
ORIGINAL RESEARCH
published: 03 May 2022

doi: 10.3389/fnins.2022.885322

Frontiers in Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 885322

Edited by:

Rajendra Bishnoi,

Delft University of Technology,

Netherlands

Reviewed by:

Zhongrui Wang,

The University of Hong Kong, Hong

Kong SAR, China

Argha Mondal,

Indian Institute of Technology

Dhanbad, India

*Correspondence:

Lidan Wang

ldwang@swu.edu.cn

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 27 February 2022

Accepted: 13 April 2022

Published: 03 May 2022

Citation:

Fang X, Duan S and Wang L (2022)

Memristive Izhikevich Spiking Neuron

Model and Its Application in

Oscillatory Associative Memory.

Front. Neurosci. 16:885322.

doi: 10.3389/fnins.2022.885322

Memristive Izhikevich Spiking
Neuron Model and Its Application in
Oscillatory Associative Memory
Xiaoyan Fang, Shukai Duan and Lidan Wang*

College of Artificial Intelligence, Southwest University, Chongqing, China

The Izhikevich (IZH) spiking neuron model can display spiking and bursting behaviors

of neurons. Based on the switching property and bio-plausibility of the memristor, the

memristive Izhikevich (MIZH) spiking neuron model is built. Firstly, the MIZH spiking model

is introduced and used to generate 23 spiking patterns. We compare the 23 spiking

patterns produced by the IZH and MIZH spiking models. Secondly, the MIZH spiking

model actively reproduces various neuronal behaviors, including the excitatory cortical

neurons, the inhibitory cortical neurons, and other cortical neurons. Finally, the collective

dynamic activities of the MIZH neuronal network are performed, and the MIZH oscillatory

network is constructed. Experimental results illustrate that the constructed MIZH spiking

neuron model performs high firing frequency and good frequency adaptation. The model

can easily simulate various spiking and bursting patterns of distinct neurons in the

brain. The MIZH neuronal network realizes the synchronous and asynchronous collective

behaviors. The MIZH oscillatory network can memorize and retrieve the information

patterns correctly and efficiently with high retrieval accuracy.

Keywords: IZH, MIZH, memristor, spiking neuron, networks, associative memory

1. INTRODUCTION

The cortical neurons in the brain receive and process a large amount of the perceptual information
and the behavior signals, and respond accordingly (Truong et al., 2018). It is necessary to pay
attention to construct and improve various neuron models to mimic the functions of the cortical
neurons and unveil the dynamical behaviors in the human brain (Hodgkin and Huxley, 1952;
FitzHugh, 1961; Morris and Lecar, 1981; Rose and Hindmarsh, 1989; Ermentrout, 1996; Izhikevich,
2001). Due to the simple computation and rich spiking patterns (Izhikevich, 2003), the IZH spiking
model has been widely studied. The multiplierless noisy IZH model can realize large-scale neural
networks and possess the low-cost property (Haghiri et al., 2018). The Izhikevich neuron model
incorporates the CORDIC algorithms to implement a neuromorphic system with high speed and
accuracy (Heidarpur et al., 2019). The modified IZHmodel with mechanoelectrical and ultrasonic-
magnetic effects can produce distinct spiking behaviors (Zhang et al., 2018). The bionic tactile
sensor outputs are applied to the IZH model to simulate the spiking patterns and achieve the
artificial touch (Rongala et al., 2017).
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The IZH spiking model with a simple structure performs
biologically meaningful and rich spiking and bursting patterns.
Nevertheless, there are many pivotal issues such as the realization
of large-scale neural networks, implementation efficiency, power
consumption, model structure, the discovery of novel materials,
and the application of new devices which need to be solved.
To efficiently construct the biology-inspired neuron model, we
need to find a unique electronic device. The memristor has
nonlinearity, non-volatility, low power consumption, nanoscale
size, and is easily compatible with the CMOS. It shows excellent
potential to emulate the synapse (Choi et al., 2018; Li et al., 2021)
and neurons (Dev et al., 2020; Duan et al., 2020), and fabricate the
neural networks (Wang et al., 2019; Joksas et al., 2020). Therefore,
the memristor is believed to be a crucial device for artificial
neuronal networks.

This study reports the IZH spiking model integrated with
a memristor. The MIZH spiking model is successfully built.
The IZH spiking model is briefly introduced, and 23 spiking
patterns are generated, which we present in Section 2. The MIZH
spiking model with 23 firing patterns is described in Section 3. In
Section 4, the firing patterns in the excitatory cortical neurons,
the inhibitory neurons, and the other neurons are exhibited by
the MIZH spiking model. The MIZH spiking model simulates
brain-inspired collective dynamical activities. The patterns
and mechanisms of synchronization and asynchronization are
explored in Section 5. Section 6 primarily focuses on applying the
MIZH spiking model to oscillatory associative memory, which
can efficiently memorize the information pattern and accurately
retrieve the distorted information patterns. The conclusion of the
study is arranged in Section 7.

2. THE IZHIKEVICHH (IZH) SPIKING
NEURON MODEL WITH 23 SPIKING
PATTERNS

The IZH spiking model is the phenomenological model, but it
is not a biologically realistic one (Izhikevich, 2004; Skocik and
Long, 2014). A simple version of the Hodgkin-Huxley model
can reproduce the rich spiking patterns and collective dynamics
behaviors in cortical neurons and suit for realizing numerical
analysis and large-scale numerical simulation (Izhikevich, 2003).

