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High-risk pediatric B-ALL patients experience 5-year negative event rates up to 25%. Although some
biomarkers of relapse are utilized in the clinic, their ability to predict outcomes in high-risk patients is
limited. Here, we propose a random survival forest (RSF) machine learning model utilizing interpretable
genomic inputs to predict relapse/death in high-risk pediatric B-ALL patients. We utilized whole exome
sequencing profiles from 156 patients in the TARGET-ALL study (with samples collected at presentation)
further stratified into training and test cohorts (109 and 47 patients, respectively). To avoid overfitting
and facilitate the interpretation of machine learning results, input genomic variables were engineered
using a stepwise approach involving univariable Cox models to select variables directly associated with
outcomes, genomic coordinate-based analysis to select mutational hotspots, and correlation analysis to
eliminate feature co-linearity. Model training identified 7 genomic regions most predictive of relapse/
death-free survival. The test cohort error rate was 12.47%, and a polygenic score based on the sum of
the top 7 variables effectively stratified patients into two groups, with significant differences in time
to relapse/death (log-rank P = 0.001, hazard ratio = 5.41). Our model outperformed other EFS modeling
approaches including an RSF using gold-standard prognostic variables (error rate = 24.35%). Validation
in 174 standard-risk patients and 3 patients who failed to respond to induction therapy confirmed that
our RSF model and polygenic score were specific to high-risk disease. We propose that our feature selec-
tion/engineering approach can increase the clinical interpretability of RSF, and our polygenic score could
be utilized for enhance clinical decision-making in high-risk B-ALL.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the United States, approximately 3,700 new cases of pediatric
leukemia are diagnosed every year, with 80% of those cases being
acute lymphoblastic leukemia [1]. Pediatric acute lymphoblastic
leukemia (ALL) is the most common childhood malignancy, affect-
ing 5 out of every 100,000 children and representing 24.9% of all
childhood cancers [1]. Most pediatric ALL cases (approximately
80%) are classified as ALL of the B cell lineage (B-ALL). These
patients are further subdivided into standard- and high-risk
groups, where high-risk classification is defined based on the pres-
ence of one or more factors: white blood cell count (WBC) > 50,000
at diagnosis, age of onset > 10 years old, hypodiploidy at the time
of diagnosis, a variety of gene fusions, or poor response to induc-
tion therapy (e.g., prednisone). This risk stratification strategy is
used to guide treatment regimen selection, but despite receiving
more intensive treatment, high-risk patients continue to have
worse outcomes. For standard-risk patients, the 5-year negative
event rate, defined as 1 - event-free survival (EFS; the time
between clinical remission and first recurrence or negative event
such as death) is approximately 11% [2], whereas high-risk patients
can have 5-year negative event rates up to 25% [3]. Interestingly,
high-risk patients exhibit heterogenous response to therapy, per-
haps due to their significant genomic diversity [4–6], implying that
high-risk patients may benefit from further disease subclassifica-
tion at diagnosis. Thus, accurately modeling and identifying molec-
ular markers of risk of relapse that are present at the time of
diagnosis in high-risk patients would facilitate personalized thera-
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peutic decisions that should improve outcomes in this disease [4–
6].

Typically, pediatric B-ALL (including high-risk patients) is trea-
ted with a long-term regimen of combination chemotherapy that is
broken into phases, including induction, consolidation, and main-
tenance, with the potential for further delayed intensification or
reconsolidation phases [7–9]. The first phase of chemotherapy is
referred to as the induction phase owing to its intent to potentially
induce remission in patients and is given during a continuous hos-
pital stay that typically lasts 28 days [7,8]. Induction therapy usu-
ally involves a combination of microtubule disruptors (such as
vincristine), anthracyclines (such as daunorubicin), metabolic inhi-
bitors (such as asparaginase), and corticosteroids (such as pred-
nisone), with high-risk patients receiving higher or more
frequent doses [3,7,10]. At the end of this phase, most patients
(both standard-risk and high-risk) are in clinical remission.
Patients who have not clinically responded to induction
chemotherapy or have evidence of high levels of minimal residual
disease (MRD) are typically treated with an extended induction
phase or changed to another more aggressive treatment regimen
[11–14]. After the induction phase, patients then transition to a
consolidation phase that lasts 4–8 weeks and involves high doses
of chemotherapy to eradicate any remaining cancer cells [7,8].
Chemotherapy classes used during consolidation typically match
those used during induction therapy, but the specific drugs can dif-
fer [7,8]. Once consolidation therapy ends, patients transition to a
maintenance phase that can last several years [7,8]. During main-
tenance, high-risk patients can receive delayed intensification or
reconsolidation phases, which typically mirror the first consolida-
tion phase.

Chemoresistance can lead to relapse any time after induction.
One of the hypothesized causes of chemoresistance is that genomic
mutations responsible for or which facilitate resistance are present
in some cells at the time of diagnosis and therefore could be uti-
lized as early predictors of event-free survival (EFS). In standard-
risk patients, several genomic markers that result in lower risk of
relapse have been identified, including trisomies of chromosomes
4 and 10 and ETV6-RUNX1 fusions [6,8,15], yet there is a lack of
similar markers of relapse in high-risk patients, and this represents
an unmet need that motivated our investigation of genomic deter-
minants present at the time of diagnosis in high-risk patients.

In recent years, machine learning models of prognosis and out-
comes have become popular methods to identify new candidate
biomarkers in cancer [16–19]. Diverse machine learning methods,
including support vector machines [19–26], Bayesian networks
[27–29], and neural networks [30–32], have used molecular and/
or clinical markers to predict cancer prognosis. Because machine
learning models are robust to a variety of challenges faced by tra-
ditional statistical models, they have the potential to enable more
nuanced therapeutic decision-making than has been previously
possible [17,18,33–36].

