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Identification of underlying mechanisms and hub 
gene-miRNA networks of the genomic subgroups 
in preeclampsia development
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Abstract 
Preeclampsia is a hypertensive disorder of pregnancy that can lead to multiorgan complications in the mother and fetus. Our study 
aims to uncover the underlying mechanisms and hub genes between genomic subgroups of preeclampsia.

A total of 180 preeclampsia cases from 4 gene profiles were classified into 3 subgroups. Weighted gene coexpression analysis 
was performed to uncover the genomic characteristics associated with different clinical features. Functional annotation was 
executed within the significant modules and hub genes were predicted using Cytoscape software. Subsequently, miRNet analysis 
was performed to identify potential miRNA–mRNA networks.

Three key subgroup-specific modules were identified. Patients in subgroup II were found to develop more severe preeclampsia 
symptoms. Subgroup II, characterized by classical markers, was considered representative of typical preeclampsia patients. 
Subgroup I was considered as an early stage of preeclampsia with normal-like gene expression patterns. Moreover, subgroup 
III was a proinflammatory subgroup, which presented immune-related genomic characteristics. Subsequently, miR-34a-5p and 
miR-106a-5p were found to be correlated with all 3 significant gene modules.

This study revealed the transcriptome classification of preeclampsia cases with unique gene expression patterns. Potential hub 
genes and miRNAs may facilitate the identification of therapeutic targets for preeclampsia in future.

Abbreviations: KEGG = Kyoto Encyclopedia of Genes and Genomes, MAPK = mitogen activated protein kinase,  
PE = preeclampsia, WGCNA = weighted gene coexpression network analysis.
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1. Introduction

Preeclampsia (PE) is characterized by hypertension and multior-
gan dysfunction (mainly heart, brain, and kidney) after 20 weeks 
of gestation. The condition may lead to long-term maternal 
and neonatal complications.[1] The global incidence rate of PE 
among pregnant women is 5% to 7%, and this pregnancy-spe-
cific disorder is responsible for over 70,000 maternal deaths and 
500,000 fetal deaths per year worldwide.[2] Several risk factors 
for progression of PE have been identified, such as previous 
medical history, environmental factors, oxidative stress, genetic 
factors, and immunologic dyshomeostasis.[3,4] There are limited 
clinical interventions for PE, such as antihypertensive drugs and 
magnesium sulfate therapy; these are used to relieve symptoms 
and prolong the gestational age. However, these therapies have 
a minimal effect in preventing the development of PE.[5] A subset 
of patients experiences severe PE symptoms, leading to termina-
tion of pregnancy.[6]

Studies have shown that PE progression can be divided into 
2 stages: starting with abnormal placentation and uteroplacen-
tal ischemia early in the first trimester and progressing toward 
excess production of antiangiogenic factors resulting in mater-
nal syndrome.[2,7] In the first stage, inadequate spiral arteriolar 
remodeling may cause intermittent hypoxia and reoxygenation 
contributing to oxidative stress.[8] Rajakumar et al[9] found over-
expression of HIF-1α and HIF-2α (markers of cellular oxygen 
deprivation) in proliferative trophoblasts and placental tissue 
of patients with PE. AP39, a mitochondrial targeting hydrogen 
sulfide donor, was found to decrease the expression of sFLT1 (a 
classic antiangiogenic factor) in placental tissues of PE patients 
to facilitate instability of HIF-1α.[10] In the later stage, there is 
accumulating evidence to suggest that PE is a proinflammatory 
disease with insufficient trophoblast invasion, which is char-
acterized by imbalance of interleukin-10 and proinflamma-
tory cytokines, leading to failure of T-cell differentiation.[11–13] 
The advent of microarray and high-throughput sequencing 
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technologies have provided a newfangled method to further 
understand the genetic and molecular mechanisms of PE. Gong 
et al[14] conducted high-quality RNA-seq study and found abun-
dant expression of several circ-RNAs, such as hsa-circ-0007444 
in PE cases. Moreover, miR-210 was shown to inhibit the pro-
liferation, invasion, and angiogenesis of trophoblasts through 
targeting mitogen-activated protein kinase (MAPK),[15] Notch 
homolog 1,[16] and potassium channel modulatory factor 1.[17] 
However, the precise etiopathogenetic mechanisms of PE are 
not clear and there is an immense need for identifying high risk 
groups and discovering novel therapeutic targets.