The IZH spiking model is a 2-D system that consists of two
differential equations, the membrane potential v, the recovery
variable u, and four dimensionless control parameters (a, b, c, and
d). The IZH spiking model is defined as:

v
′

= f (v)− a4u+ a5Iext (1)

u
′

= a(bv− u) (2)

Reset the membrane potential and the recovery variable:

If v ≥ 30mV , then v = c, u = u+ d (3)

Here, f (v) = a1v2 + a2v + a3. v is the membrane potential of
the neuron (the fast variable of the system). u is the membrane
recovery variable of the neuron (the slow variable of the system).
It represents the activation of the potassium ion current and
inactivation of the sodium ion current. u appears as a negative
feedback term in (1). The control parameter a is the time scale
of the recovery variable in the IZH spiking model: the smaller
its value, the slower the recovery variable changes. The control
parameter b is a constant in the IZH spiking model. It is related
to the sensitivity of the recovery variable to the sub-threshold
oscillations of the membrane potential. The larger its value, the
stronger the coupling strength between the membrane potential
v and the membrane recovery variable u. b > a and b <

a correspond to the Hopf bifurcation and the saddle point
bifurcation in dynamics. c is the after-spike resetting value of
the membrane potential, and d is the after-spike resetting value
of the recovery variable. Various values of these parameters can
cause the generation of diverse firing patterns (Heidarpur et al.,
2019).

When the membrane potential reaches 30mV , the membrane
potential and the recovery variable will be reset, as stated by
(3). The resting potential of the IZH spiking model is between
−70 and −60mV . Its typical value is −65mV . Most biological
neurons have no fixed threshold, and the membrane potential
depends on the previous spikes. In general, the range of the
threshold is from −55 to −40mV . The values of the coefficients
in (1) are a1 = 0.04/mVms, a2 = 5/ms, a3 = 140mV/ms,
a4 = 1/ms, and a5 = 1/ms. In (2), the typical values of control
parameters are a = 0.02/ms, b = 0.2, c = −65mV , and
d = 2mV .

The IZH spiking model can reproduce multiple spiking
patterns by adjusting the parameter values and changing the
injected stimulus. In Izhikevich (2004), the IZH spiking model
can generate twenty basic spiking patterns (Figure 1), which
shows that the simple model has rich firing patterns.

There are three other types of spiking patterns achieved
in Yi et al. (2018), besides the twenty spiking patterns given
by Izhikevich: all or none, excitation block, and refractory
period. Experimentally simulated all or none spiking behavior
is when the applied current pulse amplitude varies from 0.1
to 0.4A, the IZH spiking model performs no spiking response.
In the regime between 0.41 and 6A, the IZH spiking model
spikes. In our simulation, the current pulse amplitudes are
0.1, 0.25, 0.35, 0.45, and 0.55A. The current pulse width is
5 ms. The IZH spiking model fires spikes at the current
pulses of 0.45 and 0.55A [Figure 2 (U)]. The excitation block
spiking pattern is achieved when the ramp current and the
sinusoidal current are injected into the IZH spiking model
[Figure 2 (V)]. The external current pulses are 1.5A, the pulse
width is 5 ms, and the time interval between two current
pulses is 20 ms. The IZH spiking model generates a spike in
response to the first current pulse. When the second current
pulse arrives at the refractory period of membrane potential
caused by the first current pulse, the model cannot produce
a spike [the first plot in Figure 2 (W)]. When the time
interval of two current pulses is 30 ms, the model is unable
to respond to the second pulse [the second plot in Figure 2
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FIGURE 1 | The 20 spiking patterns are generated by the IZH spiking model [x-coordinate is the time (ms), y-coordinate is the membrane potential (mV ) in the plane

with the coral color curve. x-coordinate is the time (ms), and y-coordinate is the external stimulus current (pA) in the plane with the light blue curve].

(W)]. When the time interval between two current pulses
increases to 40 ms, greater than the refractory period of the
first membrane potential, the action potential corresponding to
the second current pulses occurs [the third plot in Figure 2

(W)].
The IZH spiking model can successfully reproduce these three

spiking behaviors of biological neurons.

3. THE MEMRISTIVE IZHIKEVICH (MIZH)
SPIKING NEURON MODEL

3.1. The Relationship Between the
Flux-Controlled Memristor and the Action
Potential of a Neuron
We choose the flux-controlled memristor (Wang et al., 2012) as
the resistance of the ionic channel. The flux-controlledmemristor

is described as:

M(ϕ(t))

=











20000 ϕ(t) < −0.75
√

−3.98× 108ϕ(t)+ 108 ϕ(t) ≥ −0.75 and ϕ(t) < 0.25

100 ϕ(t)) ≥ 0.25

(4)

When the sinusoidal periodic stimulus is applied to the flux-
controlled memristor, its volt-ampere characteristic curve can be
obtained (Figure 3). The I–V pinched hysteresis curve through
the origin is one of the main criteria of a memristor (Strukov
et al., 2009). The direction of the arrow in Figure 3 is the
memristor changes from the initial off-state (high resistance) to
the on-state (low resistance). This process corresponds to the
generation process of the action potential in the neuron.
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FIGURE 2 | The other three spiking patterns are generated by the IZH spiking model (The parameter values of the distinct spiking patterns: the all or none spiking

pattern, a = 0.1, b = 0.26, c = −60, d = 5; the excitation block spiking pattern, a = 0.02, b = 27.645, c = −55, d = −100; the refractory period spiking pattern,

a = 0.1, b = 0.25, c = −60, d = 5).

