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Recent BOLD-fMRI studies have revealed spatial distinction between variability- and

mean-based between-condition differences, suggesting that BOLD variability could offer

complementary and even orthogonal views of brain function with traditional activation.

However, these findings were mainly observed in block-designed fMRI studies. As

block design may not be appreciate for characterizing the low-frequency dynamics

of BOLD signal, the evidences suggesting the distinction between BOLD variability

and mean are less convincing. Based on the high reproducibility of signal variability

modulation between continuous eyes-open (EO) and eyes-closed (EC) states, here we

employed EO/EC paradigm and BOLD-fMRI to compare variability- and mean-based

EO/EC differences while the subjects were in light. The comparisons were made both on

block-designed and continuous EO/EC data. Our results demonstrated that the spatial

patterns of variability- and mean-based EO/EC differences were largely distinct with each

other, both for block-designed and continuous data. For continuous data, increases

of BOLD variability were found in secondary visual cortex and decreases were mainly

in primary auditory cortex, primary sensorimotor cortex and medial nuclei of thalamus,

whereas no significant mean-based differences were observed. For the block-designed

data, the pattern of increased variability resembled that of continuous data and the

negative regions were restricted to medial thalamus and a few clusters in auditory and

sensorimotor networks, whereas activation regions were mainly located in primary visual

cortex and lateral nuclei of thalamus. Furthermore, with the expanding window analyses

we found variability results of continuous data exhibited a rather slower dynamical

process than typically considered for task activation, suggesting block design is less

optimal than continuous design in characterizing BOLD variability. In sum, we provided

more solid evidences that variability-based modulation could represent orthogonal views

of brain function with traditional mean-based activation.
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INTRODUCTION

In traditional task-based functional magnetic resonance imaging
(fMRI) studies, activation regions were typically identified by
comparing the temporal mean of a task related time course
with baseline. Signal variability was usually conceived as
uninformative noise. However, recent evidences have suggested
that fMRI signal variability may also be functionally relevant (See
reviews in Garrett et al., 2013b; Grady and Garrett, 2014). For
example, blood oxygenation level dependent (BOLD) variability
could predict age (Garrett et al., 2010, 2011, 2013a) and task
performances (Garrett et al., 2011, 2013a; Wutte et al., 2011;
Protzner et al., 2013), mediate the relationship between them
(Samanez-Larkin et al., 2010; Baum and Beauchamp, 2014) and
respond to different task conditions (Duff et al., 2008; Ricciardi
et al., 2013; Garrett et al., 2015; Guitart-Masip et al., 2015). Of
particular interest, a few studies have revealed that the between-
condition differences in signal variability have distinct spatial
patterns from the traditional activation regions (Protzner et al.,
2013; Garrett et al., 2014; Guitart-Masip et al., 2015). These
findings implied that traditional activation could not represent
a complete description of human brain response, and brain
variability may provide complementary and even orthogonal
views (Garrett et al., 2013b).

So far, the distinction between variability- and mean-based
measurements was mainly observed in block-designed fMRI
studies (e.g., Garrett et al., 2011, 2014; Protzner et al., 2013;
Guitart-Masip et al., 2015), but it remains uncertain whether
block design is appropriate for examination of BOLD variability.
The discrete and short blocks could probably disrupt the
continuous and low-frequency fluctuations (Biswal et al., 1995;
Lowe et al., 1998; Cordes et al., 2000, 2001; Whitlow et al., 2011;
Birn et al., 2013; Gonzalez-Castillo et al., 2014; Tomasi D. G.
et al., 2016) and thus the block-concatenated data cannot ensure
accurate measurement of brain variability. If so, the evidences
that distinction between variability and traditional activation
would be less convincing. By contrast, continuous design may be
more suitable for the slow fluctuation. The idea of continuous
design is from the field of resting state fMRI (rs-fMRI), which
means that data of only one condition is scanned within the
whole fMRI run. In these studies, researchers are often interested
in the regional fluctuation rather than mean level of fMRI signal
(Fransson, 2006; Dong et al., 2012; Zhang and Zang, 2015).