Here, we acquired data from 4 datasets (GSE10588, GSE25906, 
GSE60438 and GSE75010) from the Gene Expression Omnibus 
(GEO). We then divided PE patients into 3 subgroups and con-
structed a weighted coexpression network analysis of sub-
group-specific differentially expressed genes to investigate the 
genes associated with maternal and fetal complications. Significant 
gene coexpression modules and genes related to clinical charac-
teristics were identified. Furthermore, the brown, turquoise, and 
blue module gene network was constructed and hub genes were 
corroborated using Cytoscape. Finally, miRNAs related to these 
module hub genes were detected through miRNet, which may 
serve as biomarkers and therapeutic targets of PE.

2. Materials and Methods

2.1. Data preprocessing

Figure 1 illustrates the flowchart of the data preparation, pro-
cessing and analysis. As shown in Table 1, 4 datasets (GSE10588, 

GSE25906, GSE60438, and GSE75010) were downloaded from 
the GEO database (https://www.ncbi.nlm.nih.gov/geo/). Batch 
effects are subgroups of measurements that exhibit qualitatively 
different behavior across conditions and are unrelated to the bio-
logical or scientific variables in a study.[18] The R package “sva” 
was used to remove the batch effect among these platforms and 
the principal component analysis was conducted to evaluate 
the efficiency of batch-effect removal. Given that this study was 
based on the public database without human or animal exper-
iments, ethical approval and patient consent were not needed.

2.2. Verification of subgroup-specific genes and clinical 
characteristics among 3 subgroups

Samples were classified into different subgroups using consensus 
clustering, which was performed by K-means algorithm with the 

Figure 1. The flowchart of the data preparation, processing, and analysis. GO = Gene Ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes, 
WGCNA = weighted gene coexpression network analysis.

Table 1

Summary data of GEO database.

Dataset ID Platform No preeclampsia Preeclampsia 

GSE10588 GPL2986 50 21
GSE25906 GPL6102 37 23
GSE60438 GPL6884 65 60

GPL10558
GSE85307 GPL6244 101 47

GPL19162
GSE75010 GPL6244 173 157

GEO = Gene Expression Omnibus.

https://www.ncbi.nlm.nih.gov/geo/
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spearman distance. The maximum cluster number was 10 and 
the final cluster number was decided by the consensus matrix 
and cluster consensus score. Then, Wilcoxon sum-rank text was 
used to verify the differential expression of subgroup-specific 
genes among cases of each subgroup with the thresholds of 
Benjamini–Hochberg adjusted P < .05. The R package “ggpubr” 
was used to assess differences of maternal age, body mass 
index (BMI), gestational age, and infant z-score[19] between the 
subgroups.

2.3. Weighted gene coexpression network analysis 
construction

We used R package termed “weighted gene coexpression 
network analysis” (“WGCNA”)[20] to construct the coex-
pression network of the filtered genes, which could charac-
terize the biological function of each group. In this study, 
the soft-thresholding power was set to β = 5 (scale free R2 = 
0.9). The topological overlap matrix[21] was used to cluster the 
genes by analyzing the average linkage and Pearson correla-
tion. Next, we constructed a cluster tree with the following 
major parameters (cutHeight = 0.4; minimum module size 
= 55; deepSplit value = 2) and identified functional modules 
using hierarchical clustering analysis. Finally, the correlation 
between genes in functional modules and clinical character-
istics in the WGCNA package were assessed using Spearman 
correlation coefficient; P values of < .05 were considered 
indicative of statistical significance.