FIGURE 3 | The relationship between the I–V curve of the memristor and the action potential in the neuron.

Point A is the resting state. Arrow B represents the generation
process of a spike. With the increase of the current pules, the
voltage increases. The setting process of the membrane potential
(the firing potential is 10mV) is denoted by arrow C. The voltage
exceeds the threshold, and the action potential is produced and
maintained at 10mV (the third plot in Figure 3). The decreasing
process of the action potential is described by arrows D and E.
Process F represents the resetting process of membrane potential
(the resetting value is −50mV). After firing, the membrane
potential is reset to −50mV (the first plot in Figure 3). Arrow
G means the membrane potential increases and returns to the
resting state A (the first plot in Figure 3).

3.2. The Memristive Izhikevich (MIZH)
Spiking Neuron Circuit Model
The differential expressions of neuronal models are valuable
instruments for investigating the fundamental mechanism of
information processing. A variety of neuron models with the

same neural structure can cause various behavior phenomena
(Allman and Rhodes, 2003). According to (1) and (2) of the
IZH spiking model, the function f (v) performs the current-
voltage characteristic of the membrane potential. It can be a cubic
polynomial or a piecewise linear (Keener, 1983). Various forms
of the function f (v) are suggested to serve the spiking generation
mechanism of the neuron (Izhikevich, 2010). Here, we take f (v)
to be a1v2 + a2v+ a3 a quadratic polynomial. Assuming that the
variable v in (1) is the capacitive voltage and the variable u in (2)
is the inductive current. The function f(v) can be converted to
f (uc) = a1u

2
c + a2uc + a3 = iR0 = iM . It denotes the relationship

between the current and the voltage of a nonlinear resistor. And
then, we set the parameters a = R and b = 1/R0 (Lassere
et al., 2009; Bordet and Morfu, 2012). It ensures the consistency
of the physical dimensions on the left and right sides in (6) and
(8). Meanwhile, it is beneficial to the accurate design of the IZH
model circuit.

The IZH spiking model [(1) and (2)] is rewritten as:
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u
′

c = a1u
2
c + a2uc + a3 − a4iL + a5Iext (5)

i
′

L = R(uc/R0 − iL) (6)

The MIZH spiking model is described as:

u
′

c = a1u
2
c + a2uc + a3 − a4iL + a5Iext (7)

i
′

L = R(uc/M − iL) (8)

ϕ
′

= uc = −MiM = −M(a1u
2
c + a2uc + a3) (9)

According to the above Equations (5–8), we can construct the
IZH circuit model and the MIZH circuit model.

An extrinsic square-wave current (the current amplitude is
20nA) is injected into the IZH circuit model and theMIZH circuit
model, accordingly (Figures 4A,B). Within the time range of 100
to 300ms, the IZH model generates 19 spikes, and the MIZH
model produces 38 spikes. It describes that the MIZH model has
a higher firing frequency.

3.3. The MIZH Spiking Neuron Model With
23 Spiking Patterns
In Yi et al. (2018), the author uses the scalable VO2 active
memristors to emulate the sodium and the potassium ion
channel. The 23 spiking behaviors were experimentally achieved.
We have successfully reproduced 23 spiking patterns by applying
the MIZH spiking model (Figure 5).

We compare the spiking patterns in the MIZH spiking model
with those in the IZH spiking model. The MIZH spiking model
[(CM), (DM), (FM), (HM), (PM), (SM), and (TM) in Figure 5]
generates more firing spikes than the IZH spiking model [(C),
(D), (F), (H), (P), (S), and (T) in Figure 1], this phenomenon
is more evident in the continuous firing patterns. Meanwhile, in
some cases of the stimulus injection, the MIZH spiking model
performs the biological spiking frequency adaptability more
obviously [(EM), (FM), (GM), (LM), and (SM) in Figure 5] than
the IZH spiking model [(E), (F), (G), (L), and (S) in Figure 1].
The high-frequency spiking sequence is generated initially (the
biological spiking frequency adaptation; Yu et al., 2011) when
the external stimulus is applied to the neuron model. Then the
neuron adapts to the effect of the external stimulus and produces
the corresponding regular spiking patterns.

In Yi et al. (2018), when the external input voltage pulses are
0.1 and 0.15V , the model cannot generate the action potential.
When they increase to 0.25 and 0.4V , the action potentials are
produced. It is the all-or-none spiking pattern. In our simulation,
the external input stimulus is the current pulse, and the potential
peak value is set to 30mV . Once the firing condition is met,
the action potential is generated. The amplitudes of the current
pulses are 0.1, 0.25, 0.35, 0.65, and 0.7A, and the current pulse

width is 5 ms. The MIZH spiking model does not respond to
the current pulses between 0.1 and 0.64A, and produces spikes
between 0.65 and 4.6A [Figure 5 (UM)]. Comparing Figure 2

(V) with Figure 5 (VM) (the excitation block), the MIZH spiking
model fires two times, the firing behavior stops and locks at 20
mV (corresponding current amplitude is 20A) without returning
to the resting potential. Its locking speed is faster than that of
Figure 2 (V). Two continuous current pulses act on the MIZH
spiking model with a time interval of 10ms. The MIZH spiking
model produces the firing behavior when the first current pulse
arrives. However, when the second current pulse appears (the
second current pulse appears in the refractory period of the
membrane potential generated by the first current pulse), the
model cannot produce the firing behavior [the first plot in
Figure 5 (WM)]. When the time interval is 20ms, the MIZH
spiking model has no response to the second current pulse
[the second plot in Figure 5 (WM)]. When the time interval
is increased to 30ms, the second current pulse is not in the
refractory period of the membrane potential, the firing behavior
arises again [the third plot in Figure 5 (WM)].