One machine learning method, random forest, has shown good
performance in oncology applications because it is well suited for
moderately sized datasets commonly seen in clinical settings
[37]. Random forests have been previously used to effectively pre-
dict outcomes for colorectal and gastric cancers using standard-of-
care variables, and these models showed better results than tradi-
tional Cox proportional hazards models [38,39]. The random forest
algorithm has been extended to a variety of clinical use cases,
including random survival forests, which are capable of modeling
time-to-event outcomes with censored data, such as EFS in our
study [40–42]. Previous oncology studies using random survival
forests have shown the ability of random survival forests to effec-
tively predict survival and identify novel panels of molecular
biomarkers in hepatocellular carcinoma [43], colorectal cancer
[44], and esophageal carcinoma [45], among others.
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Whereas traditional random forest approaches seek to predict
singular values, random survival forests predict cumulative hazard
functions for each patient, which represents the cumulative prob-
ability of a patient experiencing an event over time [40]. This
cumulative time-dependent probability function can naturally be
used to specify the predicted survival probability of a patient over
time [46]. Furthermore, random survival forests are especially rel-
evant for modeling outcomes based on genomic data, which often
includes many uninformative or weakly informative features that
are ineffective for survival prediction in other modeling
approaches. This is due to the variable subsampling and branch
selection components of the tree-building process, which can then
be translated into variable importance in the final models that
directly predict time-dependent probability of outcomes [41].

We report a random survival forest modeling pipeline with a
novel feature engineering approach to efficiently select input geno-
mic features, identify specific genomic regions of interest, develop
an accurate model that predicts EFS in high-risk B-ALL patients,
and meaningfully interpret the effects of candidate biomarkers
on survival. To achieve this goal, we used data from high-risk B-
ALL patients who had bone marrow whole exome sequencing per-
formed as a part of the TARGET-ALL study (n = 156), which was
then divided into training (n = 109, or 70% of the dataset) and test-
ing cohorts (n = 47, or 30% of the dataset). Our novel variable selec-
tion/engineering approach, which was applied to the training
cohort, identified the genes most predictive of EFS and selected
mutational hotspots in those genes, which maximized inter-
pretability in the final model. These variables were used as inputs
for our random survival forest model. This model identified 7 geno-
mic regions of particular significance for predicting EFS. Further-
more, our random survival forest model outperformed several
other EFS modeling approaches, including a random survival forest
wherein variables were eliminated using recursive feature elimina-
tion (a commonly utilized feature reduction approach), a multi-
variable Cox proportional hazards model, and a random survival
forest model using current gold-standard prognostic variables. Val-
idation in clinically diverse patient cohorts confirmed that our
model was specific for high-risk pediatric B-ALL.
2. Methods

2.1. Patients cohorts

The patient cohorts analyzed in this study (Table 1) were com-
prised of patients from the TARGET Pediatric ALL project, which is
derived from patients from multiple clinical trials. The patient
cohort (n = 156) used for training (n = 109) and testing (n = 47)
our original random survival forest represents a subset of patients
analyzed as part of the TARGET-ALL project who had high-risk dis-
ease (by COG criteria, newly diagnosed B-ALL age 1 to 9 years with
initial WBC � 50,000/lL or 10 to 30 years with any initial WBC)
and were treated on COG protocol AALL0232 (clinical trial #:
NCT00075725) [47]. Inclusion criteria for our study were availabil-
ity of paired tumor-normal whole exome sequencing data in the
dbGap database (project accession number phs000218.v24.p8)
and complete clinical data in the TARGET-ALL data matrix [48].

All patients on COG protocol AALL0232 received a multi-phase
regimen based on the combination of vincristine, daunorubicin,
cytarabine, mercaptopurine, pegaspargase, methotrexate, and a
corticosteroid, although the corticosteroid used (prednisone or
dexamethasone) and methotrexate dosing schedules during main-
tenance phases varied. After induction therapy consisting of vin-
cristine, daunorubicin, pegaspargase, methotrexate, and
corticosteroids, patients were evaluated for MRD and clinical
remission. This protocol (AALL0232) only included high-risk



Table 1
Overview of cohorts used in this study.

Subset Number of
patients

Induction
duration

Clinical trial Purpose

High-risk B-ALL 156 4 weeks* COG AALL0232 (NCT00075725) Model training and
testing

Training cohort 109 4 weeks* COG AALL0232 (NCT00075725) Model training
Testing cohort 47 4 weeks* COG AALL0232 (NCT00075725) Model testing
High risk B-ALL with induction

failure
3 6 weeks COG AALL0232 (NCT00075725) to rescue therapy at physician’s

discretion after failure
Validation

Standard-risk B-ALL 174 4 weeks COG AALL0331 (NCT00103285) Validation

* Patients with MRD > 1% at day 29 could receive up to 6 weeks of induction therapy
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patients with favorable response to induction therapy. Patients
with postinduction MRD > 1% and < 25% received two extra weeks
of induction chemotherapy and were included in this protocol
upon favorable response. According to this protocol, patients
with > 25% postinduction MRD or failure to respond to induction
chemotherapy were removed from the original trial. Patients
who responded to induction therapy and, in addition, had < 1%
MRD continued to consolidation therapy with cyclophosphamide,
cytarabine, mercaptopurine, vincristine, pegaspargase, and
methotrexate and then maintenance therapy with a variety of dif-
ferent methotrexate and corticosteroid doses. Patients received
one or two delayed intensifications of vincristine, dexamethasone,
doxorubicin, pegaspargase, cyclophosphamide, cytarabine,
thioguanine, and methotrexate. Patients were followed for up to
10 years, with a primary endpoint of EFS. In our study, EFS was
defined as in clinical trial AALL0232: the time from clinical remis-
sion, with all patients included in this trial achieving remission
during induction therapy, to the time of first negative event. In
most cases, this negative event was relapse, although negative
events also included 7 deaths and 1 secondary myeloid neoplasm
as a result of chemotherapy. Patients who did not experience any
negative events after remission were considered censored at the
time of last follow-up. Clinicodemographic information for the
156 high-risk B-ALL patients included in our training and test sets
are shown in Table 2.