2.4. GO and KEGG analysis of Module genes

Gene set enrichment analysis (GSEA) was performed using 
GSEA software (version 4.1.0). The Gene Ontology (GO) and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses were performed with the module genes. 
The R package “clusterProfiler” was used to analyze GO and 
KEGG enrichment.[22] Terms with false discovery rate of <0.05 
and P value of <.05 were considered for subsequent analysis and 
the dotplot was processed using the R package “ggplot2.” The 
R package “pheatmap” was performed to create the heatmap of 
subgroups with KEGG significant terms.

2.5. Hub gene identification and module miRNA–mRNA 
network construction

Using Maximal Clique Centrality methods of cytoHubba pack-
age, Cytoscape software (version 3.8.0) was utilized to rank the 
candidate genes and the top 10 nodes were selected as the hub 
genes. By potentially affecting many biological processes (BPs), 
miRNAs, with potent posttranscriptional regulatory functions, 
are closely related to the occurrence and development of dis-
eases. Each miRNA would target hundreds of different genes 
and multiple miRNAs could regulate their target genes coop-
eratively. Through miRNet analysis (www.mirnet.ca) in human 
tissue PLACENTA, based on 11 well-annotated miRNA data-
bases, we could build miRNA-target interaction network and 
rank the miRNAs by number of interactions, which are most 
relevant to the hub genes studied.[23] Networks were visualized 
using Cytoscape software.

2.6. Statistical analysis

R software (v4.0.3) was used for statistical analysis. The cor-
relation between mutant genes and TMB was determined by 
the Mann–Whitney U test. The enriched functions associated 
with the differentially expressed genes were determined by the 
R package “clusterProfiler.” Two-tailed P < .05 was considered 
statistically significant for all comparisons.

3. Results

3.1. Clinic characteristics of PE subgroups

A total of 385 samples (180 PE subjects and 205 no-PE cases) 
from 4 independent GEO datasets (GSE10588,[24] GSE25906,[25] 
GSE60438,[26] and GSE75010[27]) were analyzed to predict 
the PE subgroups by evaluation of gene signatures. Principal 
component analysis method was performed to remove the 
batch effect among different platforms and datasets (Fig. 2A). 
The scatterplot revealed successful removal of the batch effect 
(Fig. 2B). Then, 180 PE cases were classified into 3 subgroups 
by consensus clustering analysis of gene expression profiles. The 
minimal cluster consensus score was >0.6 and the cluster count 
ranged from 2 to 10 (Fig. 2C). There were 77, 88, and 15 cases 
in subgroups I, II, and III, respectively. The consensus matrix 
revealed a high similarity of gene expression (Fig. 2D).

Next, we analyzed the differences between the 3 subgroups 
with respect to maternal age, BMI, gestational age, and infant 
z-score. We discovered that the patients in subgroup II were 
older and their gestational age was shorter than those in sub-
groups I and III (Fig. 3A, B); this indicated that subgroup II may 
develop more severe PE. However, no significant differences 
were observed with respect to maternal BMI or infant z-score 
among the 3 subgroups (Fig.  3C, D). We further clarified the 
relationship of subgroup with maternal age and gestational 
age using analysis of variance; the results indicated that the PE 
subgroups were a maternal age-independent indicator of gesta-
tional age (Table 2; P = .021).

3.2. Construction of weighted gene coexpression network 
and modules detection for each subgroup

A total of 2845 subgroup-specific genes (991, 376, and 1478 
genes in subgroup I, II, and III, respectively) were obtained 
by pairwise differential expression analysis across subgroups 
(Benjamini–Hochberg adjusted P < .05; mean difference thresh-
old = 0.2; Table  3; Table S1, Supplemental Digital Content, 
http://links.lww.com/MD/G938). We further performed differ-
ential expression analysis to identify the upregulated genes in 
each subgroup. GSEA indicated that specific subgroup genes 
were significantly expressed when compared with normal sam-
ples (false discovery rate <0.05; Fig. 4A–C). In addition, sub-
group III contained the largest number of subgroup-specific 
genes and differentially expressed genes compared with nor-
mal samples; considering that these patients had moderate PE 
symptoms, these findings indicated that specific categories of 
functional genes in subgroup III may have a protective effect 
against PE.

