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Abstract: Localization is one of the essential process in robotics, as it plays an important role in au-
tonomous navigation, simultaneous localization, and mapping for mobile robots. As robots perform
large-scale and long-term operations, identifying the same locations in a changing environment has
become an important problem. In this paper, we describe a robust visual localization system under
severe appearance changes. First, a robust feature extraction method based on a deep variational au-
toencoder is described to calculate the similarity between images. Then, a global sequence alignment
is proposed to find the actual trajectory of the robot. To align sequences, local fragments are detected
from the similarity matrix and connected using a rectangle chaining algorithm considering the robot’s
motion constraint. Since the chained fragments provide reliable clues to find the global path, false
matches on featureless structures or partial failures during the alignment could be recovered and
perform accurate robot localization in changing environments. The presented experimental results
demonstrated the benefits of the proposed method, which outperformed existing algorithms in
long-term conditions.

Keywords: robotics; localization; sequence alignment; place recognition; deep learning

1. Introduction

Visual place recognition that identifies the same locations between a query and
database image sequence is a prerequisite for various robotic applications such as navi-
gation and simultaneous localization and mapping (SLAM) [1–5]. Recent studies have
focused on place recognition in changing environments, as autonomous robots should
perform large-scale and long-term operations. One of the major challenges for the vision-
based place recognition is appearance changes caused by variations in weather conditions,
time of day, or seasons.

To overcome the appearance change problem, visual place recognition systems can
usually be divided into two stages [2,6]. The first stage is a visual front-end that extracts
features from the image data to compute similarities between observations, and the second
stage is a stochastic back-end that determines the most likely path sequence of a robot by
comparing the incoming front-end data. This paper presents a robust feature extraction
method using a deep architecture in first part, and a novel sequence alignment algorithm
to perform precise localization in second part.

Global descriptors that describe the whole image have been used since they have
shown more robust performances than local features in changing conditions [7,8]. Recently,
learning-based approaches were widely applied to place recognition under substantial
appearance changes, and various deep learning frameworks have been employed to extract
features from images [9–13]. In this paper, we present a feature extraction method using a
variational autoencoder (VAE) [14], one of the powerful deep generative models for feature
extraction. Since this model learns to compress the input image in a probabilistic way, the
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extracted codes contain useful information and can be used to build a similarity matrix
that represents similarity between images.

After generating the similarity matrix, the most likely path sequence of the robot
should be estimated from the matrix to perform precise localization. These sequence-based
approaches achieved significant improvements in place recognition by attempting to match
sequences rather than single images [15,16]. However, they have a common limitation in
that if an incorrect local match occurs, the correct global alignment cannot be recovered.
To overcome the problem, we propose glocal sequence alignment, a combination of the
global and local alignment methods, which arranges the sequences of features to perform
precise localization.

The overall procedure of the proposed algorithm is shown in Figure 1. Given a
similarity matrix by comparing the deep learning features, local fragments that have
local maximum scores are detected from the matrix. Then, reliable ones are found by the
rectangle chaining algorithm under the motion constraint of the mobile robot. Finally,
the most likely path of the robot is determined using the global aligner. As the chained
fragments provide reliable clues to find the global path, false matching on featureless
structures or partial failures during the alignment could be recovered.
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Figure 1. The procedure of the proposed approach. First, local fragments are detected from the
similarity matrix using the local alignment method (Section 3.2). Second, the subset of the local
alignments is found by the rectangle chaining algorithm that maximizes the total similarity under the
motion constraint of the mobile robot (Section 3.3). Then, the path between anchors are calculated
using the local alignment method. Finally, the most likely path of the robot is determined using the
global aligner (Section 3.4).
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The present research paper is organized as follows. Section 2 explains related work on
place recognition in changing environments. The proposed methodology is explained in
Section 3. The feature extraction method from the VAE and the proposed glocal sequence
algorithm is discussed in this section. Section 4 presents the validation of the proposed
method through publicly available datasets with other algorithms. Finally, Section 5
concludes the paper.