For further validation, we analyzed two additional patient
cohorts that were not included in any model training step. First,
we analyzed a validation set of 3 patients with postinduction
MRD > 25% to assess the efficacy of our model in patients who
never responded to induction therapy. We also analyzed another
set of 174 patients from the TARGET-ALL database. These patients
were diagnosed with standard-risk B-ALL and treated on COG pro-
tocol AALL0331 (clinical trial #: NCT00103285), with positive
response to induction (similarly to our original cohort) [2]. They
received a less intense treatment regimen that generally included
Table 2
Clinicodemographic data for the AALL0232 cohort and training and testing subsets.

Characteristic All AALL0232 (n = 156) Training coh

Age at diagnosis, mean (range) years 10 (1–21) 10 (1–21)
Sex, no. of patients
Male 95 67
Female 61 42

Race, no. of patients
White 117 84
Black 6 5
Asian 1 0
Pacific islander 4 4
Other/Unknown 28 16

Ethnicity, no. of patients
Hispanic or Latino 37 25
Not Hispanic or Latino 111 80
Unknown 8 4
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the same drugs as COG AALL0232, with trial arms focused on vary-
ing dose intensities during consolidation, maintenance, and
delayed intensification phases. This trial had a primary endpoint
of EFS. Clinicodemographic information for these validation
patients are shown in Supplementary Table 1.

All patients considered in our study had diagnostic bone mar-
row blast percentages above 70%, with most having bone marrow
blasts above 85%.

2.2. Whole exome sequencing

All sequencing data analyzed in this trial was whole exome
sequencing data. The whole exome sequencing methodology for
TARGET-ALL has been previously reported [49]. Briefly, libraries
were prepared using robotic workstations and then hybridized to
SeqCap EZ Exome 2.0 design (44 Mb, NimbleGen) probes. These
captured libraries were then sequenced on Illumina HiSeq 2000
platforms using the manufacturer’s recommended protocol to gen-
erate 100-basepair paired-end reads for a total of approximately
100 million reads per sample, with a targeted coverage of 20X or
greater in 95% of sequenced exons.

2.3. Bioinformatics analysis

An overview of our bioinformatics strategy is shown in Supple-
mentary Fig. 1. Briefly, raw tumor and normal (germline control,
derived from blood or normal bone marrow cells) whole exome
sequencing FASTQ files generated by the TARGET-ALL project were
obtained from the dbGap database (study accession number
phs000218.v24.p8) and were downloaded using fasterq-dump
from the SRA Tools package (ver. 2.10.8) [50]. We then used bcbio
(ver. 1.1.5) [51] to align raw reads to GRCh38.p13 using bwa-mem
(ver. 0.7.1) [52], which generated BAM files, and performed base
quality score recalibration using GATK (ver. 4.1.2) [53] and dupli-
cate marking using picard (ver. 2.21.1) [54]. Processed BAM files
ort (n = 109) Testing cohort (n = 47) P-value (training versus testing)

10 (1–21) 0.44
0.96

28
19

0.21
33
1
1
0
12

0.75
12
31
4
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were then used for somatic variant calling using VarDict (ver. 1.6)
[55], and variants were filtered using a minimum per-patient vari-
ant allele frequency (VAF) of 10%, a minimum coverage level of 20
reads, and a mean phred score > 22.5. Variants were annotated
with ANNOVAR (ver. 20191024) using ENSEMBL annotations [56].

2.4. Stratified sampling for training and test cohorts

An overview schematic of our modeling strategy is presented in
Fig. 1. The high-risk patient cohort was separated into training and
test cohorts using stratified sampling based on National Cancer
Institute (NCI) risk criteria (age and WBC count at the time of diag-
nosis) discretized by quartiles. The training cohort contained 109
patients (70% of the total cohort), and the testing cohort contained
47 patients (30% of the total cohort). Clinicodemographic informa-
tion and P-values for significant differences are shown in Table 2.

2.5. Variable selection/engineering

The initial variable set consisted of all nonsynonymous variants
passing our bioinformatic filtering criteria mentioned above
(69,215 variants). Any gene that contained nonsynonymous vari-
ants in>20% of patients in the training set was selected (2,543
genes). All further variable selection/engineering was performed
specifically on the training cohort.

The variable selection/engineering step for our machine-
learning model used a three-stage approach. In the first stage, vari-
ants in the selected genes were collapsed into gene-level variables
with each variable representing the variant with the highest VAF in
a given gene for a given patient. This was done to reduce the spar-
sity of the variant-level data to a level appropriate for downstream
modeling. To obtain clinically meaningful variables, each variable
was used as input for a univariable Cox proportional hazards
model using EFS as the endpoint. Genes with Wald P-
values � 0.05 were selected as significant (n = 106 genes).

In the second stage of feature selection/engineering, the 106
genes were used as candidates for positional feature engineering.
Positional feature engineering was performed by examining vari-
ant prevalence across all positions in a gene’s exons and using that
prevalence to generate derived variables. For genes where > 60% of
variants were located in a specific subregion of the gene, the geno-
mic variable was ‘‘trimmed” to cover only that hotspot region. For
genes where � 60% but � 40% of variants were located in a specific
subregion, the gene was split into two variables, with one variable
representing the hotspot region and another variable representing
the rest of the gene. Genes with no clear hotspots for somatic
mutations were defined by regions containing all exons for that
gene. In the case of multiple variants in a single region or gene
for a patient, the variant with the highest VAF was selected. All
selected regions are listed in Supplementary Table 2 (n = 64
regions derived from 48 genes).

Finally, in the third stage of feature engineering, these selected
regions were assessed for collinearity, which can negatively affect
the estimation of random forest variable importance [57,58].
Specifically, variables were subjected to pairwise correlation test-
ing using Spearman’s q, and the resulting correlogram was clus-
tered using Ward’s method. There were no statistically
significant correlations, and none of the candidate variables
showed correlation values above 0.5 or below �0.5, so all were
retained for random forest training.