Using continuous design, previous studies have revealed
that non-visual sensory modalities, including bilateral primary
auditory cortex (PAC) and primary sensorimotor cortex (PSMC),
showed significantly decreased signal power (or variability)
between continuous eyes-open (EO) and eyes-closed (EC) states.
Such findings are highly consistent across different groups
(McAvoy et al., 2008; Yan et al., 2009; Jao et al., 2013; Liu
et al., 2013; Yuan et al., 2014). These seem to support the
spatial distinction between variability- andmean-based activities.
However, widespread deactivation (i.e., decrease of signal mean)
of PSMC has actually also been observed in block-designed
EO/EC paradigm, though in darkness (Marx et al., 2003). For
EO/EC paradigm, it is somewhat surprising that no studies
have directly compared between BOLD derived variability- and

mean-based between-condition differences under the same level
of room illuminance. Although Zou et al. (2015) have found
BOLD power differences showed little overlap with cerebral
blood flow (CBF)-based mean differences between EO and EC,
their results are confounded by different sensitivity of acquisition
techniques, i.e., BOLD vs. arterial spin labeling that measures
CBF (Tjandra et al., 2005; Federspiel et al., 2006). Though
they also made comparison of CBF-based power with mean
CBF, the low temporal resolution (an effective TR of 9 s) of
CBF time series precludes it from accurately measuring signal
dynamics.

In this study, we compared the spatial distribution between
variability- and mean-based EO/EC differences revealed by
BOLD-fMRI, within the same subjects while keeping the
scanner room lightened. In order to perform comprehensive
comparisons, signal mean and variability were compared both
for block-designed and continuous data. Additionally, to evaluate
whether block design is suitable for study of BOLD variability, we
used the expanding window approach (Shirer et al., 2012; Birn
et al., 2013; Zuo et al., 2013; Tomasi D. G. et al., 2016) to examine
the temporal evolution of variability-based EO/EC differences on
the continuous data.

MATERIALS AND METHODS

Participants
Thirty-six healthy participants (21.5 ± 2.27 years, 18 females)
were recruited. Each provided written informed consent and
was screened with a questionnaire to ensure no history of
brain injury, neurological illness or psychiatric disorders. This
study was approved by the ethics committee of Institutional
Review Board of the Research Center of Brain and Cognitive
Neuroscience, Liaoning Normal University.

Experimental Procedures
There were totally four sessions for each participant, each
lasting 8min. Specifically, an EC resting state session was firstly
acquired (the data was not analyzed in this study). Then, two
continuous resting state sessions, EO and EC, were acquired
and counter-balanced across participants. In these sessions, the
participants were instructed to lie in the scanner quietly with
their eyes open or closed, not to fall asleep, to be as motionless
as possible, and not to think about anything in particular.
Finally, the participants underwent an EO/EC block-designed
session, in which subjects were instructed to alternately open
and close their eyes for 30 s in respond to an acoustic signal
via earphones. This session contained 8 EO and 8 EC blocks. A
black and blank screen without fixation was always presented.
All participants reported that they had not fallen asleep during
the scanning.

Data Acquisition
MRI data was acquired using a GE Discovery MR750 3-
Tesla scanner at the Research Center of Brain and Cognitive
Neuroscience, Liaoning Normal University. The functional
images were obtained by using an echo-planar imaging (EPI)
sequence with the following parameters: 33 axial slices, slice
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thickness/gap = 3.5/0.7mm, flip angle = 90◦, TR = 2,000ms,
TE = 30ms, in-plane resolution = 64 × 64, field of view (FOV)
= 224 × 224 mm2. For the purpose of spatial normalization,
we acquired a 3D T1-weighted image for each subject using a
spoiled gradient-recalled pulse sequence (192 sagittal slices, slice
thickness = 1.0mm, flip angle = 12◦, TR = 6,652ms, TE =

2.93ms, inversion time (TI)= 450ms, in-plane resolution= 256
× 256, FOV= 256× 256 mm2).

