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Abstract

Background: The Gossypium hirsutum homoeologous chromosome 12 encodes important genes that contribute to
fiber fuzz, lethality, gland development and male sterility. In this study a physical map of the cotton TM-1
chromosome 12 was constructed. A number of large-insert cotton genome libraries are available, and
genome-wide physical mapping using large insert segments combined with bacterial cloning is a thriving area of
genome research. However, sequencing of the cotton genome is difficult due to sequence repeats and
homoeologous regions. In order to effectively distinguish the homologous segments, a new method for adjusting
the parameters of the FPC software was applied for contig map construction.

Results: All available markers on chromosomes A12 and D12 were used to screen the TM-1 BAC library by PCR. A

total of 775 clones (387 for A12, 388 for D12) were obtained using Hind Ill fingerprinting and used for construction
of the contig map. Seven pairs of SSR markers located on A12 and D12 were chosen for contig analysis. Following
optimization of the tolerance (10) and cutoff (1e-12) parameters, combining all clones from A12 and D12 produced
two separate contigs.

Conclusions: The BAC contig map of chromosomes A12 and D12 was constructed and FPC software parameters

research on cotton.

were optimized for analysis. The resulting approach is a powerful platform for genome-wide and evolutionary
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Background

BACs (bacterial artificial chromosomes) are important
resources for map-based cloning and large-scale sequen-
cing of complex genomes due to their ability to stably
maintain large DNA fragments that facilitate easy ma-
nipulation [1, 2]. BAC clones can be arranged into con-
tigs which are contiguous, gap-free overlapping clones
[3, 4] which can be used to identify the minimum tilling
path fingerprinted contigs required for further gene
cloning. BAC libraries have been constructed from vari-
ous different cotton species, including Maxxa [5],
Suyuan7235 [6], Zhongmiansuo 12 [7], 0-613-2R [8], and
Pima 90-53 [9]. These libraries can be used to construct
a high quality physical map of the cotton genome.
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Cotton is the source of the world most important
plant-derived fiber, and is also an important oilseed crop,
as well as a model species for the study of plant poly-
ploidy, cellulose biosynthesis and cell wall biogenesis
[10]. The genus Gossypium consists of over 50 species,
including 40—45 diploids (2n =2 x =26) and five allote-
traploids (2n =4 x =52) [11] that were formed from sep-
arate A and D genomes through polyploidization 1-2
million years ago [12-14]. The tetraploid cotton genome
contains 13 pairs of homologous chromosomes [15-17]
which have been incorporated into specific BAC clones,
and a new chromosome nomenclature for tetraploid cot-
ton has been proposed [18]. A12 and D12 chromosomes
in allotetraploid cotton are among the most important
pairs of homoeologous chromosomes, and include the
alleles (N;,n,) at naked seeds [19], Le;, Le, at hybrid le-
thality [20, 21], gl,, gl3 at gossypol glanding, ne;ne, at
mecariless, Bw;, Bw, at withering bract, msg,msy at male
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sterile [22-26]. For map-based cloning and whole-
genome sequencing of tetraploid cotton, a BAC library for
G. hirsutum acc. TM-1 has been constructed [8, 27, 28].
Furthermore, a high-density gene-rich genetic map con-
taining 2247 loci and covering 3540.4-cM, with an average
inter-marker distance of 1.58-cM, has been constructed
from the BC; (TM-1 x Hai7124) cross [29-34].

In this study, to facilitate construction of BAC contig
maps for the G. hirsutum L. Acc. TM-1 homoeologous
chromosomes A12 and D12, the molecular markers
identified in the aforementioned genetic map were used
to screen the BAC library. BACs containing genetic
markers that produced characteristic fingerprints when
digested with the restriction enzyme Hind III were used
to build contigs using the FPC software. A BAC
fingerprint-based contig map of both Al12 and D12 was
successfully constructed by adjusting the tolerance and
cutoff parameters in FPC. This approach will facilitate
future map-based cloning of important cotton genes and
expand our understanding of the relationships between
the genetic and physical maps of A12 and D12.