2.6. Pathway analysis

Candidate variables were analyzed for pathway membership
using the STRING database (v11) [59]. Interaction settings for this
STRING analysis were set to only the highest confidence interac-
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tions (STRING confidence score > 0.9) [60], with no>20 interactors
in the first or second shell. Significant enrichment was defined as a
false discovery rate-corrected (FDR) P-value � 0.05.

2.7. Random survival forest models

Variables remaining after all three feature selection/engineering
stages were used as input variables to train a random survival for-
est to predict EFS in B-ALL patients, using the training cohort. Ran-
dom survival forests were constructed using the randomForestSRC
package (ver. 2.9.3) [40,42,61]. Survival objects were constructed
using the survival package (ver. 3.1.8) [62], with events classified
as any negative event, including relapse, death, or secondary
malignant neoplasm. Performance was measured using Harrell’s
concordance index (C-index), with error rates defined as the value
of 1-C-index [63,64]. For all forests, the log-rank statistic was used
as a splitting rule [65]. Due to the large number of variables in our
dataset and the negative effects of bagging on performance estima-
tion and tuning, all forests used sampling without replacement
[66,67].

Forest tuning parameters included: (i) the number of variables
assessed at each split (i.e., ‘‘mtry”), (ii) the maximum number of
samples in the terminal (leaf) nodes (i.e., ‘‘nodesize”), and (iii)
the maximum number of trees (i.e., ‘‘ntrees”). The mtry and node-
size variables were optimized using a grid search approach to max-
imize C-index over the training cohort. Most iterations of the
ntrees tuning grid search converged to stable C-index values
between 2,000 and 3,000 trees, so the upper limit of 3,000 trees
was selected.

After the model was built, variable importance in the final ran-
dom survival forest model derived from the training cohort was
assessed using (i) variable permutation; and (ii) maximal subtree
analysis [68,69]. Elbow analysis identified an inflection point in
variable importance by random permutation after the 7th variable,
so the top 7 variables by permutation were selected for more in-
depth analysis. These variables were further analyzed using pair-
wise maximal subtree analysis to identify any significant interac-
tions. Finally, the sum of the VAF values of the top 7 variables
were used to generate an aggregate linear model for predicting
EFS outcome.

Model performance was initially validated using the test cohort
of patients. For this validation, patient outcomes were masked, and
the probability of EFS over time was predicted for each patient in
the test set. To evaluate how accurately the model predicted out-
comes, the initial EFS information was unmasked, and model per-
formance was estimated using C-index error rate and time-
dependent ROC-AUC [70]. For clinical model applicability, a cutoff
value for the aggregate top-7 variable score (or polygenic score)
was defined using the rounded mean of the distribution of the
score to cluster patients into high 7-variable (>0.5; n = 43) and
low 7-variable (�0.5; n = 66) sub-groups, and their survival was
compared using Kaplan-Meier survival analysis, using log-rank test
for significance and Cox proportional hazards for hazard ratio
estimation.

For validation in other sample sets, the random survival forest
and polygenic score were applied to both the induction failure
and standard-risk validation cohorts, and results were assessed
in the same manner as they were for the test set.

2.8. Performance comparison to other modeling strategies for EFS

To a demonstrate the advantages of our model over other com-
mon modeling strategies, we have compared performance of our
model to (i) a random survival forest with recursive feature elimi-
nation and (ii) traditionally used multivariable Cox proportional
hazards modeling.



Fig. 1. Schematic representation of study design. Patients were split into training and test cohorts, and the training cohort was used for feature selection/engineering and
training the random survival forest. The trained random survival forest was then interrogated to identify potentially informative biomarkers and used to generate test set
predictions. These test set predictions were compared to several other models and variable sets applied to the same test data.
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First, we compared our model to a random survival forest model
with a reduced variable set selected using recursive feature elimi-
nation to test its effect on model performance [57,71]. The starting
point for this approach was the same training cohort and variables
that were used to generate the base random survival forest model.
At each iteration of recursive feature elimination, a random sur-
vival forest was tuned and trained on our training cohort, and
the variable with the lowest importance by random permutation
over 10-tree blocks [72,73] was eliminated for all subsequent iter-
ations, and each iteration was assessed for performance on the test
cohort. The recursive feature elimination procedure was continued
until out-of-sample error and test set error (both assessed by C-
index error rate) converged.

Second, we compared our model to a traditionally used white-
box machine learning technique, a multivariable Cox proportional
hazards model. We used a stepwise approach to generate the final
Cox model. First, variables from the feature selection/engineering
step (n = 118) were filtered to remove any variables that violated
the proportional hazards assumption of the Cox model by testing
the Pearson product-moment correlation between Schoenfeld
residuals and EFS time (n = 7 with P-value < 0.05) [62]. Variables
with correlation P-values for time dependence � 0.05 (n = 111)
were used as inputs for a multivariable Cox proportional hazards
model. This analysis identified 29 significant variables (Wald P-
value < 0.05), which were used as inputs for the final multivariable
Cox model. The final Cox model identified 16 significant variables
(Wald P-value < 0.05) and was used for comparison with our orig-
inal random survival forest model.

2.9. Performance comparison to known markers of B-ALL risk

Finally, we sought to compare the efficacy of our original geno-
mic random survival forest model to a random survival forest
model limited to known clinical variables (e.g., WBC at diagnosis)
and known markers of aggressiveness (e.g., TCF3-PBX fusion),
Table 3
Prognostic features for the AALL0232 cohort and training and test subjects.