The R package “WGCNA,” a well-known data mining tool, 
was utilized to construct a weighted coexpression network 
of these subgroup-specific genes. No outliers or strong clus-
ters were observed; therefore, the selected samples were well 
clustered in hierarchical cluster analysis. The soft-thresholding 
power and soft threshold 5 were considered as the optimal 
power with a scale-free topology fix index 0.90 (Fig. 5A, B). 
Under specific conditions, the “blue” and “yellow” modules 
and the “brown” and “red” modules were merged (Fig.  5C, 
D). Thus, 5 gene coexpression modules were identified in the 
WGCNA analysis. The correlation of these 5 modules with PE 
clinical characteristics was assessed to identify the module that 
showed the most significant level of correlation (Fig. 5E). The 
module “turquoise” showed the strongest positive correlation 
with infant z-score and gestational age, while module “brown” 
showed a significant negative correlation with these character-
istics. Module “blue” showed a positive correlation with gesta-
tional age and infant z-score, but showed no relationship with 
maternal age. Other modules, such as green and gray, showed 
no significant association with maternal age, gestational age, or 
infant z-score.

www.mirnet.ca
http://links.lww.com/MD/G938
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3.3. Module function enrichment analysis

We used GO analysis (including cell component, BP, and 
molecular function) to perform enrichment analysis of 
the biological significance on the 5 WGCNA modules 
(Fig. 6A–D). In BP group (Fig. 6A, B; Table S2, Supplemental 
Digital Content, http://links.lww.com/MD/G939), module 
blue was mainly enriched in neutrophil activation involved in 
immune response, including neutrophil activation involved 
in immune response, neutrophil degranulation, T-cell acti-
vation, lymphocyte proliferation, and mononuclear cell pro-
liferation. Module brown showed a significant association 
with multi–multicellular organism process, covering cell–
substrate adhesion, response to metal ion, tissue migration, 
multi–multicellular organism process, female pregnancy, 
reproductive structure development, and reproductive sys-
tem development. Module turquoise was mainly associ-
ated with extracellular structure organization, extracellular 
matrix organization and cell-substrate adhesion. In cell com-
ponent group (Fig.  6A, C; Table S3, Supplemental Digital 
Content, http://links.lww.com/MD/G940), module blue was 
enriched in specific granule, secretory granule membrane, 
tertiary granule, specific granule membrane, and exter-
nal side of plasma membrane. Module brown was mainly 
associated with membrane microdomain, membrane region, 
and membrane raft. Module turquoise showed a significant 
association with focal adhesion, cell–substrate junction, 
collagen-containing extracellular matrix, and endoplasmic 
reticulum lumen. In molecular function group (Fig  6A, D; 
Table S4, Supplemental Digital Content, http://links.lww.

com/MD/G941), genes of module blue were mainly associ-
ated with immune receptor activity, carbohydrate binding, 
protein serine/threonine kinase activity, and signaling recep-
tor activator activity. Module brown was enriched in pro-
tein serine/threonine kinase activity and signaling receptor 
activator activity. Module turquoise was mainly related to 
extracellular matrix structural constituent.

The results of KEGG analysis of the 5 WGCNA modules are 
shown in Figure 6E and F and Table S5 (Supplemental Digital 
Content, http://links.lww.com/MD/G942). Module blue was 
enriched in chemokine signaling pathway, osteoclast differen-
tiation, hematopoietic cell lineage, natural killer cell-mediated 
cytotoxicity, viral protein interaction with cytokine and cyto-
kine receptor, MAPK signaling pathway, and Rap1 signaling 
pathway. Module brown was enriched in MAPK signaling path-
way, Rap1 signaling pathway, proteoglycans in cancer, focal 
adhesion, cAMP signaling pathway, and breast cancer. Module 
turquoise was enriched in focal adhesion, MAPK signaling path-
way, Rap1 signaling pathway, proteoglycans in cancer, vascular 
smooth muscle contraction, and cGMP-PKG signaling pathway. 
Notably, MAPK signaling pathway and Rap1 signaling pathway 
were both enriched in these 3 key modules.