4. THE MIZH SPIKING MODEL MIMICKING
THE SPIKING AND BURSTING PATTERNS
OF DIVERSE NEURONS

The excitatory and the inhibitory cortical neurons are two
primary neurons in the mammalian brain. The spiking
pattern is crucial for information propagation between neurons
(Taherkhani et al., 2020). The MIZH spiking model can
effectively imitate different firing behaviors of neurons in
the cerebral cortex by setting distinct model parameters. The
excitatory cortical neurons can be roughly divided into three
types, the regular spiking neurons, the intrinsically bursting
neurons, and the fast rhythmic bursting neurons. The inhibitory
cortical neurons can be classified into two types, the fast-spiking
neurons and the low-threshold spiking neurons (Izhikevich,
2003; Pospischil et al., 2008).

4.1. The Firing Patterns of the Excitatory
Cortical Neurons
In the cerebral cortex, the regular spiking neuron (RS and
MRS are generated by the IZH spiking model and the MIZH
spiking model, accordingly) is a typical excitatory neuron. The
waveform characteristics of its action potential: initially, the
spiking waveform shows the spiking frequency adaptability with
a short period, and then its period increases and the periodic
spikes generate. It is called the spiny stellate neuron and is found
in layers 2, 3, 5, and 6 in the cortex (Kbah and Şengör, 2013).

The firing patterns of intrinsically bursting neurons (IB and
MIB are produced by the IZH spiking model and the MIZH
spiking model, accordingly) are found in excitatory vertebral
neurons. When the direct current is injected into a neuron, the
neuron produces a burst of spikes by repeating a single spike
at the beginning. Then the tonic spiking patterns are generated
periodically. This type of neuron distributes in all layers of
the cortex.
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FIGURE 4 | The neuron membrane circuits. (A) The IZH circuit model and its response to a single pulse current. (B) The MIZH circuit model and its response to a

single pulse current.

The firing patterns of fast rhythmic bursting neurons (CH and
MCH are generated by the IZH spiking model and the MIZH
spiking model, accordingly) have been found in the visual cortex
of the adult cat. Under the influence of the direct current, the
neuron produces high-frequency repetitive bursting spikes. It
belongs to the pyramidal or spiny stellate neurons in layers 2, 3,
and 4 in the cortex.

We compare the firing behaviors between the IZH spiking
model and the MIZH spiking model (Figures 6A,C). The firing
frequency of the MIZH spiking model (the number of spikes
and bursts is generated in the time of 400ms: 10, 11, and 5)
is higher than that of the IZH spiking model (the number of
spikes and bursts: 6, 10, and 4). Both models perform spike
frequency adaptation. The inter-spike interval (ISI) distribution
is the time interval between two adjacent firing spikes in a series
of successive spikes (Sharma et al., 2018). The neuron firing
frequency is the reciprocal of the ISI. With the increase of the
ISI (from 20 to 240ms), the firing frequency of RS neuron spans
range from 50 to 4.17Hz (the plot on the left in Figure 6B).
The ISI of IB neurons increases from 9 to 151ms, and the firing
frequency decreases from 111.11 to 6.62Hz (the middle plot in
Figure 6B). With the increase of the ISI (from 10 to 299ms), the
firing frequency of CH neurons can be as high as 100Hz (the plot
on the right in Figure 6B). The firing frequency of RS neurons is
lower than those of IB neurons and CH neurons. The ISI of MRS
neurons in the MIZH spiking model increases from 11 to 148ms,
the firing frequency decreases from 90.91 to 6.76Hz (the left-side
plot in Figure 6D). When the ISI of MIB neurons increases from
8 to 133ms, the firing frequency of the neuron changes from 125
to 7.52Hz (the middle plot in Figure 6D). With the increase of
the ISI, the MCH neuron firing frequency decreases from 166.67
to 4.12Hz (the right-side plot in Figure 6D). The firing frequency
of MCH neurons is higher than those of MRS neurons and MIB
neurons.

4.2. The Firing Patterns of the Inhibitory
Cortical Neurons
The fast-spiking neuron (FS and MFS are produced by the IZH
spiking model and the MIZH spiking model, respectively.) is a
kind of inhibitory cortical neuron and exhibits periodic behaviors

of action potentials. It displays the property of sparsely spiny or
spiny non-pyramidal neurons.

The low-threshold spiking neuron (LTS and MLTS are
generated by the IZH spiking model and the MIZH spiking
model, respectively.) performs the high-frequency action
potentials with the spike frequency adaptation. This kind of
neuron mainly locates in layer 1.