Characteristic All AALL0232 (n = 156) Training coh

WBC at diagnosis, mean (range) K/mL 78.412 (0.6–463) 76.1 (0.6–3
CNS status at diagnosis, no. of patients
CNS1 138 91
CNS2 27 15
CNS3 5 3

ETV-RUNX1 fusion status
Positive 32 16
Negative 132 88
Unknown 6 5

TCF-PBX1 fusion status
Positive 8 5
Negative 112 77
Unknown 50 27

BCR-ABL1 fusion status
Positive 6 6
Negative 163 102
Unknown 1 2

Trisomies 4/10 status
Positive 23 17
Negative 144 89
Unknown 3 3

MLL status
Positive 9 5
Negative 158 101
Unknown 3 3

Down syndrome
Positive 2 1
Negative 168 108
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which represent the current gold-standard for prognostic scoring
in pediatric B-ALL (Table 3). These clinical and fusion variables
were collected according to COG protocol AALL0232 and used as
input variables to construct a new model using the same patients
included in the training cohort from the original random survival
forest model. This model based on clinical and fusion variables
was tuned and trained using the same approach described for
the original model, although this model’s performance stabilized
with <1,000 trees, perhaps because the limited number of variables
represented a much smaller feature space.

2.10. Statistical methods and software

All analyses were conducted using R version 3.6.1. Statistical
significance was set at P-value � 0.05. Differences between contin-
uous clinical variables were assessed using Student’s 2-sided t-test
(t.test function from base R), and differences in categorical variable
frequencies were assessed using the Chi-squared test (chisq.test
function from base R). Model performance evaluation and compar-
ison was done using out-of-sample C-index error rate and test set
C-index error rate.

3. Results

3.1. Training and test set selection

The high-risk B-ALL patient cohort (n = 156 patients) was split
into training and test cohorts using stratified sampling based on
age and WBC count at diagnosis. This resulted in a training cohort
of 109 patients and a test cohort of 47 patients, and there were no
statistically significant differences in clinical or histopathological
variables between groups (Table 2).

EFS throughout this study was defined as in the clinical trial
NCT00075725. Specifically, EFS was defined as the time from clin-
ical remission (which occurred during induction therapy in this
ort (n = 109) Testing cohort (n = 47) P-value (training versus testing)

74.7) 84.2 (1–463) 0.62
0.30

34
11
2

0.11
13
33
1

0.94
1
28
18

0.23
0
47
0

0.53
5
42
0

0.97
3
44
0

1
1
46
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cohort) to first event the patient experienced, which could include
relapse, death from disease, or secondary myeloid neoplasm, or to
the last follow-up (Fig. 2A).

3.2. Variable selection/engineering

Variable selection/engineering consisted of a three-stage pro-
cess (Fig. 2B) with the goal of reducing the variable space, minimiz-
ing model overfitting, and enhancing prediction interpretability.
We started with 69,215 non-synonymous variants identified in
whole-exome sequencing data (Fig. 2B). Collapsing these variants
to the gene level and filtering for frequency (see Methods) resulted
in 2,543 candidate genes in the training cohort for variable selec-
tion/engineering.

In the first stage of variable selection/engineering, we applied a
univariable Cox proportional hazards model to each of the 2,543
candidate variables to evaluate their ability to predict EFS. Signifi-
cant Wald P-values (P-value < 0.05) derived from these univariable
Cox proportional hazards models were used to reduce the variable
space to 106 variables (Fig. 2C).

In the second stage, these 106 genes were converted into posi-
tional variables by truncating or splitting on specific genomic coor-
dinates with an emphasis on identifying mutational hotspots, as
defined by prevalence in the training cohort (see Methods), to
increase disease specificity and reduce noise associated with ran-
dom mutation, which resulted in 118 variables (Fig. 2D; Supple-
mentary Table 2). In particular, out of 106 genes, our positional
selection approach identified 33 genes where most variants were
present in a small region, or hotspot, which allowed us to define
one narrow genomic regions for each of those variables. Further-
more, 14 genes were split into 2 variables, and one gene (OTOA)
was split into 3 variables due to 3 distinct hotspots. The remaining
58 genes did not show any evident hotspots, and in those genes,
the somatic variant with the highest VAF across all exons in the
gene was used as a variable. This stage of variable selection/engi-
neering expanded our variable set from 106 genes to 118 genomic
regions. These 118 variables were assessed for any co-linearity,
which can negatively affect the interpretability of random forest-
based models, and no significant correlations (Spearman q > 0.5
or < �0.5) were found (Fig. 2E), which resulted in 118 variables uti-
lized as inputs for our machine learning pipeline.

3.3. Pathway analysis

Pathway analysis was conducted for the 106 input genes that
represented the 118 final variables using the STRING database
[59]. Of the 106 analyzed genes, 83 genes were characterized using
Benjamini-Hochberg corrected P-values for enrichment in local
STRING network clusters (Fig. 2F) [59]. Twenty-nine pathways
(as represented by local network clusters in the STRING database)
were significantly enriched in the data. Among these network clus-
ters, the 5 clusters with the lowest corrected P-values were all
associated with homologous DNA repair or DNA replication, and
4 other clusters out of 29 were associated with other aspects of
DNA damage repair or associated diseases, such as Fanconi anemia.
Among the remaining 20 interaction clusters, 4 were associated
with insulin-like growth factor (IGF) signaling pathways, and 4
were associated with extracellular signaling pathways.

3.4. Model tuning and training

Fig. 3A shows a schematic representation of random survival
forest training and the hyperparameters optimized in this study:
minimum terminal leaf node size (nodesize), number of variables
considered at each split (mtry), and number of trees in the forest
(ntrees). Using 118 input genomic variables across the 109-
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patient training cohort, we tuned the hyperparameters of our ran-
dom survival forest model of EFS using a grid search approach. This
hyperparameter tuning identified optimal hyperparameters of a
minimum terminal node size = 1 and a number of variables tested
per split = 32 (Fig. 3B), and 3000 trees (Fig. 3C). We utilized these
parameters to run the training step for our random survival model.
This model training resulted in an out-of-sample (OOS) error rate
(1-C-index) of 17.93%, with aggregate predictions for training
cohort outcomes shown in Fig. 3D, indicating that our model was
highly accurate.

