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Suitability of drone olfactory 
sensitivity as a selection trait 
for Varroa‑resistance in honeybees
Ivelina Ivanova1,2* & Kaspar Bienefeld1

The most effective strategy against brood diseases, such as those stemming from infestation by the 
mite Varroa destructor, is the early detection and removal of sick brood. Recent findings suggest 
that genes associated with worker bee olfactory perception play a central role in Varroa-sensitive 
hygiene (VSH). In this study, the odour sensitivity of Apis mellifera drones was examined through 
proboscis extension response (PER) conditioning. Individuals sensitive/insensitive to the two 
Varroa-parasitised-brood odours (extract-low and extract-high) were used for breeding. Twenty-
one queens from a VSH-selected line (SelQ) and nineteen queens from a nonselected line (ConQ) 
were single-drone-inseminated with sperm from drones that showed either sensitivity (SenD+) or 
insensitivity (SenD−) to the two extracts. Individual VSH behaviour in a total of 5072 offspring of these 
combinations (SelQ × SenD+, SelQ × SenD−, ConQ × SenD+, ConQ × SenD−) was subsequently observed 
in a specially designed observation unit with infrared light. The results from the video observation 
were also separately examined, considering the genetic origin (VSH-selected or nonselected line) of 
the participating queens and drones. While the drone PER conditioning results were not significantly 
reflected in the VSH results of the respective offspring, the genetic origin of the participating queens/
drones was crucial for VSH manifestation.

The ectoparasitic mite Varroa destructor plays a dominant role in colony losses of the European honeybee Apis 
mellifera1–3. Currently, available treatments for Varroa-infested colonies such as pyrethroids and formic acid are 
not only labour intensive but also leave residues in honeybee products4,5. In addition, studies have shown an 
alarming tendency of increasing mite resistance against miticides6–8. While current treatment methods provide 
only temporary benefits, breeding colonies resistant to V. destructor is considered the only long-term solution9,10.

The antennae of bees play an essential role in perceiving their environment and communication within the 
hive11,12. Amid this process, both olfactory and tactile stimuli are perceived and processed. One of the natural 
defence mechanisms of honeybees that has proven effective against V. destructor is hygienic behaviour. Mecha-
nisms similar to the hygienic behaviour of honeybees have also been observed in other social insects13–15. In hon-
eybees, hygienic behaviour consists of detecting, uncapping, and removing damaged brood16–18. This particular 
behaviour directed towards V. destructor has received different names during the years19–23. Among others, the 
term "suppression of mite reproduction" (SMR) was created by Harbo and Harris15 to describe the lack of viable 
progeny of the mite observed in resistant colonies during their experiments. Subsequently, SMR was renamed 
Varroa-sensitive hygiene (VSH), as the observed suppression was found to be the result of removing reproductive 
mites and not of inhibiting reproduction of V. destructor in resistant colonies21,24,25.

Research has shown that selective breeding can improve the colonies’ performance regarding their hygienic 
behaviour against V. destructor9,21,26,27. VSH is assumed to be based on the differential expression of genes respon-
sible for the olfactory system and perception28–32. Mondet et al.33 presented evidence that all worker bees can 
detect Varroa-parasitisation-specific compounds, but only bees performing VSH can distinguish those from 
the healthy brood odour.

Signals from the damaged brood are present on the cell cap34. VSH bees use their olfaction to perceive these 
cues emitted by the infested pupae and thereby target the most compromised brood cells containing multiple 
mature females and higher numbers of mite progeny35,36. Through typical movements with the head, the worker 
bees can localize the damaged brood very accurately37. By uncapping and removing the diseased brood, VSH 
bees diminish the mite’s spread in the colony38. In some cases, instead of removing the parasitised brood, workers 
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open and recap parasitised brood cells multiple times. This behaviour disrupts mite reproduction without sac-
rificing the developing brood39,40.

Differences in the odour discrimination abilities of hygienic and nonhygienic colonies have also been 
observed under laboratory conditions41,42. Masterman et al.41 used differential conditioning with two odour 
combinations—geraniol/1-hexanal and odour of healthy pupae/odour of chalkbrood infested pupae—to examine 
the discrimination abilities of worker bees from hygienic and nonhygienic lines. While there was no significant 
difference between the two genetic lines when presented with flower odours, Masterman et al.41 observed dis-
crepancies in the perception of the brood odour. The hygienic line discriminated better between the two brood 
odours during the conditioning process than did the nonhygienic line. The authors suspected a genetically 
induced increased specific odour sensitivity to pathogens in the hygienic line, which would allow worker bees 
to remove sick individuals from the population more efficiently. Masterman et al.41 used conditioning with the 
so-called proboscis extension response (PER).

The PER is a biological reflex that occurs in different species of insects due to antennal stimulation43. Honey-
bees usually exhibit this behaviour while foraging or during trophallaxis. PER is easily replicated under labora-
tory conditions. Based on Pavlovian classical conditioning, conditioning using PER was first introduced by K. 
Takeda in 1961 and has been used as a foundation for many olfactory experiments ever since43–48. Among others, 
the PER conditioning is widely applied for observing the learning ability of individual honeybees46,48, the odour 
sensitivity connected to VSH33,42 and the adverse effects of pesticides on honeybee behaviour49,50. The subject 
learns to associate a conditioned stimulus (CS)—usually an odour—with an unconditioned stimulus (US) such 
as a sugar solution51. The odour presentation leads to the extension of the mouthparts (proboscis), as a reward 
is expected. Through varying concentrations of the odour substance, the individual animal’s odour sensitivity 
and perception threshold can be determined52–54.