Results

Identifying BAC clones containing genes from
chromosomes A12 and D12

BAC library screening was based on the published link-
age map [33], and a total of 101 and 124 SSR markers
from tetraploid cotton homoeologous chromosomes
A12 and D12, respectively, were selected for screening
the TM-1 library by a PCR-based method [27]. The PCR
products were abundant and well-resolved, and positive
BAC clones were identified by the SSR marker. In total,
775 positive BAC clones were screened out using the
SSR markers, and each marker identified and average of
five clones.

A12 and D12 form a pair of homoeologous chromo-
somes, and previous research confirmed the presence of
large homologous segments shared between them. BACs
can usually be distinguished using SSR markers based
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on polymorphic loci. For example, the SSR marker
dPL0240 produced two fragments in G. barbadense cv.
Hai7124 and two in G. hirsutum acc. TM-1 (Fig. 1). One
was a polymorphic locus, dPL0240_160 in Hai7124 and
dPL0240_155 in TM-1, which mapped to chromosome
12. Eight BACs amplified using dPL0240 produced iden-
tical bands in TM-1. These BACs were mapped to Al2,
again based on the polymorphic marker. The other frag-
ment generated by the SSR marker consisted of two
polymorphic alleles, as observed with the SSR marker
NAU2251 [27]. One polymorphic allele identified as
NAU2251_165 in Hai7124 and NAU2251_170 in TM-1
was mapped to A12, while the other was mapped to D12
by NAU2251_155 in Hai7124 and NAU2251_160 in
TM-1. Two types of BAC clones were identified by the
SSR marker NAU2251. According to the polymorphic
allele, BAC clone z84A22 (Fig. 2a, lane 3) contained the
polymorphic locus NAU2251_165, and 259 L20 (Fig. 2a,
lane 4) contained the polymorphic locus NAU2251_155
between TM-1 and Hai7124 identified using SSR marker
NAU2251. BAC clones z84A22 and 259 L20 were there-
fore mapped to A12 and D12. Probe FISHing confirmed
that BAC clones z84A22 and 259 120 mapped to a pair
of chromosomes (Fig. 2b). Additionally, the SSR marker
produced two alleles in another case, one at a poly-
morphic locus, and the other at a monomorphic locus.
The SSR marker NAU3441 produced two PCR frag-
ments in both G. barbadense cv. Hai7124 and G. hirsu-
tum acc. TM-1 (Fig. 3), one of which was co-dominant
and polymorphic (NAU3441_180 in Hai7124 and
NAU3441_170 in TM-1) and mapped to 12D [33]. The
other NAU3441 160 fragment was monomorphic be-
tween Hai7124 and TM-1 and could not be mapped as
it is located on its homoeologous chromosome. BAC-
FISHing confirmed that one locus originated from A12
or D12 and the other locus originated from its homoeo-
logous chromosome [15]. The corresponding BACs were
therefore distinguished using the SSR markers as de-
scribed above. In total, 775 BACs were identified, with
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Fig. 1 Identification of BAC library with dPL0240. The dPL0240-based PCR product of parents and positive BAC clones is denoted by the single
arrow. The arrow denotes a positive BAC clone that is screened from TM-1 BAC library. The positive BAC clone has the same band as the
parent(TM-1); M:Marker,H:Hai7124,T:TM-1,1-8: Positive BAC clone
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Fig. 2 Identification of screening BAC library with NAU2251 and the loacaction of postive BAC clone with BAC-FISH. a Identification of the BAC
clone z84A22 (lane 3) containing the polymorphic locus of NAU2251-165, and 259 L20 (lane 4) containing the polymorphic locus of
NAU2251-155 between TM-1 and Hai7124 by SSR marker NAU2251. Lanes 1-4 were Hai7124, TM-1, zZ84A22, 259 L20 respectively. b FISH image
showed that the signals of the polymorphic allele BAC 259 L20 (green signals, arrows) and the signals of polymorphic allele BAC z84A22

(red signals, arrows) were located on A12 and D12 homoeologous chromosomes. M: Marker, H: Hai7124, T: TM-1,1: Z84A22,2: 259 .20