2. Related Work

The bag-of-words model from local features such as SIFT [17], SURF [18], and BRIEF [19]
has been widely applied to visual place recognition tasks [20–22], as they are robust to
viewpoint changes. Each image is quantized into a finite number of visual words and can
be represented by histograms that can be compared efficiently using Hamming distance
or histogram comparison methods. These methods have the advantage of being able to
quickly and efficiently recognize a place in a static environment, but have a fatal weakness
that false positives can occur in a changing environment.

To overcome the false positive problems, place recognition systems based on global
descriptors have been proposed. Unlike the local features, the global descriptors use
predefined keypoints and extract information from the whole image. This characteristic
makes it possible to distinguish places even if some of image features are similar, and global
descriptor based place recognition system has the advantage of being more robust against
false positives than local features. Badino et al. [8] proposed whole-image descriptors based
on SURF (WI-SURF) to perform place recognition. Similarly, BRIEF-Gist [7] used BRIEF to
extract features from the whole image. GIST is one of the popular global descriptors [23]
and is widely used in place recognition [24–26]. GIST is based on Gabor filters at different
orientations and frequencies to extract various information from the image. These results
are averaged to generate a compact meaningful vector. GIST is applied in [24] to capture
the basic structure of different types of scenes in a compact way from the portions of
panoramic images.

Since deep learning, especially convolutional neural network, showed high perfor-
mance in image classification and recognition, global image descriptors using CNN have
been proposed for visual place recognition [10,27,28]. Naseer et al. extracted a sequence of
image descriptors using CNNs to compute the similarity matrix and compute matching
hypotheses to find loop closures [27]. Sünderhauf et al. first extracted landmark proposals
and utilized CNNs features as landmark descriptors [28]. Performances of the deep learned
features are evaluated in [10], and the output features of each layer are compared to find the
adequate layer for place recognition. Since those approaches used pretrained CNNs such
as AlexNet [29] or LeNet [30] for feature extraction, they showed improved performances
in changing environments without requiring any training procedure.

To more actively cope with the changing environment, there have been learning-based
methods that directly learn a relationship between environments rather than using the
pretrained neural network [9,31]. Neubert et al. proposed the concept of appearance
change prediction between two different seasons using vocabularies of superpixels [31].
Despite its novelty, the proposed method relied on handcrafted features and segmentation
parameters. Lowry et al. also proposed a supervised and an unsupervised learning method
for place recognition in changing environments [9]. The supervised learning method
depended on linear regression, which finds a linear transform between the two image
sequences to predict environmental changes, and unsupervised learning method tried to
remove appearance changes based on principal component analysis (PCA). NetVLAD [32]
achieved state-of-the-art performance in place recognition by using the CNN and vector of
locally aggregated descriptors (VLAD) but takes a large amount of time to perform model
training. Oh and Lee proposed a simple convolutional autoencoder (CAE) to recognize
places under extreme perceptual changes [33]. Similar to this idea, this paper proposes a
feature extraction method based on a VAE, which is a likelihood-based generative model.
Since this structure learns mapping from input data to low-dimensional latent vectors in a
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probabilistic way, features from VAE contain a lot of information of the images even in the
low-dimensional vector.

After extracting condition-robust features, the most likely path should be determined
by finding correspondences between them. Sequence-based approaches are widely used
techniques exploiting the temporal information of image sequences [1]. Milford demon-
strated that matching a sequence of images rather than a single image achieved improved
performances under extreme perceptual changes [16]. However, a critical limitation of
the system is a constant velocity assumption which is often violated in practice. To con-
sider speed variations, Naseer et al. proposed minimum cost network flow in a data
association graph [34]. Similarly, Viterbi algorithm [35] and dynamic programming (DP)
approach [33] were proposed to determine the most likely path through the environment.
Recently, DeepSeqSLAM, a trainable architecture combining CNN and a recurrent neural
network (RNN), was proposed to learn visual and positional information from an image
sequence [36], and SeqNet proposed hierarchical recognition system using learned short
sequential descriptors [37]. However, these methods still have two limitations in common:
(1) they are likely to find false matches on featureless structures such as tunnels, corridors,
and walls and (2) there is no chance to recover the global alignment once incorrect local
matches have occurred.