The same extrinsic stimuli (the light blue plots in
Figures 7A,C) are applied to the IZH spiking model and
the MIZH spiking model. The MIZH spiking model (Figure 7C)
has a better spike frequency adaptation than the IZH spiking
model (Figure 7A). In Figure 7B, with the increase of the ISI
from 21 to 76ms, the FS neuron firing frequency decreases from
47.62 to 13.16Hz. The ISI of LTS neurons changes from 12 to
98ms, the firing frequency evolves from 83.33 to 10.20Hz. In
the MIZH spiking model (Figure 7D), the ISI of MFS neuron
increases from 10 to 69ms, the firing frequency decreases from
100 to 14.71Hz. The ISI of MLTS neurons evolves from 9 to
150ms, the firing frequency changes from 111.11 to 9.52Hz.
According to the above simulation data, the MIZH spiking
model performs a high firing frequency, even though it cannot
be noticeably observed in simulation plots.

4.3. The Firing Patterns of Other Cortical
Neurons
The thalamocortical neuron performs two firing patterns. One
pattern (TC1 and MTC1 are produced by the IZH spiking
model and the MIZH spiking model, respectively) shows a few
dense spikes within a short time and then returns to a resting
state. The other pattern (TC2 and MTC2 are generated by the
IZH spiking model and the MIZH spiking model, respectively)
exhibits several spikes with a short inter-spike period in the
beginning and then long inter-spike periodic spikes present
regularly.

The resonator neuron (RZ and MRZ are produced by the
IZH spiking model and the MIZH spiking model, respectively)
has bistability between the resting state and the repetitive firing
state. The resonator neuron can realize the transition between
two states through the appropriate application of external stimuli.
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FIGURE 5 | The 23 spiking patterns are produced by the MIZH spiking model.

In our simulation, the external stimulus acts on the IZH
spiking model, which initially shows several spikes (Figure 8A).
However, theMIZH spikingmodel receives the external stimulus,
and it initially performs the dense spikes. The MIZH spiking
model performs noticeable biological spike frequency adaptation
(Figure 8C).

When the ISI of TC1 neurons increases from 14 to 50ms,
the firing frequency changes from 71.43 to 20Hz (the first plot
in Figure 8B). In the TC2 neurons, with the increase of the
ISI, the firing frequency decreases from 16.67 to 4.15Hz (the
second plot in Figure 8B). With the change of the ISI, the
firing frequency of RZ neurons changes from 2.08 to 3.01Hz
(the third plot in Figure 8B). In the MIZH spiking model,

the ISI of MTC1 neurons varies from 10 to 34ms, and the
firing frequency decreases from 100 to 29.41Hz (the first plot
in Figure 8D). We increase the ISI of MTC2 neurons from
7 to 215ms; the firing frequency decreases from 142.86 to
4.65Hz (the second plot in Figure 8D). With the evolution
of the ISI, the firing frequency of MRZ neurons varies from
250 to 3.58Hz (the third plot in Figure 8D). Based on the
above simulation data, we conclude that the MIZH spiking
model exhibits a higher neuron firing frequency than the IZH
spiking model.

The comparison between the two models indicates that the
MIZH spiking model can reproduce various firing patterns of
cortical neurons by appropriate modulation of the parameters.
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FIGURE 6 | The firing behaviors of excitatory cortical neurons are produced by the IZH spiking model and the MIZH spiking model. (A) The firing patterns of the

excitatory cortical neurons for the IZH spiking model (the coral color plot represents the membrane potential, and the light blue plot represents the external stimulus.

The values of parameters are a = 0.01, b = 0.2, c = −65, d = 8, and Iext = 14nA for the RS neurons; a = 0.01, b = 0.2, c = −55, d = 4, and Iext = 14nA for the IB

neurons; a = 0.02, b = 0.08, c = −50, d = 2, and Iext = 14nA for the CH neurons). (B) The evolution of the neuron firing rate versus the inter-spike interval for the RS,

IB, and CH neurons of the IZH spiking model. (C) The firing patterns of the excitatory cortical neurons for the MIZH spiking model (the values of parameters are

a = 0.08, c = −65, d = 4, and Iext = 14nA for the MRS neurons; a = 0.1, c = −55, d = 4, and Iext = 14nA for the MIB neurons; a = 0.05, c = −50, d = 2, and

Iext = 14nA for the MCH neurons). (D) The evolution of the neuron firing rate versus the inter-spike interval for the MRS, MIB, and MCH neurons of the MIZH spiking

model.
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FIGURE 7 | The firing behaviors of inhibitory cortical neurons are produced by the IZH spiking model and the MIZH spiking model. (A) The firing patterns of the

inhibitory cortical neurons for the IZH spiking model (the values of parameters are a = 0.04, b = 0.2, c = −65, d = 8, and Iext = 14nA for the FS neurons; a = 0.02,

b = 0.2, c = −60, d = 5, and Iext = 14nA for the LTS neurons). (B) The evolution of the neuron firing rate versus the inter-spike interval for the FS and LTS neurons of

the IZH spiking model. (C) The firing patterns of the inhibitory cortical neurons for the MIZH spiking model (the values of parameters are a = 0.1, c = −65, d = 0.2,

and Iext = 14nA for the MFS neurons; a = 0.05, c = −65, d = 0.6, and Iext = 14nA for the MLTS neurons). (D) The evolution of the neuron firing rate versus the

inter-spike interval for the MFS and MLTS neurons of the MIZH spiking model.
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FIGURE 8 | The firing behaviors of other cortical neurons are produced by the IZH spiking model and the MIZH spiking model. (A) The firing patterns of the

thalamocortical neuron and the resonator neuron for the IZH spiking model (in our simulation, the values of parameters are a = 0.1, b = 0.02, c = −65, d = 0.26, and

Iext = 15nA for the TC1 neurons; a = 0.008, b = 0.03, c = −65, d = 0.26, and Iext = 15nA for the TC2 neurons; a = 0.01, b = 0.26, c = −65, d = 20, and

Iext = 15nA for the RZ neurons). (B) The evolution of the neuron firing rate versus the inter-spike interval for the TC1, TC2, and RZ neurons of the IZH spiking model.