387 from chromosome A12 and 388 from chromosome fingerprinting method. Bands ranged in size from

D12. These BAC sets were used for fingerprinting. 1000 bp to 21,226 bp, and ranged from 10-20 pieces.
A representative DNA fingerprinting gel is shown
Adjustment of FPC parameters and BAC fingerprinting (Fig. 4). Bands were imaged using the Image3.10b

BACs were digested with HindIll, and all 775 clones software and saved as a bands file. A total of 387
were fingerprinted using an agarose gel-based restriction  clones from Al12 produced 5372 fingerprint bands
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Fig. 3 Positive BAC clones of NAU3441-180. M: Marker; H: Hai 7124; T: TM-1; 1: 19 N16; 2: 52A5; 3: 145E5; 4: 273 J12; 5: 282G8; 6: 318I15; 7:

367 M17; 8: 30P23; 9: 34G22; 10: 91 L21; 11: 363Q13; 12:367 M15; 13: 30 N23; 14: 30023; 15: 34 J24; 16: 91B21. Individuals can be clearly defined as
carrying the alleles of either parent1 (Hai7124) or parent2 (TM-1). The BAC clones that have the band NAU3441-180 the same as the parent 2
(TM-1) include 4 clones (lane2,6,12,13) and the another clones that have the band NAU3441-160 also the same as the parent2 (TM-1) include

12 clones(lane1,3-5,7-11,14-16)
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Fig. 4 Fingerprints of five BAC clones digested with Hindlll enzyme. M: Marker, 1Kb lambda ladder DNA marker + lambda DNA/Hind Il + EcoR 1.
1-5 indicated the BAC clone. BAC DNA of five positive clones were digested with Hindlll enzyme. The reaction is electrophoresed on a 4 %
metaphore agarose gel and stained with ethidium bromide. The fragments of BAC clones indicate sequence specific to the BAC clone. Sizes of

and 388 clones from D12 produced 4843 fingerprint
bands.

Tolerance and cutoff values are two important param-
eters in the FPC software, and it is important to set
these parameters appropriately for construction of a
physical map to avoid false positives. To achieve the best
contig map, BACs which had seven pairs of SSR markers
located on A12 and D12 were chosen for contig analysis
(Table 1). Firstly, the default values of tolerance (7) and
cutoff (1e-10) were tested, and all BAC clones from A12
and D12 identified as described above were combined to
construct contigs. Two types of contig were generated
(Fig. 5). The first type resulted from four group markers
(NAU2356, NAU3441, NAU2715, NAU1237) and con-
sisted of BAC clones from A12 and D12 (Fig. 5, solid
line), which were combined to produce a single contig.
The second type resulted from three group markers

(NAU2251, NAU3293 and NAU1151) and consisted of
BAC clones from A12 and D12 (Fig. 5, dotted line).
These contigs were constructed separately for A12 and
D12. It was clear that construction of contig maps for
BACs from A12 and D12 separately to distinguish be-
tween the A and D subgenomes would be difficult with
the default tolerance and cutoff values. We therefore ad-
justed these parameters in FPCV9.3 to generate a higher
quality contig map for the analysis of enzyme finger-
printing. The tolerance value was set between 5 and 10,
and the cutoff value was set between le-01 and le-12.

All BAC clones identified by NAU1151 produced two
types of contigs. With a tolerance value between 5 and 10
and a cutoff value of 1e-09, the BACs from A12 and D12
combined to produce a single contig (Fig. 6a). However,
when the cutoff value was increased from le-10 to le-12,
BAC clones from A12 and D12 produce two contigs.
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Table 1 BACs identified by seven pairs of SSR markers

Marker Molecular  Clone ID
weight

NAU2715(A12) 180 283116,10G14,53C7
NAU2715(D12) 250 1 81G1, 255 F14, 79G11, 89P7
NAU3441(A12) 230 30 N23,367 M15,318I15
NAU3441(D12) 180 367 M17,91 L21,19 N16,34 J24,34G22,