3.5. Evaluating variable importance

To identify variables with strong association with EFS in pedi-
atric B-ALL, we conducted variable importance analysis on our
trained random survival forest model. This analysis used variable
permutation [42,68] (see Methods) and identified 7 variables that
had a significantly greater effect on OOS error than the rest of
the variable set (Fig. 4A), with variable frequencies shown in Sup-
plementary Table 3. Further investigation of these variables by
pairwise maximal subtree analysis [68–69] showed that none of
these interactions approached the variable significances of each
variable alone (Fig. 4B). Interestingly, out of the top 7 genes in
the random survival forest, 3 genes (SBF1, DNAI4, and DNAAF5)
were members of the STRING local cluster associated with the
dynein complex and primary ciliary dyskinesia.

To enhance the clinical interpretability of our model, we further
investigated the relationship between each of these top 7 variables
and EFS (Supplementary Fig. 2). In most cases, the relationship
between variable value and EFS there was a tendency toward an
inverse relationship between variable VAF and time to negative
event (Supplementary Fig. 2), which motivated us to aggregate
the VAFs of the 7 variables into a single polygenic score, defined
as the unweighted sum of VAFs for all top-7 variables in each
patient. The resulting score showed a clear negative linear relation-
ship (slope of the regression line b = -936.7; P-value = 0.0009) with
time-to-event in patients who experienced negative events in the
training cohort (Fig. 4C). Conversely, there was no significant asso-
ciation between the polygenic score and time to last follow-up in
patients who did not experience events (slope of the regression
line b = 104.8; P-value = 0.7). Finally, we sought to evaluate the
clinical utility of this score in the training cohort. We divided
patients into two groups based on the mean value of the polygenic
score among the training cohort, with one group having a poly-
genic score > 0.5 (n = 43), and the other having a score � 0.5
(n = 66), and subjected them to Kaplan-Meier survival analysis
(log-rank P-value = 6*10-8) and Cox proportional hazards analysis
(hazard ratio: 9.24 [3.49, 24.48]), with higher score values being
associated with worse outcomes (Fig. 4D).

3.6. Random survival forest: Model testing

After our model was trained, the next step of our analysis was to
test the model’s ability to make accurate predictions in our test
cohort (n = 47; Fig. 5A). In the test cohort, our random survival for-
est model effectively predicted lower EFS in patients who experi-
enced events versus those who did not, with test cohort error
rate (1 - C-index) of 12.47% (Fig. 5B), and this model had a time-
dependent ROC-AUC value of 92.9% with a 95% confidence interval
of [83.8,100] (Fig. 5C), indicating high predictive accuracy in our
model. Similar to the training cohort, patients who experienced
events were more likely to have higher VAFs or multiple mutations
in the top-7 genes than patients who did not experience events
(Fig. 5D).

Furthermore, to confirm the clinical utility of our polygenic
score, we assessed its efficacy in our test cohort. When we divided



Fig. 2. Feature selection/engineering against training cohort variants produces a reduced feature space of non-correlated variables. (A) Schematic illustrating common EFS
scenarios. EFS is considered as the time from clinical remission to the time of first event or last follow-up. Events and last follow-up could occur in any treatment phase after
remission. (B) Schematic illustrating the steps used for variable selection/engineering. (C) Scatter plot of univariable Cox beta values as a function of Wald P-values, where Cox
estimated ability of each variable to predict EFS. Selected variables are represented by purple triangles. (D) Example of positional selection approach in the gene GRIN2C. A
single hotspot region contained > 60% of all variants found in GRIN2C in this dataset, and that region was selected. (E) Correlogram showing low Spearman’s q values for all
variables used in this study. (F) STRING cluster membership and interactions among selected variables. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. Trained random survival forest model is highly accurate. (A) Schematic illustrating the general random survival forest algorithm as well as key hyperparameters. (B)
Hyperparameter tuning grid and interpolated performance surface for minimum terminal node size and number of variables used per split. Lower values of OOS error (better)
are colored in orange, and higher values are colored in blue. White dots represent each tested grid point, with the minimal training error identified by an X (node size = 1;
variables per split = 32). (C) Cumulative OOS performance versus number of trees up to 3000 in the random survival forest using final nodesize and mtry parameter settings.
(D) Aggregate predicted EFS and 95% confidence intervals for training cohort patients who experienced events (red) and did not (teal), with OOS error rate (1 – C-index) of
17.93%. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Z.S. Bohannan, F. Coffman and A. Mitrofanova Computational and Structural Biotechnology Journal 20 (2022) 583–597
the test cohort into two groups based on the polygenic score, as in
the training cohort above (>0.5; n = 15, and � 0.5; n = 32), there
was a statistically significant difference in survival outcomes
between the groups (log-rank P-value = 0.001; Fig. 5E). The hazard
ratio associated with this measure was 5.41, with a 95% confidence
interval of [1.754,16.66]. This indicates that the polygenic score
can effectively identify patients with lower and higher risk of neg-
ative events in high-risk pediatric B-ALL patients.

3.7. Comparison to other models: Recursive feature elimination and
multivariable Cox proportional hazards

To understand the advantages of our modeling approach in
comparison to other survival modeling strategies, we compared
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our original random survival forest model to both a random sur-
vival forest model using recursive feature elimination and a multi-
variable Cox proportional hazards model (Fig. 6). First, to
understand the efficacy of our feature selection/engineering
approach, we used a common variable selection method, recursive
feature elimination, with a termination criterion of equalization
between out-of-sample and test cohort error (see Methods). This
approach eliminated 26 variables out of the original 118 variables,
and as iterations progressed, out-of-sample error rate in the train-
ing cohort and test cohort error rates converged. The final random
survival forest after recursive feature elimination used 92 genomic
variables and had an out-of-sample error rate (1-C-index) in the
training cohort of 15.49%. This model’s out-of-sample error rate
in the training cohort (15.49%) was lower than that seen in the



Fig. 4. Model identifies 7 variables strongly associated with EFS. (A) Variable importance by permutation in our random survival forest model, highlighting the top 7 variables
that were identified by elbow analysis. (B) Pairwise subtree analysis showing weak interactions between most of the top 7 variables. (C) Linear models of the sum of the top 7
variables (polygenic score) in our random survival forest versus patient outcomes. Event = red; no event = teal. (D) Kaplan-Meier curves of patients with polygenic score > 0.5
(n = 43) and � 0.5 (n = 66). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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original random survival forest (17.93%). The test cohort error rate
for the recursive feature elimination model was 15.49%, which was
higher than the test cohort error rate for the original random sur-
vival forest model was 12.47% (Fig. 6A). These results imply that
recursive feature elimination could potentially lead to model over-
fitting in the training cohort and underperformance in the test
cohort, in comparison to our feature selection/engineering
approach.