While current breeding strategies concentrate on worker bees and their ability to recognize mite-infested cells, 
our focus lies in identifying the drone’s role as a genetic carrier for the manifestation of VSH. Because of drones’ 
impressive ability to detect the queen from a distance during mating flights using olfactory cues55, we speculated 
that the use of individually tested drones could be a very efficient approach to significantly improve the genetic 
progress in developing Varroa-resistance. Drones are haploid, and all their genetic material is completely passed 
on to the offspring without the Mendelian sampling effect. Having this in mind, we used PER conditioning to 
noninvasively evaluate the drone’s odour sensitivity towards an extract of Varroa-parasitised brood. Unlike other 
brood diseases, such as chalkbrood, which cause more extensive damage to the brood, the signals emitted from 
the Varroa-parasitised brood are much weaker31. The perception of the subtle stimulus caused by the parasitisa-
tion with V. destructor is therefore suitable for selecting for a better resistance not only against V. destructor but 
also against most brood diseases.

To observe whether brood odour sensitivity would be reflected in the VSH of the F1 generation, queens 
underwent a one-drone insemination, and the offspring of the tested drones (worker bees) was observed in a 
unit with infrared light for its ability to detect and remove artificially Varroa-infested brood.

Results
Drone conditioning of the two lines regarding different odour concentrations.  The selection of 
drones for artificial insemination was performed through two conditioning experiments using different concen-
trations of a Varroa-parasitised pupae extract—extract-low and extract-high. The solvent used for the creation 
of the extract was used as CS−. During the conditioning, the drones had to differentiate between the Varroa-
parasitised brood odour and the solvent control. The conditioning consisted of six trials (CS+, CS−, CS−, CS+, 
CS+, CS−) and was followed by an unrewarded presentation of both stimuli (CS+ and CS−). Drones from a line 
selected for VSH and drones from a nonselected line were conditioned with one of the two extracts (high and 
low).

Before the start of the main experiment, preliminary tests were conducted in order to determine which odour 
concentrations were suitable for our experimental design. An important criterion for the decision was to obtain 
a sufficient number of successfully conditioned drones for the sperm extraction. After a series of preliminary 
tests, the concentrations of extracts high and low were deemed suitable for the official experiment. A third of the 
drones (30%) managed to perceive extract-low. For extract-high, that number was ~ 60%.

During the main experiment drones conditioned with both extracts exhibited an increase in the behavioural 
reactions (proboscis extension) when the CS+ was paired with the reward. This was not the case with CS−. The 
responses to CS− remained almost constant (Figs. 1, 2).

The number of drones successfully conditioned to extract-low and extract-high was 39% and 46%, respectively. 
During the main experiment, the drones excluded for not responding to the sugar stimulus amounted to 22% 
for extract-low and 16% for extract-high.

To evaluate whether the origin of the drones participating in the conditioning played a role in the condi-
tioning outcome, the results of the two lines were analysed separately using a Generalized linear mixed model 
(GLMM). The drones from the nonselected line were set as reference group in the model and the stimulus effect 
(CS+ or CS−) was also included. The temperature during the conditioning and the drone’s mother were used as 
random factors in the model.

The GLMM model showed no statistically significant difference between the conditioning results of the VSH-
selected and nonselected line drones. These findings applied to both extract-low (GLMM, p = 0.36; CI − 0.80; 
0.29) and extract-high (GLMM, p = 0.14; CI − 0.14; 0.96). The stimulus effect proved to be significant (extract-
low: GLMM, p < 0.001; CI 2.34; 3.75 and extract-high: GLMM, p < 0.001; CI 2.32; 3.54), showing a conditioning 
success only for the rewarded stimulus CS+ but not for the unrewarded CS− (Figs. 1, 2). The temperature during 
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the conditioning and the drone’s mother had no significant effect on the conditioning results for either extract-
high or extract-low.

Mating design.  Depending on the conditioning results, the drones were divided into two groups—“Varroa-
parasitised-brood-odour sensitive” (SenD+) and “Varroa-parasitised-brood-odour insensitive” (SenD−). "Sensi-
tive" drones responded to the CS+ but not the CS− during the last two trials and during the unrewarded tests 
with extract-low—Trials: CS+, CS−, CS−, CS+, CS+, CS−; Unrewarded test: CS+, CS−. The "insensitive" drones 
responded to the US throughout the experiment with extract-high but showed no positive responses to the CS+ 
during the last two trials, and the unrewarded tests indicated a negative conditioning outcome.

Queens from both a VSH-selected line and a nonselected line were one-drone inseminated with sperm from 
the “sensitive” or “insensitive” drones. Four groups were created during the one-drone insemination depending 
on the queen’s affiliation with the VSH-selected line (SelQ) or nonselected line (ConQ)56 and the drone’s olfactory 
sensitivity towards the Varroa-parasitised-brood odour.