273 )12, 282G8,91B21, 363Q13
NAUT151(A12) 160 194H15, 031 K3
NAU1151(D12) 170 29B22, 08119
NAU3293(A12) 180 96 K17
NAU3293(D12) 150 225C9, 206 L15, 254 15,192 F22
NAU2251(A12) 165 64E13, 79A4, z84A22
NAU2251(D12) 155 259 120
NAU1237(A12) 255 051 L3, 82D24, 081 K8
NAU1237(D12) 150 215023, 266E15, 45H11, 115D23
NAU2356(A12) 150 14P1, 22Q13, 69 K1, 86E19, 269819, 271D5,

294Q20, 30121, 68015, 084P1, 74E18, 74 F9,

96120

NAU2356(D12) 170 075A11,321 J20,102 N2
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For NAU2715, with a tolerance value of 5 and a cutoff
value of le-12, combining all BAC clones produced two
contigs from A12 and D12, respectively (Fig. 6b). How-
ever when the tolerance value was increased to 7 and
the cutoff value was le-12, BAC clones produced two
contigs from A12 and D12, but BAC 81G1 appeared in
D12 (Fig. 6b). Increasing the tolerance value to 10 and
produced a one single contig from D12 (Fig. 6b).

Combining all BAC clones from NAU1237 produced
two contigs with a tolerance value of 7 and a cutoff
value of le-10, which could not distinguish contigs be-
tween chromosomes A12 and D12 (Fig. 6¢). Two contigs
for A12 and D12 were produced if the tolerance value
was 5 and the cutoff value was le-11 (Fig. 6¢). When the
cutoff value was le-11 and the tolerance value was in-
creased from 6 to 8, or when the tolerance value was 5
and the cutoff value was increased to le-12, this also
produced separate contigs from A12 and D12, but BAC
045H11 disappeared from chromosome D12. When the
tolerance value was 7 or 8 and the cutoff value was
increased to le-12, the BAC clones generated separate
contigs from A12 and D12, but BAC clone 266E15 dis-
appeared from chromosome D12.

Combining all BAC clones from NAU2356 produced a
single contig when the tolerance value was 7 and the
cutoff value was 1le-10, which could not distinguish be-
tween A12 and D12 (Fig. 6d). With a tolerance value of
7 and a cutoff value of le-12, all BAC clones from

74E18* 34J24%# 255F14#
075AITE 3T8115% 12219% e
68015* 91B21# 191Q13# EEEEE—
321J20# 2731124 53C7*
271D5* 30P23# SIGIE
269B19* _145ES# —S8316F 045*H11# :
_30I21*% — O1L21% _— 081K8*(051L3*
— L4P1* NAU3441 NAU2715
294Q20* (22Q13%*)
NAU1237
NAU2356 \
Tolerance=7
259L.20# Cutoff=1e-10
—_ 784 A22% smmmm TN *
TOALE 08119#(29B22#) 031K3
NAU2251 225C9% NAU1151
254L5# 96K17*
NAU3293
Fig. 5 Construction of the contigs by BAC clones identified by seven SSR markers. “*"represent that the BAC clones from A12 chromosome.
“#'represent that the BAC clones from D12 chromosome. Two types of contig are displayed under the parameter Tolerance =7 and cutoff =1e-10
with solid line and dotted line. The BAC clones of seven primers can not build two contigs from A12 and D12 chromosome respectively in this
parameter setting. All BAC clones built one contig that was displayed by solid line under the parameter in four primers such as NAU2356,
NAU3441, NAU2715, NAU1237. All BAC clones constructed two contigs from A12 and D12 chromosome respectively that was displayed by
dotted line under the parameter in three primers such as NAU2251, NAU3293, NAU1151
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Fig. 6 Contigs of BAC clones by six primers were built in the different parameters. Contigs were constructed by FPC software that was displayed
in the top. The products of every primer were separated by PAGE that was shown in the blow (for details, see text). a Structure of the contigs and the
amplification of BAC clones by PCR in primer NAU1151. Two types of contigs were constructed in different parameters b Construction of contig and
PCR amplification of BAC clones in primer NAU2715. There are three types of contigs in different parameters. ¢ Construction of contig and
PCR amplification of BAC clones in primer NAU1237. There are three types of contigs in different parameters. d Construction of contig and
PCR amplification of BAC clones in primer NAU2356. There are three types of contigs in different parameters. e Construction of contig and
PCR amplification of BAC clones in primer NAU3441. There are two types of contigs in different parameters. f Construction of contig and PCR
amplification of BAC clones in primer NAU3293. There are two types of contigs in different parameters