3.4. Hub gene analysis and prediction of potential miRNA–
mRNA networks

According to the relatedness, as assessed by Cytohubb package, 
Figure 7A to C shows the specific top 10 hub genes in mod-
ules blue, brown, and turquoise from strong to weak. The 10 

Figure 2. PCA and consensus clustering analysis of the gene expression profiles of PE cases. The colors indicate the samples from 4 different datasets. Each 
dot in the scatter plots represents the samples on the top 2 principal components (PC1 and PC2) before (A) and after (B) batch-effect removal of gene expres-
sion profiles. (C) The bar-plots visualize the consensus scores for subgroup with cluster count ranging from 2 to 10. (D) The heatmap shows the consensus 
matrix with cluster count of 3, which was determined by the minimal consensus scores for subgroup (>0.6). PC = principal component, PCA = principal com-
ponent analysis, PE = preeclampsia.

http://links.lww.com/MD/G939
http://links.lww.com/MD/G940
http://links.lww.com/MD/G941
http://links.lww.com/MD/G941
http://links.lww.com/MD/G942
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hub genes in module blue were C3AR1, CCR2, CCL5, CCL4, 
CXCL9, CXCR4, CCR7, CX3CR1, CXCL16, and CXCL11. 
In module brown, the top 10 hub genes were EGFR, MAPK3, 
FGF7, FGF10, FGF9, FLT1, FLT4, FN1, PIK3CB, and PPARG. 
The 10 hub genes in module turquoise were COL6A1, COL4A1, 
COL4A2, COL6A2, COL1A2, COL3A1, COL5A2, COL6A3, 
COL15A1, and COL1A1.

Moreover, miRNet database was utilized to predict the net-
works of hub genes and potential miRNA in the 3 key modules. 
To the hub genes in module brown, the top 5 miRNAs (ranked 
by degrees) of 36 miRNAs predicted were hsa-mir-34a-5p 
(degree 7), hsa-mir-19b-3p (degree 4), hsa-mir-522-5p (degree 
3), hsa-mir-210-3p (degree 3), and hsa-mir-145-5p (degree 3; 

Fig. 7D). In module turquoise, the top 6 miRNAs of the 52 miR-
NAs predicted by the hub genes were hsa-mir-145-5p (degree 
6), hsa-let-7a-5p (degree 6), hsa-mir-34a-5p (degree 4), hsa-mir-
106a-5p (degree 4), hsa-mir-19b-3p (degree 3), and hsa-mir-498 
(degree 3; Fig. 7E). In module blue, the top 3 miRNAs of the 
20 miRNAs predicted by the hub genes were hsa-mir 34a-5p 
(degree 3), hsa-mir-210-3p (degree 2), and hsa-mir-106a-5p 
(degree 2; Fig. 7F).

4. Discussion
In the present study, based on the analysis of the gene expres-
sion profiles of 205 normal controls and 180 PE cases from 4 

Figure 3. Box-plots representing the pairwise comparison of clinical features, including maternal age (A), gestational age (B), maternal body mass index (C), 
and infant z-score (D) between the subgroups. *P < .05, **P < .01, ns: no significance. BMI = body mass index.

Table 2

Analysis of variance of gestational age, fetal z-score, and their 
interaction in the subgroups.

 Df Sum square Mean square F value Pr. (>F) 

Subgroup 2 109.7 54.83 4.001 0.0205*
Maternal age 1 8.1 8.14 0.594 0.4421
Subgroup: maternal age 2 39.8 19.90 1.453 0.2376
Residuals 134 1836.2 13.70   

Df = degree of freedom.
Significance codes: *P < 0.05.
*0.05.

Table 3

Data of differentially expressed genes in case–control and case–
case comparative analysis and the subgroup-specific WGCNA 
modules.