The groups were created without regards to the genetic origin of the drones. Because drones from both origins 
were tested during the experiment, each group consisted of queens inseminated with sperm from drones from 
both lines (Suppl. Table 1).

Figure 1.   Drone performance during PER-conditioning experiment with extract-low. Acquisition (a) and 
results from the unreinforced tests (b) are shown for both stimuli (CS+ and CS−) and origins (nonselected line, 
VSH-selected line). The curves display the behavioural reaction—proboscis extension—for the reinforced (CS+) 
and the non-reinforced (CS−) stimulus. The bars show the behavioural reaction during the unreinforced tests 
with both stimuli. A total of 223 drones were tested using extract-low. The stimulus effect (reinforced, non-
reinforced) was significant—(*) p < 0.001.

Figure 2.   Drone performance during PER-conditioning experiment with extract-high. Acquisition (a) and 
results from the unreinforced tests (b) are shown for both stimuli (CS+ and CS−) and origins (nonselected line, 
VSH-selected line). The curves display the behavioural reaction—proboscis extension—for the reinforced (CS+) 
and the non-reinforced (CS−) stimulus. The bars show the behavioural reaction during the unreinforced tests 
with both stimuli. A total of 202 drones were tested using extract-high. The stimulus effect (reinforced, non-
reinforced) was significant—(*) p < 0.001.
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Of the 87 Varroa-parasitised-brood-odour sensitive drones that qualified for insemination, only 26 were used 
for the insemination of queens since the rest did not have sperm. Of those 26, only 20 queens produced enough 
offspring to participate further in the experiment.

Of the 48 Varroa-parasitised-brood-odour insensitive drones, 22 were used for insemination. Of those, 20 
had enough offspring to participate in the experiment.

Video observation.  The offspring (worker bees) of the one-drone inseminated queens was marked with 
numbered plates on the dorsal thorax and its VSH towards an artificially Varroa mite-infested brood frame was 
recorded during six days in an infrared video observation unit. The video observation was performed three 
times (courses) with different bees during the experiment.

For the evaluation of the video recording two activities were of importance. Beginner bees were the first to 
open a mite infested cell. Helper bees enlarged the hole in the cell cap created by the beginner. If the cell was 
resealed, the next beginner and helper bees were noted.

VSH of groups considering drones’ olfactory sensitivity in PER conditioning experiment.  The new generation of 
worker bees was divided into four groups considering their mother’s origin (VSH-selected line SelQ or non-
selected line ConQ) and their father’s odour sensitivity—SenD− (Varroa-parasitised-brood-odour insensitive 
drone) or SenD+ (Varroa-parasitised-brood-odour sensitive drone). The data was analysed using a Generalised 
linear mixed model with group ConQ × SenD− as a reference. The course of observation and the drones’ origin 
(VSH-selected or nonselected line) were considered as factors in the analysis. The queen mother’s affiliation to 
one of the two lines (VSH-selected or nonselected line) was also included as a random factor in the model.

Group SelQ × SenD− exhibited the highest number of VSH-active bees in the two categories—beginner 
(7.8%) and helper (11.2%). Compared to the reference group, these results were statistically significant—beginner 
(GLMM, p < 0.001; CI 0.84; 1.64) and helper (GLMM, p < 0.001; CI 0.85; 1.54). The odds of SelQ × SenD− uncap-
ping a parasitised cell were 3.5 times higher than that of the reference group (GLMM, OR 3.46; CI 2.32; 5.15).

Group SelQ × SenD− was followed by group SelQ × SenD+ (beginner: 3.4%, helper: 6.7%) (Table 1). Group 
SelQ × SenD+ displayed slightly but not significantly higher uncapping activity than the reference group (GLMM, 
p = 0.225; CI − 0.16; 0.68). The odds of this group initiating the uncapping of a parasitised cell were similar to 
those of the reference group.

Group ConQ × SenD+ did not perform better than the reference group in any of the activities (see Suppl. 
Tables 2 and 3). In fact, the reference group exhibited more beginner (2.5%) and helper bees (3.7%) than the 
ConQ × SenD+ group (beginner: 1.4%, helper: 2.5%) (Fig. 3).

The origin of the queen mothers had significant effect on the beginner bees’ activity—GLMM, p < 0.001 (CI: 
0.62; 1.47). The origin of the father drone played a significant effect on the helper bees’ activity with VSH-selected 
line drones producing more active offspring—GLMM, p < 0.001; CI 0.39; 0.95.

The three observation courses also exhibited differences in the number of active beginner and helper bees. 
The worker bees scored significantly higher in their beginner actions in courses two (GLMM, p = 0.017; CI 0.09; 
0.97) and three (GLMM, p < 0.001; CI 0.58; 1.36) than the reference in course one. Course three also exhibited 
the highest results for helper activity (GLMM, p = 0.02; CI 0.05; 0.57).

VSH in groups considering the genetic origin.  In the second evaluation step, the genetic origin of the queens 
(SelQ, ConQ) and drones (SelD, ConD) was used to restructure the aforementioned groups. The colonies partici-
pating in the experiment were divided into four new groups (Table 2 and Suppl. Table 4)—ConQ × ConD, ConQ 
× SelD, SelQ × ConD, SelQ × SelD. Group ConQ × ConD was used as reference group.