F
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NAU2356 produced two separate contigs for A12 and
D12 (Fig. 6d). Increasing the tolerance value from 8 and
9 and setting the cutoff value at le-12 produced the
contig from A12 and D12, respectively, but BAC 68015
disappeared from A12 (Fig. 6d). Increasing the tolerance
value to 10 and setting the cutoff value at le-12 pro-
duced the contig from A12 and D12, respectively, but
BAC 68015 and 075A11 disappeared from contigs
(Fig. 6d).

Combining BAC clones from NAU3441 produced one
contig when the parameters were set at the lower end of
the range (Fig. 6e). However if the tolerance value was
increased to 10 and the cutoff value was set at le-11, a
single contig was generated (Fig. 6e), whereas with a tol-
erance value of 10 and a cutoff value of le-12, two sep-
arate contigs for A12 and D12 resulted (Fig. 6e).

Combining BAC clones from NAU3293 produced a
single contig with a tolerance value of 7 and a cutoff
value of 1e-01 to 1e-09 (Fig. 6f). However, increasing the
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cutoff value from le-10 to le-12 produced two contigs
from A12 and D12, respectively (Fig. 6f). A tolerance
value of 10 and a cutoff value of le-12 were therefore
optimal.

Fingerprints of all 755 BACs were assembled using the
optimized parameters (tolerance value 10, cutoff value
le-12). A total of 77 contigs from A12 were generated,
ranging in size from 53 kb to 155 kb, whereas 82 indi-
vidual contigs were produced for D12 ranging from
61 kb to 139 kb (Fig. 7).

Discussion

Using BACs as a tool for constructing contig maps
Various strategies have been developed for constructing
physical maps, and BAC clones are especially important
for both map-based cloning and sequencing of large
complex genomes containing abundant repetitive se-
quences and highly homologous segments. How to ef-
fectively distinguish between the homologous segments
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Fig. 7 The BAC contig maps of the A12 and D12 homoeologous chromosomes. All of the BAC clones from A12 and D12 choromosomes were
constructed one contig respectively. The contig of A12 chromosome was in the left and the contig of D12 chromosome in the right. The BAC
clone in the contig map was displayed with the number in the library. The contig of every marker in the genetic map was correspond to the
BAC clones obviously. There were no contig constructed because of absence of positive BAC clones in some markers. The contig map was clearly
shown by the markers that obtained the positive BAC clones from library
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of the tetraploid cotton genome, verifying the quality of
the physical map is crucial. To avoid interference from
sequence similarity, BACs identified by SSR markers
based on the linkage map of 12A and 12D were used for
assembly in this study. Full use was made of SSR
markers from high density genetic mapping to screen
the BAC library and to distinguish between the A and D
subgenomes. BAC clones obtained by PCR were located
to A12 or D12 homoeologous chromosomes according
to the published linkage map [27]. Although BAC library
screening was time consuming initially, the resulting
BAC contigs were accurate and this simplified the ana-
lysis later. The first integrated cytogenetic and linkage
maps of homoeologous chromosomes 12A and 12D in-
dicate that the orders of most genetic markers tested are
colinear with corresponding BAC FISH signals. Al-
though the orders and positions of polymorphic and
monomorphic BACs on chromosome 12A and 12D were
concordant with marker positions in the corresponding
linkage map, the detailed chromosomal view of genome
size variation between homoeologous chromosomes 12A
and 12D was provided that show 1.3-fold size variation
[35]. Furthermore, upon integrating with molecular
markers, the BAC contig map of A12 and D12 will facili-
tate map-based cloning of QTLs or genes associated
with important agronomic traits and marker-assisted se-
lection, as well as comparative studies for analysis of the
evolution of cotton genomes using sequencing of hom-
ologous segments.