Data Preprocessing
The EPI data were preprocessed by using the toolbox for
Data Processing & Analysis for Brain Imaging (DPABI,
http://rfmri.org/DPABI, Yan et al., 2016). Preprocessing steps
included: (i) removal of the first 10 volumes of functional
images, (ii) slice-timing correction, (iii) head motion correction,
(iv) spatial normalization to Montreal Neurological Institute
(MNI) space with a resampling resolution of 3 × 3 × 3 mm3,
(v) spatial smoothing with a 4-mm Gaussian kernel along all
three directions, (vi) scaling image intensity to a grand session
mean of 1000. Notably, two participants were excluded due to
excessive headmotion (more than 1.5mmofmaximal translation
in any direction of x, y, or z or 1.5◦ of any angular motion
throughout the course of scan).

The Friston 24-parameter model (6 motion parameters, 6
motion parameters one time point before, and 12 corresponding
squared items, Friston et al., 1996; Yan et al., 2013) was utilized to
regress out headmotion effects in this study. The averaged signals
from white matter (WM) and cerebral spinal fluid (CSF) and the
low-frequency drifts (i.e., linear, quadratic and cubic trends) were
also regressed out.

Signal Mean-Based EO/EC Differences
For the block-designed data, we carried out a standard general
linear model (GLM) analysis to reveal differences in mean signal
level between EO and EC (i.e., EO/EC activation) by using the
SPM12 software (https://www.fil.ion.ucl.ac.uk/spm). For each
individual, task regressor representing alternated EO and EC
blocks was generated by convolving a boxcar function with
the canonical hemodynamic response function as well as its
time and dispersion derivatives. Group-level statistical analysis
was performed on the individual-level beta images by using
permutation test implemented by PALM (1,000 permutations)
(Winkler et al., 2016). Multiple comparisons were adjusted for
using threshold-free cluster enhancement (TFCE, Smith and
Nichols, 2009). The corrected P values were thresholded at
p < 0.05.

For the purpose of comprehensive comparisons, we also
examined the EO/EC differences in signal mean on the
continuous data. Signal mean was calculated for each voxel and
condition (i.e., EO and EC), respectively. And then individual
signal-mean maps were entered into group-level statistical
analysis. The statistical and multiple comparison correction
procedures were the same as described above. Of note, image
intensity scaling during preprocessing may bias the differences
in signal mean, in this section we also analyzed data without
intensity scaling.

Signal Variability-Based EO/EC Differences
In this study, we used standard deviation (SD) to quantify the
variability of BOLD signal. A variety of metrics have been utilized
to characterize BOLD variability, such as power spectrum (Duff
et al., 2008; McAvoy et al., 2008), variance (Jao et al., 2013)
and amplitude of low-frequency fluctuation (ALFF, Zang et al.,
2007). Mathematically, these metrics are almost equivalent to
each other. Compared with the other metrics, however, SD has
the same scale with the original time series. Moreover, it is more
appropriate to measure the temporal variability of short time
series, such as that of one block in block-designed data (as did
in Garrett et al., 2010, 2011, 2013a, 2014; Protzner et al., 2013;
Guitart-Masip et al., 2015).

SD was calculated for each voxel both on the block-designed
and continuous data. For the block-designed data, time series
was firstly concatenated across blocks belonging to the same
condition in a similar way with the previous variability studies
(Protzner et al., 2013; Garrett et al., 2014; Guitart-Masip et al.,
2015). Before concatenation, signal mean was subtracted for
each block. To minimize the effects of hemodynamic delay from
previous conditions, the first four volumes (8 s) were removed
and two volumes (4 s) of the next block were added for each
block (Liang et al., 2015). Finally, we calculated SD for the EO
and EC conditions, respectively. To control for the global effects,
the individual SDmaps (both for block-designed and continuous
data) were divided by the global mean SD (Zang et al., 2007;
Yan et al., 2013). However, considering that the validity of such
manipulation has not been fully established (Yan et al., 2013), we
also presented results without global mean normalization (GMN)
(Please see the Supplementary Material).