When comparing the groups’ beginner and helper activities to those of the reference group ConQ × ConD, 
a significant increase from the nonselected to VSH-selected line was observed. The pairing of queens from the 
VSH-selected line (SelQ) with drones from the VSH-selected line (SelD) delivered the highest number of active 
beginner (5.5%) and helper bees (10.4%) (Fig. 4). The results were statistically higher than those of the reference 
group ConQ × ConD (beginner: GLMM, p < 0.001; CI 1.20; 2.21; and helper: GLMM, p < 0.001; CI 1.47; 2.53). 
The odds of group SelQ × SelD uncapping a parasitised cell were 5.5 times higher than those of the reference 
group (GLMM, OR = 5.5; CI 3.31; 9.09).

The second highest results were achieved when inseminating a queen from the VSH-selected line (SelQ) with 
sperm from drones coming from the nonselected line (ConD). Group SelQ × ConD showed the second highest 

Table 1.   Grouping considering queen’s origin and drone’s olfactory sensitivity. Summary of the number (N) 
of inseminated queens per group and their offspring (worker bees). Displayed are furthermore the number of 
beginner and helper bees in each group (N) and the corresponding equivalent in percent per group (%).

Group

Queens Offspring Beginner Helper

N N N % N %

SelQ × SenD+ 12 1382 47 3.4 92 6.7

SelQ × SenD− 9 850 66 7.8 95 11.2

ConQ × SenD+ 8 1273 18 1.4 32 2.5

ConQ × SenD− 11 1567 39 2.5 58 3.7
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activity (beginner: 4.7%, helper: 6.5%). This group performed significantly better than the reference group ConQ 
× ConD in both activity categories (beginner: GLMM, p = 0.005; CI 0.44; 1.15; and helper: GLMM, p < 0.001; CI 
0.81; 1.93). The results are listed in detail in Suppl. Tables 5 and 6. The odds of this group uncapping a parasitised 
cell were 2.7 times higher (GLMM, OR = 2.7; CI 1.55; 4.66) than those of the reference group.

Group ConQ × SelD exhibited significantly higher performance than the reference group in the helper activity 
(GLMM, p = 0.003; CI 0.53; 1.68). While the worker bees’ performance in the beginner category was higher than 
that of the reference group, the results were not significant (GLMM, p = 0.18; CI – 0.24; 1.01).

Figure 3.   Boxplot of beginner and helper bees in groups based on the drones’ olfactory sensitivity. Displayed 
are median, standard deviation and outliers for the beginner (a) and helper (b) categories for each group. The 
proportions of beginner (a) and helper (b) bees during the three courses of the video observation experiment 
are displayed for each group. One colony had 11.8% beginner bees (outlier—group SelQ × SenD−). One colony 
exhibited 13.8% helper bees (outlier—group ConQ × SenD−). The number of colonies tested per group was 
as follows: 11 (ConQ × SenD−), 8 (ConQ × SenD+), 9 (SelQ × SenD−) and 12 (SelQ × SenD+). *Proportion of 
beginner and helper bees at the level of 0.001 significantly higher than reference group ConQ × SenD− (grey 
colour).

Table 2.   Grouping considering genetic origin of queens and drones. Summary of the number (N) of 
inseminated queens per group and their offspring (worker bees). Displayed are furthermore the number of 
beginner and helper bees in each group (N) and the corresponding equivalent in percent per group (%).

Group

Queens Offspring Beginner Helper

N N N % N %

SelQ × SelD 11 1076 59 5.5 112 10.4

SelQ × ConD 10 1156 54 4.7 75 6.5

ConQ × SelD 9 1384 35 2.5 65 4.7

ConQ × ConD 9 1456 22 1.5 25 1.7

Figure 4.   Boxplot of beginner and helper bees in groups based on the genetic origin of the queens and drones. 
Displayed are median, standard deviation and outliers for the beginner (a) and helper (b) categories for each 
group. The proportion of beginner (a) and helper (b) bees during the three courses of the video observation 
experiment are displayed for each group. One colony exhibited 19.4% helper bees (outlier—group SelQ × 
ConD). The number of colonies tested per group was as follows: 9 (ConQ × ConD), 9 (ConQ × SelD), 10 (SelQ 
× ConD) and 11 (SelQ × SelD). *Proportion of beginner and helper bees at the level of 0.001 significantly higher 
than reference group ConQ × ConD (beige colour).
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The experimental course had no significant effect on the performance of the worker bees.

Control cells.  To check the specificity of the VSH-behaviour, each test course contained five control cells. 
These cells were opened and resealed without being infested with a mite to consider the possibility that the work-
ers only responded to the manipulation of the cell cap. In the first round of observation, none of the control cells 
was opened by the worker bees during the video observation. These cells were Varroa-free. During the second 
round, the brood from one cell was removed. The other four cells were Varroa-free. In the last round, one cell 
contained a single nonfertile mite; the other four were not parasitised.

Discussion
In the present study, 40 queens were each inseminated with sperm from one drone. A total of 5072 worker bees 
from the F1 generation were individually examined for their VSH. The aim of this multistage experiment was 
to assess the link between VSH and the drone’s olfactory sensitivity, observed through conditioning the drones 
to an extract of Varroa-parasitised brood.

