment of climate change impact (2005).

	51.	 Aghazadeh, N., Chitsazan, M. & Mirzayi, Y. Assessing the potential and actual recharge in urban aquifer and mapping areas with 
recharge potential using GIS and AHP (Case study: Urmia city aquifer). Adv. Appl. Geol. 9(2), 168–179 (2019) ((in Persian)).

	52.	 Juandi, M. & Syahril, S. Empirical relationship between soil permeability and resistivity, and its application for determining the 
groundwater gross recharge in Marpoyan Damai, Pekanbaru, Indonesia. Water Pract. Technol. 12(3), 660–666 (2017).

	53.	 Jang, C. S., Chen, S. K. & Kuo, Y. M. Applying indicator-based geostatistical approaches to determine potential zones of groundwater 
recharge based on borehole data. CATENA 101, 178–187 (2013).

	54.	 Singh, S. K., Zeddies, M., Shankar, U. & Griffiths, G. A. Potential groundwater recharge zones within New Zealand. Geosci. Front. 
10(3), 1065–1072 (2019).

	55.	 Senthilkumar, M., Gnanasundar, D. & Arumugam, R. Identifying groundwater recharge zones using remote sensing & GIS tech-
niques in Amaravathi aquifer system, Tamil Nadu, South India. Sustain. Environ. Res. 29(1), 15 (2019).

	56.	 Nampak, H., Pradhan, B. & Manap, M. A. Application of GIS based data driven evidential belief function model to predict ground-
water potential zonation. J. Hydrol. 513, 283–300 (2014).

	57.	 Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V. & Singh, V. S. Deciphering potential groundwater zone in hard rock 
through the application of GIS. Environ. Geol. 55(3), 467–475 (2008).



17

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5587  | https://doi.org/10.1038/s41598-021-85205-6

www.nature.com/scientificreports/

	58.	 Das, S. Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote 
sensing and GIS techniques. Model. Earth Syst. Environ. 3(4), 1589–1599 (2017).

	59.	 Rajasekhar, M. et al. Delineation of groundwater potential zones of semi-arid region of YSR Kadapa District, Andhra Pradesh, 
India using RS, GIS and analytic hierarchy process. Remote Sens. Land 2(2), 76–86 (2018).

	60.	 Ayazi, M. H. et al. Disasters and risk reduction in groundwater: Zagros Mountain Southwest Iran using geoinformatics techniques. 
Disaster Adv. 3(1), 51–57 (2010).

	61.	 Gee, G. W. et al. Variations in water balance and recharge potential at three western desert sites. Soil Sci. Soc. Am. J. 58(1), 63–72 
(1994).

	62.	 Prych, E. A. Using chloride and chlorine-36 as soil-water tracers to estimate deep percolation at selected locations on the US Depart-
ment of Energy Hanford Site, Washington Vol. 2481. (US Geological Survey, 1998).

	63.	 Al-Abadi, A. M. & Shahid, S. A comparison between index of entropy and catastrophe theory methods for mapping groundwater 
potential in an arid region. Environ. Monit. Assess. 187(9), 576 (2015).

	64.	 Razandi, Y., Farokhzadeh, B., Yousefzadeh Chabok, M. & Teimurian, T. Applying maximum entropy algorithm (MAXENT) in 
groundwater potential mapping, case study: Hamedan-Bahar Plain. J. Irrigation Water Eng. 8(1), 111–124 (2017) ((in persion)).

	65.	 Constantin, M., Bednarik, M., Jurchescu, M. C. & Vlaicu, M. Landslide susceptibility assessment using the bivariate statistical 
analysis and the index of entropy in the Sibiciu Basin (Romania). Environ. Earth Sci. 63(2), 397–406 (2011).

	66.	 Wang, Q., Li, W., Yan, S., Wu, Y. & Pei, Y. GIS based frequency ratio and index of entropy models to landslide susceptibility map-
ping (Daguan, China). Environ. Earth Sci. 75(9), 780 (2016).

	67.	 Hosseini, S. Z. et al. Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in Poshtkouh area, central Iran using 
the maximum entropy model and geostatistics. Ecol. Inform. 18, 61–68 (2013).

	68.	 Sahragard, H. P. & Ajorlo, M. A comparison of logistic regression and maximum entropy for distribution modeling of range plant 
species (a case study in rangelands of western Taftan, southeastern Iran). Turk. J. Bot. 42(1), 28–37 (2018).