Voxel-wise statistical analyses were carried out on the
individual-level SD maps (for the concatenated block-designed
and continuous data, respectively) to reveal the EO/EC
differences. Multiple comparison correction was performed by
using the same procedures as described before. The corrected P-
values were thresholded at p < 0.05. Finally, the comparisons
between mean- and SD-based results were made by visual
inspection.

Temporal Evolution of SD-Based EO/EC
Differences
To evaluate whether block deign is suited for BOLD variability
analysis, we used expanding window approach (Shirer et al., 2012;
Birn et al., 2013; Zuo et al., 2013; Tomasi D. G. et al., 2016) to
examine the temporal evolution of SD-based EO/EC differences
on the continuous data. In particular, we constructed a set of
new datasets with increasing window lengths from the original
data of full length (i.e., 460 s). The shortest time window had
15 time points (i.e., 30 s, to match the block length in block-
designed session). Subsequently, the window was expanded 15
time points (30 s) in each step. In addition to the full-length data,
a total of 15 constructed datasets with different window lengths
were obtained. We then calculated SD maps for each window
and condition. The resulting SD maps were entered into group-
level statistical analyses to reveal the EO/EC differences for each
window.
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FIGURE 1 | Spatial maps of mean- and SD-based EO/EC differences.

Activation map (A), and SD-based EO/EC differences for the

blocked-designed (B) and continuous (C) data analyzed with GMN. The

corrected P-values were thresholded at p < 0.05. The warm colors indicate

the regions with significantly increased activities in EO than EC, and the cool

colors indicate the opposite (L, left hemisphere; R, right hemisphere).

For the illustration purpose, we then calculated dice coefficient
to evaluate the similarity between EO/EC difference maps based
on each constructed dataset and the full-length dataset. Dice
coefficient was calculated with the following equation:

Dice =
2× Voverlap

Vfull + Vrecon

where Vfull and Vrecon represent the number of supra-threshold
voxels in the results of full-length dataset and a constructed
dataset, respectively. Voverlap is the number of supra-threshold
voxels in the intersection areas.

RESULTS

Signal Mean-Based EO/EC Differences
For the block-designed data, the activation regions were mainly
located in PVC, lateral thalamus and a few voxels in right PSMC
and PAC (p < 0.05, corrected, Figure 1A). For the continuous
data, we did not found significant differences between EO and EC
conditions both for the data with and without intensity scaling
(p < 0.05, corrected).

SD-Based EO/EC Differences
For the block-designed data, regions with significantly increased
SD were observed in bilateral secondary visual cortex as well
as one small cluster in PVC. Decreased regions were mainly
in right PSMC, PAC, thalamus, some small clusters in middle
cingulate cortex and superior medial frontal cortex (p < 0.05,
corrected, Figure 1B). For the continuous data, both positive
and negative regions were larger than in block design. Moreover,

the decreased regions also exhibited symmetric distribution
and included bilateral PAC, PSMC, supplementary motor area,
middle cingulate cortex and medial thalamus (p < 0.05,
corrected, Figure 1C).

As GMN may introduce artificial differences, we also
presented the results without GMN. For the block-designed data,
we only found the increased SD in visual cortex and decrease
in thalamus (p < 0.05, corrected, Supplementary Figure 1B).
The SD-based differences of continuous data showed similar
patterns with those analyzed with GMN (p < 0.05, corrected,
Supplementary Figure 1C). The differences between block-
designed and continuous data were much more obvious in the
data analyzed without GMN.

By visual inspection, SD and activation results were only
overlapped in thalamus and a portion of visual cortex.
Nevertheless, the significant changes were more prominent
in PVC and lateral thalamus for activation, but were more
significant in secondary visual cortex andmedial thalamus for SD
results.