To our knowledge, this is the first conditioning experiment with drones using an extract from Varroa-para-
sitised brood. Compared to Chakroborty et al.42 who used live parasitised pupae as a conditioning stimulus, the 
extracts used in this experiment were much less concentrated. For extract-low, our goal was to reach the threshold 
of perception for the Varroa-parasitised-brood extract and select the most sensitive drones. Extract-high had a 
concentration almost twice as high as extract-low and served the purpose of selecting for drones unable to per-
ceive the Varroa-parasitised-brood odour. Although the chosen experimental setup does not provide proof that 
drones could perceive the difference between healthy and parasitised brood, it shows their ability to perceive the 
complex odour bouquet of Varroa-parasitised brood at a very low concentration. Masterman et al.41 observed a 
difference in the discrimination abilities of hygienic and nonhygienic worker bees for brood odours. However, 
this does not seem to apply to drones. In contrast to worker bees, drone origin had no effect on their ability to 
perceive the CS+ during our experiment. Furthermore, the results from the PER conditioning experiment did 
not deliver any advantage to the F1 generation.

The drones’ olfactory sensitivity to extract-low was not represented in the VSH of the drones’ offspring. 
Moreover, the group with the highest results contained the sperm of drones that were insensitive to the Varroa-
parasitised-brood odour (SelQ × SenD−).

When mated with queens from the VSH-selected line, the Varroa-parasitised-brood-odour sensitive drones 
produced colonies with more active beginner and helper bees than did the reference group ConQ × SenD−. 
However, those results were significant only for the helper activity (GLMM, p < 0.001; CI 0.39; 0.95). Provided 
that the single drone’s perception ability is crucial for the manifestation of VSH in the next generation, we would 
have expected groups SelQ × SenD+ and ConQ × SenD+ to exhibit the highest activity in the observation. Con-
trary to our hypothesis, the SelQ × SenD− group produced the most active offspring in the three repetitions of 
the experiment. Furthermore, the ConQ × SenD+ group scored lower than the reference group, although the 
differences were not significant. Thus, our assumption that the negative conditioning outcome from the experi-
ments with extract-high would be a reliable exclusion criterion, was incorrect.

There may be various reasons behind the inability of the conditioning experiment to ensure higher VSH 
activity in the next generation. The individual drones’ sensitivity to sucrose at the time of the experiment might 
have been different. Pankiw et al.57 described handling stress as one of the factors responsible for differences 
in sucrose sensitivity. From our observations, drones proved to be much more sensitive to conditioning length 
and weather conditions than worker bees. We observed a greater unwillingness of drones to respond to the CS+ 
and the sugar solution on cold or rainy days, although the temperature in the laboratory was regulated. Our 
observations corroborate earlier research conducted on drones58,59. Benatar et al.58 deemed the usual protocols 
used on worker bees unfit for drones. During our preliminary tests, we also observed high drone mortality if 
drones were treated according to existing bee protocols. Vareschi59 described differences between worker bee and 
drone conditioning, stating that drones are more "nervous" than worker bees. We, too, observed such a tendency. 
Throughout the experiment, we ensured the same nursing conditions for all test subjects through the drones’ 
collective upbringing in one hive. We strived to ensure that the laboratory conditions were as uniform as pos-
sible. The number of trials was modified from eight to six to keep the drones as fit as possible for insemination. 
Nevertheless, the stress tolerance threshold of each individual differs60 and is a factor that is difficult to measure.

Another reason for the unsuccessful phenotyping of the drones through conditioning might be the strong sex 
dimorphism in the olfactory system of eusocial insects such as honeybees55. While queens and drones specialize 
in behavioural tasks such as mating, workers have a more diverse task range. Such specialization is also typical 
for other species, such as moths61,62, bark beetles63, cockroaches64, and ants65,66. The differences between both 
sexes encompass all stages of the olfactory pathway. The antennae of drones and workers exhibit sex-specific 
molecular specialization67,68. Drone antennae have a higher number of sensory cells (~ 339,000) than worker 
bees (~ 65,000)69. Of these, only one type—the so-called placoid sensilla—is present in large numbers in the 
drone’s antennae, while the other types are either diminished in numbers or completely missing55. Most of the 
receptors on the drone’s antennae are connected to the perception of the queen pheromone 9-ODA. Workers, on 
the other hand, exhibit receptors connected to pheromone communication, cuticular hydrocarbon perception 
and distinction of floral odours68.

Different epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, 
regulate the expression of receptor genes70. Kucharski et al.71 examined the expression of one odourant binding 
protein (OBP) gene—obp11—on the antennae of workers. OBP11 is also found in the sensilla basiconica of female 
ants72. It is involved in the accurate perception of cuticular hydrocarbons and pheromones, enabling workers to 
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interact with each other and fulfil their social duties. While obp11 is expressed in worker bee sensilla basiconica, 
it is silenced through methylation on drone antennae71.