Improving contig map quality

The quality of the BAC library DNA is important for
sharp, clear fingerprinting maps, and several steps in the
preparation of BAC DNA are critical to the success of
the process. Due to the low copy number, at least 3 ml
of cell culture should be used for DNA preparation, and
both cell growth and BAC production should be ad-
equate. The cell pellet should be thoroughly suspended
and cell lysis should proceed for less than 5 min. For
construction of contigs, the tolerance and cutoff param-
eters were highly influential. We tested cutoff values
from le-01 to le-12 and tolerance values from 5 to 10,
which span the range used widely for agarose-based
enzyme fingerprinting. A tolerance value of between 3
and 5 and a cutoff value between 1e-30 and le-50 are
generally used in HICF fingerprint analysis [36]. A toler-
ance value of 4 and a cutoff value from 1e-20 to le-04
were selected for the BIBAC contig map, which con-
tained at least five shared clones [37], and a tolerance
value of 8 and a cutoff value of 1e-10 were used in the
Gossypium raimondii D-genome physical map [38]. In
this study, we adjusted the parameters in the FPCV9.3
software to improve the quality of the contig map for
analysis by enzyme fingerprinting using homologous
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BACs. A tolerance value of 10 and a cutoff value of le-
12 were found to be the optimal parameters.

Conclusions

In this study, we successfully constructed a BAC contig
map of the homoeologous chromosome 12 of G. hirsu-
tum TM-1. The BAC-based method was an effective
strategy for construction of the cotton physical map,
but further work is necessary to improve the contig
map. Even so, this work introduces a novel method for
combined analysis of homoeologous chromosomes, and
could provide an important framework for sequencing
of the cotton genome. This work could also facilitate
research into the evolution of the cotton genome
through sequencing of homologous segments and com-
parison of genome sequences with BAC sequences.
This could also generate information on the genome
formation and evolutionary processes involved in cot-
ton polyploidization.

Methods

Source BAC library and BAC library screening

A BAC library constructed from G. hirsutum cv. Texas
Marker-1 (TM-1) was used in this study [27]. The li-
brary was constructed from cotton DNA partially
digested with Hind III and incorporated into the BAC
vector pIndigBAC-5. The library consists of 147,456
clones with an average insert size of 122.8 kb that
ranges from 97 to 240 kb. Approximately 96 % of the
clones contain inserts over 100 kb, therefore this library
represents 7.4 haploid genome equivalents in theory,
based on an AD genome size of 2425 Mb. Clones were
stored in 384-well plates and arrayed into multiplex
pools for rapid and reliable library screening. BAC
screening was carried using four-round PCR using SSR
markers selected from the A12 and D12 high-density
genetic maps derived from populations of the tetraploid
Gossypium species.

BAC-DNA isolation and fingerprinting

BAC clones were inoculated into 96-well 2.2 mL plates,
and each well contained 1.5 mL of 2xYT medium
(12.5 pg/mL CM). Plates were covered with sealing film
and incubated at 37 °C for 20-24 h on a shaker. BAC
DNA was isolated using standard alkaline lysis [39],
digested with HindIIl, and subjected to 1 % agarose gel
electrophoresis at 40 V for 16 h. Restriction fragment
identification was performed using IMAGE 3.10b software
[40] with extensive manual editing. Fragments ranging
from 53 to 155 bases were used for contig assembly.
Bands derived from the BAC vector (pIndigBAC-5) and
BACs containing less than five bands were manually de-
leted from the image files.
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BAC contigs assembly

The computer program FPC V9.3 (http://www.agcol.ari-
zona.edu/software/fpc/) was used to assemble the physical
map contigs from the BAC fingerprints. A series of tests
were conducted in which fingerprints of a set of overlap-
ping clones were compared using different tolerance
values (from 5 to 10) and cutoff values (from le-01 to le-
12). Based on these results, a tolerance of 10 and a
primary cutoff of 1e-12 were selected for contig assembly.
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