Temporal Evolution of SD-Based
Differences
To explain the differences between results of continuous
and block-designed data, we further manifested the temporal
dynamics of SD-based EO/EC differences for the continuous
data. Specifically, at the beginning of scan (i.e., the first 30 s),
some spatially discrete voxels showed decreased SD in PSMC
and PAC for the data analyzed with GMN (p < 0.05, corrected,
Figure 2, the top row). The decreases in PAC and PSMC were
larger as the window lengths increased, and became stable until
the window lengths reached 270 s for results with GMN (p <

0.05, corrected, Figure 2). Such trends were also found in the data
analyzed without GMN (Supplementary Figure 2). The temporal
changes of visual areas were not so obvious. Complete description
for all windows could be seen in the videos in the Supplementary
Materials.

For the illustration purpose, we calculated the dice coefficients
to reveal the similarity between patterns of each window and
those of full length. The slow changes of SD with increasing
window lengths were evident (Figure 3), irrespective of GMN.

DISCUSSION

In this study, we focused on the comparisons between BOLD
derived variability- and mean-based EO/EC differences, within
the same subjects and under the same experimental environment.
Our findings demonstrated that the variability-based EO/EC
differences are highly consistent with previous findings and have
largely distinct spatial distribution with traditional activation.We
confirmed that BOLD variability could provide orthogonal views
of brain function with mean-based activations. Moreover, we also
demonstrated variability-based modulation is a slower process
than typically considered for activation, and thus block design
is less optimal than continuous design in characterizing BOLD
variability.
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FIGURE 2 | Temporal evolution of SD-based EO/EC differences for the continuous data. EO/EC SD differences based on the continuous data analyzed with GMN in

different window (window length = 30, 90, 180, 240, and 450 s) were shown. The corrected P values were thresholded at p < 0.05. The warm colors indicate the

regions with significantly increased SD in EO than EC, and the cool colors indicate the opposite (L, left hemisphere; R, right hemisphere).

Spatial Distinction Between Mean- and
SD-Based Results
In our results, the distinction between mean- and SD-based
EO/EC differences was evident both for block and continuous
designs. For the block-designed data, the mean-based EO/EC
differences (i.e., typical activation revealed by GLM) was quite
prominent in PVC and lateral thalamus. We did not found
the widespread deactivation of bilateral PSMC as have detected
in darkness (Marx et al., 2003). Likewise, Marx et al. (2003)
did not detect the PVC activation. Although Jao et al. (2013)
did not found the impact of light/darkness on variability-
based indices, our results as well as previous finding (Marx
et al., 2004) imply that room illuminance can significantly affect
EO/EC traditional activation (i.e., signal-mean differences). Such
differences between different experimental environments also
highlighted the importance of controlling room illuminance level
when performing the EO/EC studies.

SD analysis on the block-designed data showed largely distinct
pattern with activation results. In particular, the spatial extent
in PVC became much smaller in SD results than activation.
However, lateral clusters in secondary visual cortex were more
significant for SD results, and decreases of SD in medial thalamus
and PAC emerged. Using block design, a few studies have
demonstrated between-condition differences in signal variability
have distinct spatial patterns from the traditional activation
regions in memory tasks with high attentional demand (Protzner
et al., 2013; Garrett et al., 2014; Guitart-Masip et al., 2015). Thus,
our findings expand their conclusions to simple sensory task.