According to Arnold et al.73, a well-pronounced sexual dimorphism in the glomeruli of the antennal lobe 
can be observed between worker bees and drones. While worker bees display only two structural types of 
glomeruli, drones exhibit a third glomerulus type, which is hypertrophied and responsible for the detection of 
queen pheromones74. Plant odours, on the other hand, are processed in the ordinary glomeruli of the antennal 
lobe74. While we proved that drones could perceive the extract used in our experiment, this ability is probably as 
unimportant to the drone’s mating success as the distinction between two floral odours. It is therefore possible 
that the drone’s ability to sense the odour of brood parasitised by V. destructor per se is of no advantage for the 
improvement of VSH. Moreover, the genes that are silenced in drones and cannot be measured by condition-
ing most likely play a larger role in the enhancement of VSH. If that is the case, odour conditioning would be 
unsuitable for detecting the best drones for breeding purposes.

The conditioning experiment might have also selected drones solely based on their better or worse learning 
abilities58. To rule out this possibility, we selected sensitive drones not only based on the results of the unrewarded 
tests but also on their whole performance during the experiment. Only drones that perceived the odour and 
distinguished it correctly from the CS- every time during the last trials and the unrewarded tests were chosen 
for insemination. While we acknowledge that the performed conditioning has some limitations for the achieve-
ment of our goal, we are optimistic regarding the potential of PER conditioning as a means for phenotyping 
drone olfactory sensitivity. Phenotyping in relation to an odour that is very easy to perceive for drones opens up 
the possibility of indirectly recognizing their general odour sensitivity. If used for breeding, this trait could lead 
to an increase in odour sensitivity in the drone’s female offspring towards Varroa-parasitised brood. Through 
an optimization of the exclusion criteria and the choice of another odour in a low concentration—for example 
9-ODA—it might be possible to better select for odour sensitivity in the drone and pass on this trait to the next 
generation.

Our experiments also provide new information on the inheritance of VSH. When the group results were ana-
lysed with the genetic origin in mind, the number of beginner and helper actions increased when drones and/or 
queens of the VSH-selected line were used. The origin of the queen proved to play an even larger role than that of 
the drone. This observation was in accord with the substantial effect of the queen’s origin (VSH-selected/nonse-
lected line) on the beginner activity when the results were analysed based on the PER conditioning experiment. 
The Sel queens produced offspring with a higher VSH activity when inseminated with sperm from Con drones 
than did Con queens inseminated with sperm from Sel drones. The odds of commencing a beginner activity 
compared to the reference group were as follows: 1.5-times higher for ConQ × SelD (OR; CI 0.79; 2.73), 2.7-times 
higher for SelQ × ConD (OR; CI 1.55; 4.66), and 5.5-times higher for SelQ × SelD (OR; CI 3.31; 9.09). The same 
tendency was observed for the helper activity: 3-times higher than the reference group for ConQ × SelD (OR; CI 
1.71; 5.38), 3.9-times higher for SelQ × ConD (OR; CI 2.24; 6.86) and 7.4-times higher for SelQ × SelD (OR; CI 
4.33; 12.53). These results lead us to believe that maternal effects play a significant role in the manifestation of 
VSH. Maternal effects shape behaviour and help offspring better adapt to changes in the environment. Maternal 
effects have been observed in many species75–78, including honeybees. Dloniak, French and Holekamp78 described 
rank-related maternal effects on offspring phenotype in spotted hyenas (Crocuta crocuta). Dominant females 
exhibited higher androgen concentrations in late pregnancy, which shaped the behaviour and social structure 
of the new generation. Storm and Lima79 described an "adaptive transgenerational maternal effect on offspring 
antipredator behaviour" in crickets. The offspring of mothers exposed to Hogna helluo spiders survived longer 
than the offspring of naive mothers. The forewarned crickets exhibited a behavioural change that manifested in 
a mobility reduction. Such behavioural changes have also been described in bees. Unger and Guzmán-Novoa80 
experimented with crossbreeding of highly hygienic Russian bee strains and less hygienic Ontario bee strains. The 
hybrid bees with a "hygienic mother" and "control father" exhibited higher results for individual bees uncapping 
cells as well as removing the brood. On the other hand, "control queens" and "hygienic drones" produced an F1 
generation with weaker hygienic behaviour. Spivak and Reuter81 assessed colonies with queens from a VSH-
selected line naturally mated with unselected drones. Compared to unselected colonies, the hygienic colonies 
displayed a reduced mite load. Our findings further strengthen these observations.

This research demonstrates drones’ ability to perceive low concentrations of brood-emitted odours. PER-
conditioning with the selection criteria used in this experimental setting proved unsuitable for the enhancement 
of VSH. While an additive genetic effect was observed when drones from the VSH-selected line were paired with 
queens from the VSH-selected line, there was a tendency for maternal effects to also play an important role. 
Since both sexes inherit the same genes from their mother, it would be a big step towards creating a breeding 
strategy against V. destructor if a worker bee’s odour sensitivity could be measured on the haploid father’s side. 
Workers’ odour sensitivity towards parasitised brood is the key factor in Varroa-resistance. Therefore, further 
research is necessary to identify odours and suitable test methods to phenotype drones’ odour sensitivity. If the 
heritability of such test results is sufficient, VSH can be improved more efficiently by the use of such individually 
tested drones in breeding.