To overcome the problems, a novel glocal sequence alignment method for place recog-
nition is presented, inspired by gene sequence matching of bioinformatics [38]. It is a
combination of the global and local sequence alignment that can overcome partial failures.
As the proposed method first detects reliable parts and calculates the global path by chain-
ing them, it is able to not only find the accurate matches on featureless environments but
also recover the global path even if incorrect local matching occurred.

3. Proposed Approach
3.1. Similarity Matrix Generation from Deep Learning Features

VAE is a specific type of a neural network that can compress data into the latent vectors
in an unsupervised way. Using the latent vector as an image descriptor, the similarity
between images can be calculated. The VAE consists of a standard autoencoder component
that embeds the input data x into latent codesz by minimizing reconstruction error, and a
Bayesian regularization over the latent space, which enforces the posterior of the hidden
code vector, matches a prior distribution.

Let us consider the feature z which compresses the information of the image I. Then
the feature z is assumed to generated from prior distribution pθ(z), and an image I is
generated from some conditional distribution pθ(I|z). A recognition model qφ(z|I) which
is an approximation to the intractable true posterior pθ(I|z) is introduced to efficiently
approximate posterior inference of the latent variable z given an observed value I for a
choice of parameters θ. The recognition model qφ(z|I) is also referred as a probabilistic
encoder, since given a datapoint I, it produces a distribution over the possible values of the
code z from which the datapoint I could have been generated. In a similar vein, pθ(I|z)
is a probabilistic decoder, since given a code z, it produces a distribution over the possible
corresponding values of I. The structure of the VAE is shown in Figure 2.

The loss function L(θ, φ; I) used to train the VAE is the sum of the reconstruction error
and the KL-divergence [14] as in the following:

L(θ, φ; I)=Eqφ(z|I)[log pθ(I|z)]− DKL(qφ(z|I)||pθ(z)). (1)

Training is performed to minimize the loss function L(θ, φ; I), and the parameters of
the neural network θ and φ can be found from solving the optimization problem.

After finishing the training procedure, an input image I is transformed to reconstruct
the output image, and outputs of the intermediate layers z can be used as the compressed
representation of the image. As these features contain entire information of the images, they
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are useful for calculating image similarities. If there are two features zi and zj from different
images, the similarity score Sij between them is calculated using the cosine similarity.

Sij =
zi · zj

‖zi‖‖zj‖
(2)

Suppose there are M query and N database images from different environments. Then,
a similarity matrix S ∈ RM×N can be constructed from these similarity scores where each
element Sij is the similarity between two images i and j.

Input image I Reconstructed  image I

Features

( | )q z I

DecodingEncoding

( | )p zI

Figure 2. The structure of the VAE that is composed of the encoder and the decoder part.

3.2. Finding Local Fragments from Similarity Matrix

After generating the similarity matrix, local fragments that are candidates for the
global path should be detected. To find the fragments, multiple seeds whose similarity
scores are above the threshold τ are found from the S. A local sequence alignment method
such as Smith–Waterman algorithm [39] is then performed from these points to find
local fragments.

The local sequence alignment works through the following procedures. First, the score
matrix H is constructed recursively from the similarity matrix S. H is initialized with zeros
and filled recursively based on the neighbor’s similarity score and the gap penalty. In this
paper, H is constructed using the modified version of scoring method in [33]. The main
difference is that negative scores are not allocated in our model to enable local alignment
as the following:

Hi,j = logSi,j + max
k∈W(j)

(
Hi−1,k + log δ(i, j, k), 0

)
(3)

where W(j) = [j−Vmax, j + Vmax] is a constrained candidate set, and δ(i, j, k) is the likeli-
hood of transitioning from state k to state j when the robot’s maximum velocity is Vmax.