For continuous data, the between-condition differences in SD
were more prominent than in block designed data. However,
we did not found any significant differences in signal mean.
The areas of SD decreases in PAC and PSMC became much
larger than in block design. The pattern exhibited an almost
symmetric distribution and was highly consistent with our

Frontiers in Neuroscience | www.frontiersin.org 5 July 2018 | Volume 12 | Article 516

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. Distinction Between Variability and Mean

FIGURE 3 | Spatial similarity of SD-based EO/EC differences between each window and the full-length data. Dice coefficients were computed between each

temporal window and the full-length continuous data. The left (A) is the result based on the data with GMN and the right (B) is that without.

previous findings (Yan et al., 2009; Liu et al., 2013; Yuan et al.,
2014; Zou et al., 2015), and was also similar with the results
without GMN, suggesting the robustness of variability changes
between continuous EO and EC. Although there is discrepancy
in visual cortex between our findings and other groups (McAvoy
et al., 2008; Bianciardi et al., 2009; Jao et al., 2013). They found the
decrease of variability in PVC whereas we detected the increased
SD only in bilateral extrastriate cortex. This is probably caused by
the different visual presentation in EO condition we used.

Comparisons Between Design Types
In addition to the distinction between mean- and SD-based
results, we also observed considerable differences between results
of block-designed and continuous data. This is true both for
mean and variability indices. However, such differences may be
caused by different reasons. For mean-based results, activation
in PVC and thalamus was prominent in block-designed data
whereas no significant differences were detected in continuous
data, irrespective of whether intensity scaling was performed.
Since Zou et al. (2015) has actually shown that mean level of
CBF was increased in PVC in continuous EO than EC, here we
believe that no differences in BOLD signal mean does not imply
that there is no changes in mean level of neuronal activities. The
underlying true effect may be confounded by different scaling
factors inherent in different BOLD-fMRI sessions when signal
mean of continuous data were compared. It is well known that
raw intensity of BOLD signal could vary remarkably across
different fMRI sessions. As such, researchers in task fMRI studies
are only interested in relative signal change. In our continuous
data, the scaling factors may differ across subjects and even
across EO and EC states within the same subject. Although
we have employed intensity scaling during preprocessing, it
should be noted that while this manipulation can correct the
gain effect, it could also lead to artificially negative results.
By contrast, this problem is not so terrible in block-designed
data since the gain effect was almost constant during the same
session.

For SD results, the significant regions identified in block-
designed data are almost subset of those in continuous data.
The positive regions were similar between the two design types
whereas the spatial extent of negative regions became much
smaller for the block-designed data. To explain such distinction,
we examined the temporal evolution of SD-based differences
for the continuous data. The results showed that the significant
areas (especially the negative regions) gradually became larger as
the window lengths increased both for the data analyzed with
and without GMN. Our findings suggest that changes of SD in
PAC and PSMC is a rather slow process and thus cannot be
fully captured within the short blocks. It should be noted that
the distinction of SD results between continuous and block-
designed data is not due to differences in sample lengths, since
the length of concatenated block-designed data, on which SD
was calculated, is more than 200 s whereas the decreases of SD
in bilateral PSMC and PAC in continuous data were evident as
soon as nearly 90 s after the scan onset. The slow dynamics of
SD results are in line with recent findings that more than 5min
is necessary for functional connectivity (FC) metrics to reach
stable (Whitlow et al., 2011; Birn et al., 2013; Gonzalez-Castillo
et al., 2014; Tomasi D. G. et al., 2016). Although SD and FC
characterize different aspects of signal fluctuation, a few groups
have recently found temporal coupling between dynamical FC
and dynamical variability (Tomasi D. et al., 2016; Fu et al., 2017),
implying their similar neuronal origins.

Importantly, the slow dynamics indicated that block design
[especially the design in which block length is less than 1min,
as did in some previous studies, (Garrett et al., 2013a, 2014;
Protzner et al., 2013; Guitart-Masip et al., 2015)], is not ideal
for BOLD variability analysis. By contrast, continuous design
may be more appropriate in that it is more suited to capture the
slow fluctuations. Therefore, we believe the SD results based on
continuous design (at least for the EO/EC paradigm) is more
closed to the true effect. However, the validity of continuous
design has not been fully established. Since BOLD-fMRI signal
has arbitrary units and SD is proportional to gain factor of raw
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BOLD signal, cautions should be taken for the variability analysis
of continuous data. Although the high reproducibility between
our results and previous papers (Yan et al., 2009; Liu et al., 2013;
Yuan et al., 2014; Zou et al., 2015) suggest comparison of SD
of BOLD signal for the continuous design is feasible, it actually
remains unclear whether continuous design is suitable as well in
other domains in cognitive neuroscience. That may depend on
the particular questions to be answered. Methodological studies
to evaluate and establish the validity of continuous design are
needed in the future.