	69.	 Main, I. G., & Naylor, M. Maximum entropy production and earthquake dynamics. Geophys. Res. Lett. 35(19) (2008).
	70.	 Suárez-Seoane, S., de la Morena, E. L. G., Prieto, M. B. M., Osborne, P. E., & de Juana, E. Maximum entropy niche-based modelling 

of seasonal changes in little bustard (Tetrax tetrax) distribution. Ecol. Model. 219(1–2), 17–29 (2008).
	71.	 Hou, E., Wang, J. & Chen, W. A comparative study on groundwater spring potential analysis based on statistical index, index of 

entropy and certainty factors models. Geocarto Int. 33(7), 754–769 (2018).
	72.	 Alizadeh, Z. & Mahjouri, N. A spatiotemporal Bayesian maximum entropy-based methodology for dealing with sparse data in 

revising groundwater quality monitoring networks: The Tehran region experience. Environ. Earth Sci. 76(12), 436 (2017).
	73.	 Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010).
	74.	 Tehrany, M. S., Kumar, L. & Shabani, F. A novel GIS-based ensemble technique for flood susceptibility mapping using evidential 

belief function and support vector machine: Brisbane, Australia. PeerJ 7, e7653 (2019).
	75.	 Mallick, J. et al. Modeling groundwater potential zone in a semi-arid region of Aseer using fuzzy-AHP and geoinformation tech-

niques. Water 11(12), 2656 (2019).
	76.	 Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. 

Environ. Conserv. 24(1), 38–49 (1997).
	77.	 Snoke, A. W., Tullis, J., & Todd, V. R. (Eds.). Fault-Related Rocks: A Photographic Atlas. (Princeton University Press, 2014).
	78.	 Li, X., Zhao, S., Yang, H., Cong, D., & Zhang, Z. A bi-band binary mask based land-use change detection using Landsat 8 OLI 

imagery. Sustainability 9(3), 479 (2017).
	79.	 Rwanga, S.S. & Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. 

Geosci. 8(04), 611 (2017).
	80.	 Michaelsen, T., Heinrich, R., & Frisk Smith, T. A. Watershed management field manual; road design and construction in sensitive 

watersheds (No. FAO CG-13/5). (FAO, 1989).
	81.	 Pirasteh, S. & Li, J. Landslides investigations from geoinformatics perspective: Quality, challenges, and recommendations. Geomat. 

Nat. Haz. Risk 8(2), 448–465 (2017).
	82.	 Zavoianu, I. Morphometry of Drainage Basins. (Elsevier, 2011).
	83.	 Ben-Zion, Y., & Sammis, C. Mechanics, structure and evolution of fault zones. In Mechanics, Structure and Evolution of Fault Zones 

1533–1536. (Birkhäuser Basel, 2009).
	84.	 Riad, P. H., Billib, M., Hassan, A. A., Salam, M. A. & El Din, M. N. Application of the overlay weighted model and Boolean logic 

to determine the best locations for artificial recharge of groundwater. J. Urban Environ. Eng. 5(2), 57–66 (2011).
	85.	 Tweed, S. O., Leblanc, M., Webb, J. A. & Lubczynski, M. W. Remote sensing and GIS for mapping groundwater recharge and 

discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol. J. 15(1), 75–96 (2007).
	86.	 Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. Short‐term flood forecasting with a neurofuzzy model. Water 

Resour. Res. 41(4) (2005).
	87.	 Di Napoli, M., Carotenuto, F., Cevasco, A., Confuorto, P., Di Martire, D., Firpo, M., Giacomo, P., Emanoele, R. & Calcaterra, D. 

Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 1–18 (2020).
	88.	 Patil, S. G. & Mohite, N. M. Identification of groundwater recharge potential zones for a watershed using remote sensing and GIS. 

Int. J. Geomat. Geosci. 4(3), 485–498 (2014).

Author contributions
This manuscript prepared by team. M.S.J., H.R.P. and H.R. run the models and ensemble scenarios. M.S.J. and 
H.R. wrote the main manuscript text, figures and tables prepared by M.S.J. and H.R.P., H.R., H.R.P. and A.H. 
reviewed the manuscript. Field survey done by M.S.J., for some weeks (with 3 participants). N.T. participated 
in the field operation.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.S.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


18

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5587  | https://doi.org/10.1038/s41598-021-85205-6

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models
	Methodology
	Study area. 
	Permeability samples inventory map. 
	GWR influencing factors. 
	Topographic influencing factors. 
	Hydrological influencing factors. 
	Geological influencing factors. 
	Ecological influencing factors. 

	Models. 
	Maximum entropy (ME) model. 
	Frequency ratio (FR) model. 
	Ensemble modeling. 
	Conditioning factors importance and marginal response curves (MRCs). 
	Validation of the built models. 


	Result
	Conditioning factors importance. 
	Application of MaxEnt. 
	Application of FR model. 
	Groundwater recharge mapping and validation of the built models. 
	Application of hybrid model. 

	Discussions
	Conclusion
	References