Then, the local path is found by tracing back. Starting from the maximum value of the
H to the end of zero, the best local alignment is found by tracking the source of each score
recursively. Since we have multiple seeds, multiple local sequences can be detected from
the S.

Let the n-th local fragment has the starting point (xi(n), yi(n)) and the ending point
(x f (n), y f (n)). Then, it can be modeled as a rectangle R(n) with these points as diagonal
components and define a weight score w(n) which is a length between these points. A
rectangle chain of maximum score should be found given a set of these weighted rectangles.

3.3. Rectangle Chaining Algorithm

Finding a rectangle chain of maximum score is equivalent to find the indices of rectan-
gles L = {p1, . . . , pL}, maximizing the global sequence score as the following equation:

L = arg max
p1,...,pL

( L

∑
l=1

w(pl)−
L−1

∑
m=1

δ(pm, pm+1)

)
(4)
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where δ(u, v) is the gap penalty for connecting R(u) to R(v) in the chain.
To calculate a gap penalty, a new method is proposed considering the motion con-

straints of the robot. The linear motion model of the robot satisfies xn = Fxn−1 + w, where
x is the state vector, F is the state transition matrix, and w is the process noise drawn from a
multivariate Gaussian w ∼ N (0, Q). Let the state vector contains the position and velocity
information as xn =

[
pn, vn

]T , then the equation can be rewritten as follows:[
pn
vn

]
=

[
I tI
0 I

][
pn−1
vn−1

]
+ w (5)

where t is the sampling time. Then, the predicted state after n steps follows xn ∼ N (µn, Σn)
derived as follows: {

µn = Fnµ0

Σn = FnΣ0(F>)n + ∑n−1
k=0 FkQ(F>)k (6)

To calculate the δ(u, v), the step size n is set to |y f (u)− yi(v)|, since the initial state of
the robot is at the ending point of R(u) and the final state is at the starting point of R(v).
Then, the gap penalty finally becomes the following equation:

δ(u, v)= C|Ση | exp
(
− 1

2

(
(xv − µη)

>Σ−1
η (xv − µη)

)−1
(7)

where η = |y f (u)− yi(v)|, xv is the state at R(v), and C is the weight factor. The value of
the gap penalty δ(u, v) becomes larger as the distance between R(u) and R(v) increases.
Therefore, the gap should be minimized as possible to maximize the score when chaining
the rectangles. The details are described in Appendix A.

The rectangle chaining problem under the gap penalty was first introduced in gene
sequence matching [38] to chain the ordered local gene sequences. The idea was based on
the sparse DP which finds the maximum weight chain by comparing the rectangles in the
list. The rectangle chaining algorithm is modified considering the motion constraint of
the robot.

A new rectangle is only searched through the query sequence, and the score is evalu-
ated based on the combination of weight scores and the gap penalty. Detail procedure is
described in Algorithm 1.

Algorithm 1 Proposed rectangle chaining algorithm.
Input A set of rectangles R(1), . . . , R(N)

Output The optimal chaining path P∗

1: for t = 1 to T
2: if t = yi(k) of rectangle R(k)
3: j← rectangle in L, with largest y f (j) < yi(k)
4: V(k)← w(k) + V(j) + δ(R(j), R(k))
5: P(k)← {k, P(j)}
6: if t = y f (k) of rectangle R(k)
7: j← rectangle in L, with largest y f (j) ≤ y f (k)
8: if V(k) > V(j)
9: Insert R(j) into L

10: Remove all R(l) with V(l) ≤ V(k) and y f (l) ≥ y f (k)
11: P∗ = P(n∗) where n∗ = arg maxn∈[1,N] V(n)
12: return P∗

The proposed algorithm has the following improvements compared with the conven-
tional method. First, the searching region for the next rectangle is expanded to deal with
both the forward and backward moving of the robot as considered in recent papers [40,41].
Second, the searching direction is changed from the x-axis to y-axis, as the query images
comes in time series and the next rectangle should be strictly below the current rectangle.
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Finally, the gap penalty is added to consider motion constraint of the robot. The final in-
dices of rectangles L obtained through this algorithm is a set of key fragments that form the
global path. Therefore, we can remove other local fragments that can cause a catastrophic
failure when finding the global path as shown in Figure 3.