(C) The firing patterns of the thalamocortical neuron and the resonator neuron for the MIZH spiking model (the values of parameters are a = 0.1, c = −65, d = 0.26,

and Iext = 15nA for the MTC1 neurons; a = 0.01, c = −60, d = 1, and Iext = 15nA for the MTC2 neurons; a = 0.01, c = −65, d = 20, and Iext = 15nA for the MRZ

neurons). (D) The evolution of the neuron firing rate versus the inter-spike interval for the MTC1, MTC2, and MRZ neurons of the MIZH spiking model.
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Meanwhile, it performs high firing frequency and good biological
spike frequency adaptation.

5. THE PULSE-COUPLED MIZH SPIKING
MODEL WITH CORTICAL-LIKE
COLLECTIVE DYNAMICS

The pulse-coupled neural networks (PCNN) are biology-inspired
models derived from the mammalian visual cortex (Chen and
Shibata, 2010). Owing to the simple calculation of the PCNN,
it is widely applied in image segmentation (Kuntimad and
Ranganath, 1999), image shadow removal (Gu et al., 2005), object
detection (Ranganath and Kuntimad, 1999), and image fusion (Li
and Zhao, 2020).

The IZH model is assigned to a class of PCNN (Izhikevich,
2003). The MIZH spiking model inherits the advantages and
characteristics of the IZH spiking model, so it also belongs
to a class of PCNN. The cortical neuron contains two types
of neuronal clusters, the excitatory neurons and the inhibitory
neurons (Guo and Li, 2010). The ratio of excitatory neurons
and inhibitory neurons is 4:1 (Vieira et al., 2013; Mongillo
et al., 2018). In our simulation, 800 excitatory neurons (RS
neurons andMRS neurons are used to model excitatory neurons)
and 200 inhibitory neurons (FS neurons and MFS neurons are
used to emulate inhibitory neurons) are used to construct the
IZH spiking network and the MIZH spiking network. The 103
spiking cortical neurons and 105 synaptic connections constitute
a spiking neuron network capable of performing collective
dynamical behaviors. The synaptic input and the thalamic input
are used to be the external input for each neuron. The parameter
values are used in the simulation; refer to Izhikevich (2003).

The spike raster plots simulate a randomly coupled network
of excitatory neurons and inhibitory neurons. Each neuron
generates a spike train denoted by dot lines, and each dot
corresponds to a spike. The MIZH spiking network and the
IZH spiking network show a certain degree of irregularity and
randomness, the coral red area denotes excitatory neurons,
and the light blue area indicates inhibitory neurons (the
upper plots of Figures 9A,B). It is easy to observe that the
MIZH spiking network and the IZH spiking network exhibit
the asynchronous dynamic behaviors of cortical neurons from
dynamics (Izhikevich, 2003; Ostojic, 2014). The IZH spiking
network performs a sparse distribution of neurons. The MIZH
network shows a dense distribution of neurons. It is because
the firing frequency of the MIZH spiking network (the lower
part of Figure 9B, the model generates 101 spikes in 1, 000ms)
is higher than that of the IZH spiking network (the lower part of
Figure 9A, the model generates 12 spikes in 1, 000ms).

The human brain is a vast information processing network
consisting of neurons, and neurons communicate through
synapses (Jhou et al., 2012). Changing synaptic coupling strength
between neurons or increasing the intensity of thalamic input
can generate various collective behaviors (Izhikevich, 2003).
Synchronization and asynchronization belong to collective
activities. The synchronous neural phenomenon is involved in
a series of higher-level brain functions and neuronal processes

(Liu and Shi, 2018). Synchronous activities play a crucial
role in information processing and signal encoding of the
cerebral cortex (Wang et al., 2020). The asynchronous behavior
is the pivotal part of the intermediary between information
propagation and transformation. The action potential and
the firing frequency generated randomly can describe it. The
asynchronous network is regarded as the primary computing
unit in the cerebral cortex, realizing the coding function and
producing interesting calculations (Ostojic, 2014). Therefore,
it is necessary to explore the patterns and mechanisms of
synchronization and asynchronization in the mammalian brain.