Variability- and Mean-Based EO/EC
Differences Might Reflect Two Distinct
Response Modes
Notably, one possible explanation for the distinction between
signal variability and mean is that the two metrics are
different in sensitivity to detect between-condition differences.
However, we believe it is more likely that SD- and mean-
based EO/EC differences might reflect two quite different aspects
of human brain response. There are two reasons. First, as
we have performed signal intensity scaling and block-mean
correction, our findings thus suggest that the changes of
BOLD variability is independent of mean signal level. Second,
and more importantly, we found their distributions exhibited
almost orthogonal patterns within sensory systems. Specifically,
traditional EO/EC activation was mainly in PVC whereas SD-
based EO/EC differences were in bilateral PAC and PSMC, as well
as secondary visual cortex.

Compared with PVC which is response for direct processing
of visual input, the cortical regions with SD changes (here include
PAC, PSMC, and secondary visual cortex) might be involved
in the visual processing in a more indirect way. The decreases
of SD in PAC and PSMC during EO may reflect active or
passive suppression of excitability in these non-visual modalities
in order to facilitate the processing of incoming visual stimuli
(Baier et al., 2006; Mozolic et al., 2008). This notion is in line
with Raichle’s hypothesis that the resting human brain is restless
but at the “ready state” (Raichle et al., 2001), which could be
modulated in response to environment demands (Raichle, 2010).
The roles of secondary visual cortex may be more complicated.
Studies have observed secondary visual cortex was deactivated
in somatosensory task (Kawashima et al., 1995), in which the
authors interpreted it as “closing the mind’s eyes.” It has also been
found to be deactivated (Baier et al., 2006) and showed decreased
occipital-temporal FC (Pelland et al., 2017) in auditory tasks.
More interestingly, the secondary visual cortex could be activated
by high contrast visual stimuli in themacaquemonkeys with PVC
lesion, which might be associated with the unconscious visual
processing (Schmid et al., 2010). For our findings, we speculated
the higher variability in secondary visual cortex might reflect the

modulation of visual awareness, which in turn could enhance the
excitability of visual cortex. Future work is required to test this
hypothesis.

The observation of decreased SD in non-visual modalities
is quite similar with the phenomenon of cross-modal
compensation which has been widely reported in the literature of
blind (Stevens et al., 1996; Lessard et al., 1998; Röder et al., 1999;
Van Boven et al., 2000; Goldreich and Kanics, 2003; Gougoux
et al., 2004; Voss et al., 2004). Blind usually develop superior
abilities than sighted people in non-visual tasks, such as auditory
localization (Lessard et al., 1998; Röder et al., 1999; Voss et al.,
2004), pitch discrimination (Gougoux et al., 2004) and tactile
acuity (Stevens et al., 1996; Van Boven et al., 2000; Goldreich and
Kanics, 2003). Higher task performance in non-visual tasks for
blind might be caused by loss of sight, a situation partly similar
to EC during which brain variability of PSMC and PAC becomes
larger. So far, it remains unclear whether the biological basis
of superior tactility and auditory abilities for blind could be, at
least in part, accounted for by the brain variability. It would be
interesting to examine their relationship in the future.

CONCLUSIONS

By using BOLD-fMRI and comprehensive comparisons, we
provided more solid evidences to confirm that BOLD variability
could represent orthogonal views of brain function with
conventional activation, thus highlighted the importance of
variability analysis in task fMRI studies. Furthermore, it could
exhibit rather slow dynamics that cannot be fully captured by
typical block design. Its behavior significance requires further
investigation.
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