Second, to evaluate the performance of our random survival for-
est model in the context of more traditional survival modeling
methods, we constructed a multivariable Cox proportional hazards
model using a typical stepwise approach (see Methods). Several
variables that were highly important in the random survival forest
model were unsuitable for the multivariable Cox model due to sig-
nificant violations of the proportional hazards assumption, which
is not a requirement for random survival forests. The final multi-
variable Cox model consisted of 30 variables, and the training set
error rate (1-C-index) of 5.7%, which is characteristic for maximum
likelihood-based models such as Cox proportional hazards. How-
ever, the test cohort error rate for our multivariable Cox propor-
tional hazards model was 28.7%, indicating that multivariable
Cox underperformed when compared to our original random sur-
vival forest model (test cohort error rate = 12.47%).

3.8. Comparison to clinical variables and known markers of
aggressiveness

To compare our identified variables to current gold-standard
prognostic variables with respect to predicting EFS, we trained a
592
random survival forest model based on 16 prognostic variables
that represent current gold-standard variables for prognostic risk
classification for pediatric B-ALL patients (Fig. 6B; Table 3). A grid
search tuning strategy identified amaximum terminal node size = 8
and a number of variables to try per split = 3. The error rate con-
verged before 1000 trees. This tuned random forest model had
an out-of-sample error rate (1 - C-index) of 32.79% in the training
cohort. The variable importance metrics seen in the gold-standard
prognostic variable model generally recapitulate current knowl-
edge, with WBC at diagnosis and MRD at day 29 being the most
predictive variables and fusions also being important for predicting
outcomes (Fig. 6B). The test cohort error rate for the random sur-
vival forest using gold-standard prognostic variables was 24.35%.
The gap between test cohort performance in the original random
survival forest model (error rate: 12.47%) and the gold-standard
prognostic variable model implies that the identified genomic vari-
ables may provide additional information to effectively assess risk
of negative events (as represented by EFS) in patients with high-
risk B-ALL.

3.9. Model evaluation in B-ALL clinical subtypes

To assess the applicability of our original random survival
model for B-ALL clinical subtypes, we analyzed 3 cohorts of
patients: (1) high-risk patients who received 2 additional weeks
of induction therapy (which were a subset of our original cohort),
(2) high-risk patients who never responded to induction therapy,
and (3) standard-risk patients that responded favorably to induc-
tion. High risk patients who never responded to induction therapy



Fig. 5. Random survival forest accurately predicts test cohort outcomes. (A) Schematic representation of model testing strategy. (B) Predicted per-patient EFS probabilities
over time for each patient in the test cohort. (C) Time-dependent ROC-AUC for random survival forest test set performance. (D) Prevalence and values of top 7 variables in
each test cohort patient. Patients were clustered by event status and time to event/censoring. (E) Kaplan-Meier curve for patients with top-7 variable sums>0.5 (n = 15) versus
less than or equal to 0.5 (n = 32).
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(group 2) and standard risk patients that responded favorably to
induction (group 3) were not used for any previous training or test-
ing step and were utilized for external model evaluation only. To
understand if our model performed well in patients who received
additional induction therapy, we selected a subset of patients
who received 2 weeks of extended induction due to MRD > 1% at
day 29 in our initial patient cohort. Our original high-risk patient
cohort contained 12 of these patients, with 9 in the training cohort
and 3 in the test cohort, and we specifically assessed model perfor-
mance in these 3 patients. All 3 patients in the test cohort had pre-
dicted probabilities of EFS that were representative of their final
outcomes, resulting in a test set error rate of 0% (Supplementary
Fig. 3A), indicating that our model provides accurate predictions
for this patient subset.

To assess the specificity of our model, we also evaluated its per-
formance in two additional patient cohorts: patients who never
responded to induction chemotherapy and standard-risk B-ALL
patients. Although publicly available whole exome sequencing
data for patients who never responded to induction therapy in
pediatric ALL are relatively rare, we were able to identify 3 patients
who had postinduction MRD > 25%. Among these 3 patients, there
was only one variant detected in any of the 118 genomic regions
used in our original random survival forest model. Because nearly
all variable values were 0 for these patients, our random survival
forest model had an error rate (1 – C-index) of 50% in these
patients, potentially indicating a different genomic landscape for
this group of patients. Another caveat of this analysis is that these
patients all had precursor B-cell disease, and the discrepancies in
genomics may be confounded by that fact. However, due to the
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small sample size, it is difficult to definitively conclude whether
this lack of variants is biologically relevant or simply a result of
the small sample size.