The spatiotemporal patterns vary with the distinct coupling
strength of the synaptic weight. Here, the coupling strength
of the excitatory synaptic weight (we) is selected as a variable
parameter, and the coupling strength of the inhibitory synaptic
weight is set as wi = −1. When the coupling strength
of the excitatory synaptic weight we = 0.05, all of the
spiking neurons are in the asynchronous state (the top plot
in Figure 10A), the action potential generates randomly, and
the MIZH spiking network performs a high firing frequency
(the bottom plot in Figure 10A). The whole neuronal network
displays heterogeneous and asynchronous activity (Ostojic,
2014). The redundancy between different neurons is high, the
interaction ability of the coupling network is stronger than
the computing ability. When we = 0.1, the occasionally
synchronous status occurs (the top plot in Figure 10B), and the
MIZH spiking network produces an instantaneously high firing
frequency. It is lower than that of Figure 10A (the bottom plots
in Figures 10A,B). The neuron cluster is in the inhomogeneously
asynchronous state, and the redundancy between neurons is
lower, and the network interaction ability is weaker than the
network computing ability. When we = 0.35, all of the neurons
are in the complete synchronous firing state (Figure 10C) (Wang
et al., 2020). When the coupling strength reaches a specific
strength (we = 1), the MIZH spiking network exhibits another
spatiotemporal pattern (the top plot in Figure 10D). The firing
frequency is as high as 100%, the action potential of the network
maintains a constant value (the peak value of the membrane
potential), VM = 30mV (the bottom plot in Figure 10D).

The synchronization and asynchronization phenomena of the
MIZH spiking network fully display the collective dynamical
behaviors. The MIZH spiking network is sensitive to the system
parameters and models various spatiotemporal patterns by
adjusting the parameter values.

6. THE REALIZATION OF OSCILLATORY
ASSOCIATIVE MEMORY IN THE MIZH
SPIKING MODEL

The discrete Hopfield network model (Hopfield, 1982) without
self-feedback can be used as a content-addressable memory to
realize pattern memory and information retrieval. One of the
most typical characteristics is that it always returns to a stable
state when it works in a serial mode. For this reason, it becomes
a promising candidate used as an associative memory device
(Bruck and Roychowdhury, 1990). Associative memory is one
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FIGURE 9 | The firing scatterplots of randomly coupled spiking neuron networks in the MIZH spiking model. (A) Asynchronous behaviors of the IZH spiking network.

(B) Asynchronous behaviors of the MIZH spiking network.

of the most popular applications of neural networks (Cios and
Shields, 1993). An associative memory device can receive and
memorize n-bit input vectors; one output vector will converge
to the closest stable state after many iterations. Each neuron in
the discrete Hopfield network model can represent two discrete
values, +1 and −1. The synaptic weights denote the strength of
connections between neurons.

We consider replacing every neuron in the Hopfield network
with theMIZH spikingmodel, and theMIZH oscillatory network
can be achieved. According to the Hebb learning rule (Hebb,
1949; Bruck and Roychowdhury, 1990), the synaptic weight is
an NN (N is the number of neurons) matrix can be expressed
as follows:

w =

m
∑

s=1

xsx
T
s − IN (10)

Here, w denotes the synaptic weight matrix, xs(x1, x2, x3, xm)
indicates a set of fundamental memories, xTs is the transpose
matrix of xs, and IN represents the NN identity matrix.

The state of ith neuron at time n is represented as xi(n).
The neurons are updated asynchronously based on the iterative
formula as follows:

xi(n+ 1) = hsgn(ui(n+ 1)) =







1 ui(n+ 1) > vMP

xi(n) ui(n+ 1) = vrest
−1 ui(n+ 1) < vMP

(11)

Where, i= 1, 2, . . . , N.

Iext =

N
∑

j=1

wijxj(n) (12)

ui(n+1) = ui(n)+a1u
2
i (n)+a2ui(n)+a3−a4iL(n)+a5Iext (13)

Here, xi(n + 1) is the state of a neuron at the time (n + 1),
vMP = 30mV is the peak value of the membrane potential,
and vrest = −65mV is the resting potential in the MIZH
spiking model. The (12) results from the synaptic weight and
the state variable. In this manner, it can be used as an external
stimulus Iext to apply to the MIZH spiking model. ui(n + 1)
is the membrane potential of the MIZH spiking model at the
time (n+ 1).

To demonstrate the memory and retrieval capability of the
MIZH oscillatory network, we choose “0,” “1,” “2,” and “6” as four
fundamental memories (namely, four state variables, Figure 11).
Each image is formed by 9 × 9 (N = 81) MIZH spiking
models, including two discrete state values +1 (the coral grid)
and −1 (the white grid). +1 denotes the membrane potential
produced by the MIZH spiking model exceeds the peak voltage
(> v MP), −1 indicates the membrane potential is below the
peak voltage (< v MP). The four-digit images can be directly
described by the square curves (the right side of the digit image
in Figure 11).

The four fundamental digit images (“0,” “1,” “2,” and “6”)
are first memorized by the MIZH oscillatory network. The
network remembers and recovers the stored vectors by repeatedly
updating the synaptic weight matrix. The desired pattern should
be one of the initial memories. After many iterations, the network
state converges to a stable status, and a pattern is achieved. The
distorted image is used as the testing vector in the network. The
distorted images, the retrieval process, and the retrieved images
are given in Figure 12A.