Materials and methods
Extract preparation.  An extract from Varroa-parasitised brood was created to mimic the complex compo-
sition of the distress signals emitted by the parasitised brood. A total of 190 mites were collected from a Varroa-
infested colony at our institute. A brood frame with newly capped brood from a Varroa-free colony was chosen. 
The cell caps were cut open and lifted on one side using a razor blade. Only brood cells containing prepupae 
(9–10 days old) were infected. In each brood cell four mites were inserted using a moistened brush. The caps 
were subsequently resealed. The location of the parasitised cells was marked on translucent projector foil. The 
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brood frame was placed back into the hive for two hours for the small incisions on the cell caps to be sealed by 
the nursing bees. After that, the frame was kept in an incubator for four days.

After that time, the parasitised pupae were extracted from the brood cells without damage. During the prepa-
ration process, the pupae were stored in an incubator at 35 °C on damp filter paper. Isopropanol was used as the 
base for the extract. The pupae were washed in 4 ml isopropanol for 10 min. The supernatant was decanted in spe-
cial 2 ml glass vials with PVC lids and stored at − 20 °C. Two extracts with different concentrations were produced 
for this experiment—one extract obtained from 15 pupae (extract-low) and one from 25 pupae (extract-high).

Testing for odour sensitivity.  Having the process of localizing and uncapping parasitised brood cells in 
mind, we decided to present the odours in a manner that would allow direct contact with the stimulus and ensure 
that non-volatile chemicals such as oleic acid, the brood ester pheromone and tritriacontane are perceived36,82–84. 
We chose filter paper as a medium that was presented with the help of tweezers.

During the olfactory conditioning experiment, the solvent isopropanol—used during the preparation of the 
two extracts—was chosen as a CS−. As isopropanol was present in both the CS+ and the CS−, only drones that 
perceived the solved brood components sensed the difference between the two stimuli. If this were not the case, 
we expected that insensitive drones would show similar proboscis extension rates to both the CS+ and CS−.

Two PER conditioning experiments were carried out for the selection of drones that were to be used for 
artificial insemination:

1.	 Selecting Varroa-parasitised-brood-odour sensitive drones: 5 µl extract-low (see above) as the positive stimu-
lus CS+ and 5 µl isopropanol as the negative stimulus CS−.

2.	 Selecting Varroa-parasitised-brood-odour insensitive drones: 5 µl extract-high (see above) as the positive 
stimulus CS+ and 5 µl isopropanol as the negative stimulus CS−.

For the conditioning experiments, eight colonies were chosen, and 100 newly hatched drones per origin were 
marked on the dorsal thorax with a chip. The drones were placed in a nursing hive with an unmated queen. Four 
of the chosen colonies came from a line selected for VSH, and the other four were of a nonselected line. A queen 
excluder was used to prevent drones from leaving the hive. After the drones reached reproductive age (14 days), 
the conditioning experiments were started.

The drones were collected from the hive shortly before the start of each conditioning and strapped in small 
metal tubes with paraffin tape. The immobilized drones were kept in a rack with numbered slots. A 50% sugar 
solution was used for the experiments. Only the drones that readily stretched their proboscis during the pres-
entation of the sugar solution were used in the experiment.

The drones were presented with plain filter paper three times before the beginning of odour conditioning. 
This was done to prevent proboscis extension solely due to mechanical irritation from the filter paper. Each 
conditioning group consisted of eight drones. We aimed to equally represent every origin in these groups. Two 
conditioning experiments were conducted daily—one with each of the extracts. The chronological order of the 
tests (conditioning for sensitive drones, conditioning for insensitive drones) was changed each day to eliminate 
any bias due to the time of day.

During extensive preliminary experiments, we observed a decrease in drone reactions and difficulty collecting 
sperm after long-lasting conditioning experiments. Therefore, we modified the trial sequence of the conditioning 
described by Matsumoto et al.46 to shorten the experimental time.

The modified conditioning consisted of six trials with a specified order of stimuli presentation: CS+, CS−, 
CS−, CS+, CS+, CS−. The CS+ was enhanced by the administration of an unconditioned stimulus (US) in the 
form of a sugar solution. This was done with the help of a toothpick. The CS− was not reinforced. Each CS lasted 
6 s. During the CS+ trials, the US was applied during the last 3 s of CS+ presentation. The intertrial interval was 
5 min. No unpaired conditioning or exchange of the odours (isopropanol as CS+ and brood extract as CS−) was 
performed, as it was considered unnecessary for the achievement of our goals. The conditioning was used solely 
as a means of testing for odour perception and not to analyse learning behaviour.

The conditioning success was subsequently examined and recorded by a presentation of the two stimuli 
without the reward.

The following drones were considered for artificial insemination:

1.	 Varroa-parasitised-brood-odour sensitive drones displayed excellent odour perception of extract-low (15 
pupae extract) by responding to the CS+ but not the CS− during the last two trials and during the unrewarded 
tests. (Trials: CS+, CS−, CS−, CS+, CS +, CS−; Unrewarded test: CS+, CS−).

2.	 Varroa-parasitised-brood-odour insensitive drones responded to the US throughout the experiment with 
extract-high (25 pupae) but showed no positive responses to the CS+ during the last two trials, and the 
unrewarded tests indicated a negative conditioning outcome and the inability to perceive the extract of 
Varroa-parasitised pupae.