Figure 3. Comparison of existing and proposed rectangle chaining algorithms. The existing sparse
DP algorithm (left) and the proposed algorithm (right). The proposed algorithm not only detects the
robot’s forward motion but also detects backwardness using a rectangle chaining algorithm.

3.4. Global Sequence Alignment Using Anchors

Finally, the global path should be found by connecting key fragments in L found
in the previous process. The starting and ending point of the key fragments are named
anchors since they provide reliable clues to find the global path.

Let the set of key fragments is L = {R(p1), R(p2), . . . , R(pL)}. Then, (L− 1) paths start-
ing from (x f (pk), y f (pk)) to (xi(pk+1), y f (pk+1)) should be found, where k = 1, 2, . . . , L− 1.
It is a kind of global alignment problem because the starting point and the ending point are
fixed, and the task is to find a path connecting them. Any existing global alignment method
can be used to fill the gap between key fragments in L. Note that we can find more accurate
correspondences in the gap because the anchors provide the information of the starting
and ending points of the sequences. In this paper, the DP-based method [33], which could
consider various robot moving directions, is conducted to find the path between anchors.

Finally, the final global path is determined by the union of paths within the rectangles
and paths connecting the anchors. Let the set of paths within rectangles is {A1, A2, . . . , AL}
and the set of paths connecting the anchors is {B1, B2, . . . , BL−1}. Then, the final global
path is determined by alternatively concatenating the local sequences in key fragments and
aligned sequences connecting the anchors as {A1, B1, . . . , AL−1, BL−1, AL}. The proposed
method has the advantage in overcoming false matches on featureless structures or partial
failures during the alignment because it detects the paths with high reliability first and then
connects them to find the final path. Therefore, it can perform accurate robot localization
in changing environments.

4. Experimental Evaluation
4.1. Experimental Setup

To demonstrate the effectiveness of the proposed approach, three datasets were used
from diverse environments. Since the proposed method aims to verify the performance of
place recognition in changing conditions, the viewpoint changing problem is not considered.
The Alderley dataset [15] consists of data collected during the days and nights on the same
route. The daytime traverse was used as the database images and one nighttime traverse
was used as the query image. The Oxford RobotCar dataset [42] consists of images taken
on a sunny day and a rainy night in the city. The central images from the traverse ids
2014-11-25-09-18-32 and 2014-11-21-16-07-03 were used as database and query images,
respectively. The final dataset is the Nordland dataset [43] collected from four seasons of
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rail journey. The spring–winter pair was used for our experiment. All images were resized
to 224 × 224 and aligned to the same locations. In each dataset, 6000 images were used as
a training set and 500 images were used as a test set. The sample image sequence of the
datasets are shown in Figure 4. All experiments were implemented in Python 3.6.9 using
the libraries Tensorflow 2.5.0 and carried out on a PC with a 3.9 GHz Intel Core-i7 CPU
and 16 GB of main memory.

Query

Database

Query

Database

Alderley Dataset

Oxford Dataset

Query

Database

Nordland Dataset

Figure 4. Sample image sequence taken from each of the 3 datasets: Alderley (day-to-night), Oxford
(sunny-to-rainy), and Nordland (spring-to-winter).

Our contributions are to propose a robust feature extraction based on VAE and a
global alignment algorithm using the extracted features, so we divided the experiment
into two main parts, the precision–recall performance of the features and the global align-
ment performances.