Whenever the program is run, distinct distorted patterns we
obtained. After iterations, the network converges to a specific
solution. The solution is the final pattern, which is close to one of
the basic memories. Otherwise, if the network solutions are not
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FIGURE 10 | The evolution of the spatiotemporal pattern with the various coupling strength. (A) The neurons of the network in the asynchronous state (an enlarged

plot). (B) The network in the asynchronous state with the increased synaptic weight (an enlarged plot). (C) The network in the synchronous status. (D) The network

activity in another stable state (an enlarged plot).

similar to any raw memories, the final image has nothing to do
with the raw memories and presents another unknown pattern
(Follmann et al., 2015). Here, we give the process of successfully
restoring the four existing patterns. We select two retrieval
processes at the different iteration times for four-digit images to
show that the MIZH oscillatory network can remarkably retrieve
the distorted images (the plots between two blue dashed lines
of Figure 12A). Asynchronous update of the testing vector is
completed until the network evolves to a steady pattern. The
network performs at least 81 iterations to guarantee convergence,
even though the network convergence occurs in advance. We
take the digit “0” as an example, the whole retrieval evolution
shows in Figure 12B. The blue ellipse position in the plot

indicates the change compared with the previous neuron state
(the white grid denotes that the membrane potential is below
the peak potential. The coral grid represents that the membrane
potential is higher than the peak potential). The distorted pattern
“0” is characterized as an initial state. It starts with n = 1.00.
When n = 9.00, the membrane potential of the MIZH spiking
model starts to vary. One MIZH spiking model transforms its
status from −1 (n = 1.00) to +1 (n = 9.00). It can be observed
in the blue ellipse position (n = 9.00). The MIZH oscillatory
network is involved in the retrieval process. The evolution of the
membrane potential (the neuron state alters from +1 to −1 or
from−1 to +1) occurs only in oneMIZH spikingmodel at a time.
When n = 81.00, the final status is the retrieved pattern “0.”

Frontiers in Neuroscience | www.frontiersin.org 13 May 2022 | Volume 16 | Article 885322

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fang et al. Memristive Izhikevich Spiking Neuron Model

FIGURE 11 | The four fundamental memories for the MIZH oscillatory network (left: the vector matrices of images are stored in the network; middle: the fundamental

memories present in image formats of 9A–9 neurons (the coral grid represents +1, the white grid represents −1); right: the fundamental memories show as the

square curve formats which correspond to the 81 state vectors in the left 9A–9 matrix).

The simulation results demonstrate that the MIZH oscillatory
network can memorize and retrieve the fundamental patterns
correctly and successfully.

Five hundred retrieval patterns are selected to compare
the Hopfield network, the IZH oscillatory network, and the
MIZH oscillatory network. Five patterns (pattern “0,” pattern
“1,” pattern “2,” pattern “6,” and an uncertain pattern “others”)

can be obtained randomly with the different probabilities. In the
Hopfield network, the generation probabilities of the pattern “0”
is 13.33%, the pattern “1” is 26.67%, the pattern “2” is 10.00%,
the pattern “6” is 23.33%, and the uncertain pattern “others”
is 26.67% (Figure 13A). In the IZH oscillatory network, the
generation probabilities of the pattern “0” is 23.33%, the pattern
“1” is 16.67%, the pattern “2” is 26.67%, the pattern “6” is 16.67%,
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FIGURE 12 | The evolution of the retrieval process for the distorted image (n denotes the iteration time). (A) The evolution of the retrieval process for the four distorted

digit images. (B) The evolution of the retrieval process for the digit “0” distorted image.
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FIGURE 13 | The comparison of retrieval probability of the fundamental memory patterns between (A) the Hopfield network, (B) the IZH oscillatory network, and (C)

the MIZH oscillatory network.

and the uncertain pattern “others” is 16.67% (Figure 13B). In
the MIZH oscillatory network, the generation probabilities of the
pattern “0” is 20.00%, the pattern “1” is 16.67%, the pattern “2”
is 20.00%, the pattern “6” is 26.67%, and the uncertain pattern
“others” is 16.67% (Figure 13C).

When we compare the generation probability of the
uncertain patterns in three models, the retrieval probability
of the Hopfield network is lower than the other two
networks (the blue bars). The IZH oscillatory network and the
MIZH oscillatory network show the same retrieval probability.
Therefore, the MIZH oscillatory network can implement
the memorization and retrieval of image patterns smoothly.
Meanwhile, the MIZH oscillatory network performs good
retrieval accuracy.

7. CONCLUSION

In this study, the experimental implementation of the MIZH
spiking neuron model exhibited the typical biological neuron
functions and remarkably improved the IZH spiking neuron
model. The 23 spiking patterns of cerebral cortical neurons were
successfully simulated by the MIZH spiking model. It performed
good biological spiking frequency adaptability and high firing
frequency. The exploration of the MIZH spiking model provided
a pathway for efficiently emulating the spiking and bursting
patterns in various cortical neurons. The firing patterns of the
excitatory neurons, the inhibitory neurons, and other neurons
were obtained in the MIZH spiking neuron model. To show the
collective dynamical activities intuitively, we efficiently realized
and analyzed the synchronization and asynchronization activities
in the experimental simulations by appropriately regulating
the synaptic weight. The MIZH spiking model showed rich
collective dynamical behaviors. The further work was to use
the MIZH oscillatory network to realize associative memory
and correctly implement the storage and retrieval of distorted
patterns. Meanwhile, it performed high retrieval accuracy by
comparing the Hopfield, the IZH, and the MIZH oscillatory
networks. In addition, the inherent characteristics of memristor
will affect the construction of artificial neuron models. The

nanometer size of the memristor is beneficial to the large-scale
integration of the neuron model and the construction of the
large-scale neural network. Low power consumption will actively
promote the large-scale integration of the neuron circuit. The
resistive switch characteristic makes the circuit simple, and there
is no need to consider adding other electronic devices to realize
the variable resistance property. Therefore, the memristor is
introduced into the IZH model will bring potential research and
application significance to the hardware implementation of the
artificial neuron model and its network.
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