Finally, we analyzed a larger cohort of standard-risk B-ALL
patients that responded favorably to induction (n = 174) and
showed that our model had an error rate (1 – C-index) of 45.4%
(Supplementary Fig. 3C and D). Furthermore, our 7-gene polygenic
score was unable to predict survival outcome in this standard-risk
cohort (log-rank P-value = 0.3; Supplementary Fig. 3E). These find-
ings indicate that our original random survival forest model and
polygenic score were both specific for high-risk B-ALL.
4. Discussion

Here we report a machine learning pipeline that produced a
random survival forest model to accurately predict the EFS of
patients with high-risk pediatric B-ALL and identified 7 genomic
regions that are predictive of EFS (test error rate: 12.47%; time-
dependent ROC-AUC: 92.9%). Furthermore, our novel feature selec-
tion/engineering strategy was able to effectively filter a starting
pool of over 65,000 candidate somatic variants down to a final list
of 118 genomic regions. Of the 118 variables, 7 in particular
showed higher individual variable importance in our model. A
polygenic score representing the sum of nonsynonymous variant
allele frequencies present in these 7 genomic regions clearly iden-
tified patients at higher risk of relapse or other negative events.
However, it should be noted that various arms of trial AALL0232
received slightly different treatment regimens that could affect



Fig. 6. Original random survival forest approach with feature selection/engineering outperforms other commonmodeling approaches. (A) Original random survival forest EFS
predictions for the test cohort versus random survival forest with recursive feature elimination and multivariable Cox proportional hazards models of EFS for the same cohort.
(B) Test cohort EFS predictions for a random survival forest generated using current gold-standard prognostic variables and variable importance (assessed by variable
permutation) in that model.
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EFS in the analyzed patients, and thus, it is challenging to directly
mechanistically relate variables in this study to a specific regimen.

Innovations in this study includes a multi-stage feature selec-
tion/engineering strategy to reduce overall variable space, mini-
mize model overfitting, and enhance prediction interpretability.
First, the use of univariable Cox proportional hazards models as
an initial variable selection step in our modeling pipeline repre-
sents a computationally efficient way to select genes that are
specifically associated with EFS and thereby significantly reduce
the size of a whole-exome variable set. We recognize that some
edge cases, such as non-proportional hazards, may result in spuri-
ous inclusion of variables. However, the inclusion of these vari-
ables in the model does not affect random survival forest
performance, and such variables will have low variable importance
in the final model [61,69].

The second stage of variable engineering/selection was to engi-
neer variables based on specific genomic positions, which greatly
enhanced the utility of our model by allowing us to identify speci-
fic genomic regions associated with EFS. In our study, defining vari-
ables using specific genomic coordinates rather than entire genes
594
allowed us to leverage our model to identify several key genomic
regions which can potentially affect gene function.

For example, we specifically identified variants in the C-
terminal region of SBF1 as important for EFS. SBF1 has been iden-
tified as a driver of lymphoid proliferation due to its ability to bind
SET domain proteins with its catalytically inactive phosphatase
domain [74]. However, in this study, the most relevant region of
SBF1 was not the phosphatase domain but rather a C-terminal
region that contains a pleckstrin homology domain, which is a
common domain responsible for membrane localization and is
associated with cytoskeletal dynamics [75], and pleckstrin homol-
ogy domain mutations have been previously identified as driver
mutations in a large number of cancers [76,77].

In fact, this region of SBF1 is of particular interest because of its
association with the ciliary cytoskeleton. Cilia represent highly
active extracellular signaling structures, and their disruption has
recently been identified as a mechanism of chemotherapy resis-
tance and progression in a variety of cancers [78–80]. Our findings
in the context of this data imply that poor outcomes in high-risk
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pediatric B-ALL may be driven, in part, by disruptions in primary
cilia function.

In addition to cilia-associated genes, the most significant vari-
able in our model was a region of GRIN2C, an NMDA receptor that
may have effects on hematopoietic differentiation by controlling
calcium homeostasis in differentiating cells [81,82]. Although the
full structure and function of this gene has yet to be elucidated,
we identified a narrow 50-basepair region in GRIN2C’s N-
terminal extracellular domain that is significantly associated with
accelerated relapse in high-risk pediatric B-ALL patients. Because
GRIN2C has been associated with hematopoietic differentiation
and calcium influx, the region identified in this study may be
specifically associated with the gene’s behavior in hematopoietic
cells or chemotherapy response.

Our top-7 variables also included other genes with known asso-
ciations to chemotherapy response and outcome. With respect to
ciliary function, besides SBF1, our model also identified DNAI4
and DNAAF5, both of which are dyneins associated with primary
cilia. Finally, RPS6KA6 (also known as RSK4), another top-7 vari-
able, is a known driver of oncogenesis in a variety of tumor types
[83], and has been associated with chemotherapy resistance in
breast cancer [84].

Validation of this study in standard-risk B-ALL revealed that
both our random survival forest model and the polygenic score
derived from it were specific for high-risk B-ALL. Furthermore,
among a small cohort of high-risk B-ALL patients who did not
respond to induction therapy, there was very little genetic overlap
with our training cohort, with PCSK5 [85] being the only gene
mutated in both the induction failure cohort and the training
cohort. This resulted in an inability of our model to accurately pre-
dict outcomes in these patients. However, the patients in the
induction failure cohort were all diagnosed with precursor B-ALL,
which may also have different genomic drivers than mature B-
ALL. Furthermore, the sample size in this dataset was small, so it
is possible that these findings are a results of low sample size
and may not be representative of induction failure patients as a
whole.

Many machine learning strategies, including random survival
forests, based on genomic variables are difficult to translate into
clinical use because they involve significant numbers of genes
and require whole-genome or whole-exome sequencing to assess
[34,86]. The level of sequencing coverage necessary for these
strategies can be prohibitive in terms of both cost and accessibility
[34–36]. Although our modeling strategy used whole-exome
sequencing for input data, our feature selection/engineering and
modeling pipeline showed significant correlations between EFS
and 7 genomic regions (which defined a polygenic score) with a
total size amenable to targeted sequencing. Well-validated meth-
ods exist to apply targeted sequencing panels to most human tis-
sues stored and/or transported under a variety of conditions, and
these panels are more cost-effective than whole-exome
sequencing.

This study presents a machine learning pipeline that employs
an innovative variable selection/engineering approach that offers
enhanced interpretability over other modeling strategies. We pro-
pose that the polygenic score comprised of 7 genomic variables
identified by our model could be utilized for enhanced clinical
decision-making in high-risk B-ALL.
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