4.2. The Precision–Recall Performance of the Features

In the first part, the place recognition performance of the proposed feature was verified
through precision–recall analysis. The relationship between precision and recall can be
represented by a precision–recall curve, and the area under the curve (AUC) is a widely
used metric for evaluating the place recognition performances. Precision is defined as the
percentage of the number of correct matches for the number of total matches detected, and
recall is the ratio of the number of correct matches to the total number of matches, that is:

Precision=
TruePositives

TruePositives + FalsePositives
(8)

Recall=
TruePositives

TruePositives + FalseNegatives
(9)
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Our feature was compared with sum-of-absolute differences (SAD) from SeqSLAM [15],
AlexNet [29], and NetVLAD [32]. The compared features demonstrated robust perfor-
mance in changing environments, and widely used features in place recognition. Our
proposed features were extracted from VAE model as shown in Table 1. Since the place
recognition performance depends on the number of layers and nodes in the network, the
best parameters were chosen through experiments.

Table 1. The output shape of each layer in our VAE model.

Layer Size Layer Size Layer Size Layer Size

conv1 112 × 112 × 32 conv4 14 × 14 × 128 fc7 2048 z_mean 128
conv2 56× 56 × 64 conv5 7 × 7 × 128 fc8 1024 z_var 128
conv3 28 × 28 × 64 fc6 4096 fc9 512 sampling 128

The precision–recall results for each dataset are shown in Figure 5. In our test set, there
is little difference in distance between frames, and as the environment changes extremely,
most of the features do not exhibit high performance. However, our proposed feature
showed comparable performance even when compared to the state-of-the-art feature,
NetVLAD, and showed superior performance in the Oxford dataset. Since all feature
extraction algorithms used the pretrained network, there was no significant difference in
processing time.

Alderley Dataset

Oxford Dataset

Nordland Dataset

Figure 5. Sample image sequence taken from each of the three datasets: Alderley (day-to-night),
Oxford (sunny-to-rainy), and Nordland (spring-to-winter).
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The reason why our proposed feature performed so well on the Oxford dataset is
that the images in this dataset were gray images, so the dimension was low. Our feature’s
dimension is 128, as shown in Table 2, which is a very small number to contain the infor-
mation of the whole image. However, compared to other features, it can be seen that our
feature can efficiently store a lot of information despite its low dimensionality. Therefore,
increasing the number of layers or nodes in the VAE can achieve high performance even
with images of large dimensions.

In this experiment, the deep features from VAE were used, but there were limitations.
Therefore, it is necessary to improve performance in combination with sequence-based
global alignment method using the robot’s movement information.

4.3. Global Alignment Performance

To evaluate the global alignment performance, experiments were conducted on the
Nordland dataset. We used the spring and winter sequences, and they were rearranged
to generate various situations such as acceleration, deceleration, reverse moving, etc. The
ground truth of the corresponding frames and examples of matched frames were shown in
Figure 6.

Figure 6. Ground truth of the corresponding frames and examples of matched frames.

Experimental results are shown in Figure 7. First, local seeds were detected above
the similarity 0.99 and performed local sequence alignment using the DP [33]. The local
fragments above the weight scores 50 are chosen to be the candidates for the global
alignment as shown in Figure 7b. Then, they are modeled as rectangles and connected using
the proposed rectangle chaining algorithm. In Figure 7c, key sequences are represented
as blue lines and the connections are shown as green dotted lines. Other local fragments
represented as black lines are unnecessary. Finally, the global path estimated using the key
sequences as anchors is shown in Figure 7d. To compare the performances of the proposed
method, the resulting path of the SeqSLAM [15] and DP [33] are also presented.

We can conclude that the proposed method outperforms other algorithms, as SeqS-
LAM showed an inaccurate path due to the assumption of constant speed, and the DP
partially failed to estimate the path in repetitive structures such as tunnels and roads. The
precision–recall results and F1-scores in Table 2 also showed that the proposed method is
more accurate than other methods.

Table 2. The precision–recall and F1-score results.

Method SeqSLAM [15] DP [33] Proposed

Precision 0.010 0.296 0.955
Recall 0.012 0.288 0.957

F1-score 0.011 0.292 0.956
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Figure 7. Experimental results: (a) constructed similarity matrix; (b) detected local fragments;
(c) rectangle chained results; (d) global alignment results compared to other algorithms.