A total of 223 drones were tested with extract-low, while 202 drones were assessed using extract-high. Drones 
that stretched their proboscis at the first presentation of the CS+ were excluded as well as those that stopped 
responding to the stimulus during the experiment. The number of excluded drones amounted to 22% for extract-
low and 16% for extract-high.
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Artificial insemination.  The drones were brought back to the hive after each conditioning for recovery 
before the sperm were extracted. Sperm extraction took place immediately before insemination85.

The queens originated from lines selected for their hygienic behaviour towards V. destructor (VSH-selected 
line) and from institute-owned lines (nonselected line). The one-drone insemination was conducted using the 
mating scheme displayed in Fig. 5.

Of a total of 50 queens, 40 took part in the experiment. The rest did not produce enough eggs in time for the 
video observations or died. The inseminated queens were housed in mini nucleus hives (Segeberger®) with young 
bees. All mini nucleus hives were located on the institute terrain in close proximity to one another. The mini 
nucleus hives were fitted with two food frames each (honey and pollen) and two brood frames. The worker bees 
for the mini nucleus hives came from colonies kept in the institute, especially for the purpose of queen rearing. 
Each mini nucleus hive received approximately the same number of worker bees. The worker bees were sup-
plied with feed dough to ensure adequate food storage. The flight hole was narrowed to prevent possible robbing 
behaviour. Once all the inseminated queens had started laying eggs, each mini nucleus hive received an empty 
brood frame at the same time to ensure that all the bees for the infrared video observation were of the same age.

After the young bees hatched, they were collected daily within a week and marked individually with a num-
bered plate on the dorsal thorax. Afterwards, they were placed in the video surveillance unit described by 
Bienefeld et al.37. A Varroa-free brood frame with freshly capped brood was taken from an institute-owned 
hive, and 60 brood cells were infected with one mite each. Five control cells were opened and resealed without 
being artificially infested. The brood frame was placed in the observation unit, and the recording was started.

For six days, bee activity was monitored using an infrared camera. The video recording analysis was carried 
out manually with the help of a software program—Beehaviour—specially created for this purpose (Batz et al., 
submitted).

Statistical analysis.  Analysis of PER conditioning experiment.  The drones were split into two groups for 
the statistical analysis, considering their origin (VSH-selected line/nonselected line). Acquisition curves were 
plotted in addition to the analysis.

The outcome (0—unsuccessful, 1—successful) of the unrewarded tests was examined using a binomial gen-
eralized linear mixed model (GLMM) with a logit function in SPSS V. 25. The alpha-level was set at 0.05. The 
drones coming from the control line were set as a reference group by the model. The stimulus effect (reinforced, 

Figure 5.   Mating scheme used during one-drone insemination. Drones from each of the two lines—VSH-
selected line (SelD, yellow colour) and nonselected line (ConD, blue colour)—were tested for their odour 
sensitivity towards the extract of Varroa-parasitised brood. Drones, which perceived the Varroa-parasitised-
brood-odour were referred to as “Varroa-parasitised-brood-odour sensitive" (SenD+) and marked with 
a triangle. Drones, that did not perceive the odour were referred to as “Varroa-parasitised-brood-odour 
insensitive” (SenD−) and marked with a circle. The tested drones were subsequently used for the insemination 
of queens from both VSH-selected (SelQ, yellow colour) and nonselected line (ConQ, blue colour). The offspring 
workers were placed into four groups considering the queen’s genetic origin and the drone’s olfactory sensitivity 
towards the Varroa-parasitised-brood extract. The workers were subsequently assessed for their VSH in a video 
observation test.
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non-reinforced) was also considered. The temperature during the experiment and the mother of each drone 
were both set as random factors.

Video‑observation analysis.  While observing the VSH recordings of the drones’ offspring, two activities were 
used to evaluate the VSH of the new generation. The beginner activity was defined by the first worker opening 
an infested cell and the helper activity—the workers that enlarged the hole after the beginner had created it. If 
the cell caps were opened and resealed multiple times, the new beginner and helper bees were written down. One 
course of video observation was completed in year one. In the second year, two courses of video observations 
were performed. A total of 5072 bees were recorded during the experiment: 1694 in course one, 1696 in course 
two and 1682 in course three. More detailed information on the composition of each group and the number of 
worker bees is described in Suppl. Tables 7 and 8.

VSH of groups considering the conditioning outcome.  The video recording results were analysed through a bino-
mial GLMM with a logit function in SPSS V.25.

Group ConQ × SenD− was used as a reference. The courses of observation—one, two or three—and the drone’s 
origin (VSH-selected line, nonselected line) were considered fixed effects. By including the drone’s origin in the 
regression, the model provided more accurate insight into the PER conditioning and its explanatory power for 
the results. Course one and nonselected lines were chosen as reference values. The individual effect of each queen 
mother on the VSH of her offspring was set as a random factor in the regression model.

VSH of groups considering the parental origin.  In a second step, the video observation results were analysed 
with consideration of the parental origin of queens and drones and ignoring the PER conditioning results. The 
statistical analysis was conducted using a binomial GLMM with a logit function. Group ConQ × ConD was set 
as the reference group. The course of observation was again considered a fixed effect. Course one was set as a 
reference.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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