5. Conclusions

To achieve robot localization in changing environments, the robust feature extrac-
tion method using the variational autoencoder was described to calculate the similarities
between images. Then, the global sequence alignment method based on sparse DP was
proposed to chain the reliable local fragments under the motion constraint of the robot.
Experiments were performed on three datasets to demonstrate the effectiveness of the pro-
posed approach. First, a precision–recall analysis was performed to test the robustness of
the deep features, and the experimental results showed that the proposed features showed
stable performance in various environments. In the Oxford dataset, the F1-score—which is
the harmonic mean of the precision and recall—achieved 30% higher than that of AlexNet.
In other datasets, the proposed feature achieved precision–recall results comparable to
NetVLAD. Second, the global alignment performances were tested on the rearranged
Nordland dataset. The false matches during the alignment were recovered, and the path of
the robot was successfully estimated by using the proposed method. The precision–recall
results showed that our method achieved more than three times higher performance than
other methods.

Although the proposed method showed improved place recognition performance in
appearance changing environments, another challenging environment in robot localization
is the viewpoint changing environment. The viewpoint of the same place can change drasti-
cally when revisiting it, and finding correspondences between database and query images
in this situation is challenging. Since the proposed autoencoder feature is a kind of global
descriptors, it has limitations in dealing with viewpoint change problems compared to
other local descriptor-based methods. In the future, it is necessary to improve our method
to overcome the appearance changing problem as well as the viewpoint changing problem
for practical robot localization.
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Appendix A. Derivation of the Gap Penalty

The robot motion model assumes the true state at step n is evolved from the step at
n− 1 according to the following equation:

xn= Fxn−1 + Bun + w (A1)

where F is the state transition matrix, B is the control model, w is the process noise which
is assumed to be drawn from a multivariate normal distribution w ∼ N (0, Q).

In the model, the state vector is defined to have a position and velocity information as
xn= [pn, vn]. Then, the linear motion model satisfies the following equation:[

pn
vn

]
=

[
I tI
0 I

][
pn−1
vn−1

]
+ w (A2)

where t is the sampling time. Then, n-steps after predicted states and covariances are
as follows:

µn= Fµn−1

= Fnµ0

Σn= FΣn−1F> + Q

= FnΣ0(F>)n +
n−1

∑
k=0

FkQ(F>)k.

(A3)

As the predicted state after n steps follows xn ∼ N (µn, Σn), the probability of the
current state when given initial state and the number of steps after initial state is calculated.

Our purpose is to calculate the gap penalty between rectangles as shown in Figure A1.
From the view of the R(a), the purpose is to calculate the gap penalty between R(b), R(c),
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and R(d). As R(a) is the initial state, the expected position of the robot can be seen by the
evolution of the Gaussian distribution.

Figure A1. Gap penalty calculation using the linear robot motion model.

The initial state is at the ending point of R(j), which is x0 = [p f (j), v f (j)]T and the final
state is at the starting point of the candidate rectangle R(k), x = [pi(k), vi(k)]T . Therefore,
the step size is ∆ = |y f (j)− yi(k)|, the gap penalty becomes the following equation:

δ(R(j), R(k))= C|Σ∆| exp
(
− 1

2

(
(x− µ∆)

TΣ−1(x− µ∆)
)−1

(A4)

where x is the state at R(k) and C is the weight factor.
Let us consider the Figure A1 case. R(b) does not need to be considered since y f (j) <

yi(d). In the case of R(c), the Gaussian distribution corresponding to the ∆jc is represented
as red dots. However, the state xc = [pi(c), vi(c)]T is far from the center of the Gaussian
distribution, and it can be predicted that it will have a low probability. On the other hand,
the Gaussian distribution corresponding to the ∆jd is represented as yellow dots in the
case of R(d), and it can be found that the state xd = [pi(d), vi(d)]T is near the center of the
distribution. The penalty is defined as the inverse of the probability, and it is concluded
that δ(R(j), R(c)) > δ(R(j), R(d)).
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