Subgroup 
Genes in case–

control comparison 
Gene in case– 

case comparison WGCNA modules 

I 318 991 Green, turquoise
II 1124 376 Brown
III 3476 1478 Blue, gray

WGCNA = weighted gene coexpression network analysis.
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independent GEO datasets, we classified the PE cases into 3 
subgroups after eliminating the batch effect and revealed the 
subgroup-specific gene modules associated with clinical features 
using WGCNA. By analyzing the correlation between module 
genes and clinical characteristics, we identified 3 key gene mod-
ules and their hub genes. Moreover, we successfully constructed 
the hub gene-miRNA ceRNA networks.

As a placental disease, the pathogenesis of PE is not well 
characterized. The suggested pathogenetic mechanisms include 
reduced invasive capacity of placental trophoblasts, recast 
dysfunction of the spiral uterine artery caused by an excess of 
antiangiogenic factors, and inappropriate immune responses to 
the allogenic fetus.[28,29] Previous microarray studies that have 
sought to identify early detection markers and candidates for 
therapeutic intervention have indicated the involvement of 
oxidative stress and cytokine-associated genes.[30,31] However, 
there is considerable heterogeneity in the clinical manifestations 
and therapeutic effect, which cannot be explained by classical 

separation of early-onset and late-onset (diagnosis after 34 
weeks) PE patients. Leavey et al[27] divided PE patients into 5 
clusters. They found high levels of PE markers (such as FLT1) in 
cluster 2, while cluster 3 showed a maternal-fetal incompatibil-
ity presentation; this may represent the considerable interindi-
vidual variability observed in clinical settings.

Likewise, in our study, we divided PE patients into 3 sub-
groups with consensus clustering and the more severe subgroup 
II had greater maternal age and shorter gestational age. Genes 
in module brown were significantly upregulated in subgroup II 
and functional enrichment analysis showed that pathogenesis of 
this subgroup was mainly related to MAPK, Cyclic adenosine 
monophosphate (cAMP), and Ras-associated protein 1 (rap1) 
signaling pathways. Studies have demonstrated the participa-
tion of these 3 pathways in the regulation of trophoblast inva-
sion and migration in normal pregnancy.[32–34] Padmini et al[35] 
revealed that aberrant expression of extracellular signal-reg-
ulated kinase 1/2 (ERK1/2, which is also known as MAPK3 

Figure 4. Expression profiles of subgroup-specific genes. Enrichment plots of (A), (B), and (C) indicate that the subgroup-specific genes have different expres-
sion levels than the normal controls.
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Figure 5. Module detection, gene significance, and module membership of PE samples. (A) Network topology analysis for different soft-thresholding powers. 
(B) The scale-free fit index and the mean connectivity as a function of the soft-thresholding power. (C) The clusters of the modules, the eigengenes, and the 
threshold (red line) of modules were merged. (D) Clustering dendrogram of genes with dissimilarity based on the topological overlap, together with assigned 
module colors. The unmerged colored modules in first row below the dendrogram and the merged colored modules are in the second. (E) The association of 
the modules and the traits was constructed. Each row refers to a module eigengene and each column refers to a trait. Numbers in each cell represent the cor-
relation and P value. The right side of the heatmap reflects the intensity and direction of the correlation (the color depth indicates the strength of the correlation; 
red, positively correlated; green, positively correlated). BMI = body mass index, PE = preeclampsia.
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Figure 6. The expression patterns of subgroup-specific genes and functional characterization of WGCNA modules. (A) The scaled expression values of genes 
that comprise of the 5 gene coexpression network analysis modules are displayed in the heatmap. The bubble plots show the top significantly enriched genes 
in GO analysis including biological process (B), cellular component (C), and molecular function (D), as well as the KEGG pathways for each WGCNA module (E). 
(F) The heatmap demonstrates the most significant KEGG pathway in each WGCNA module associated with each subgroup. GO = Gene Ontology, KEGG = 
Kyoto Encyclopedia of Genes and Genomes, WGCNA = weighted gene coexpression network analysis.
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and MAPK1), a member of MAPK family, plays an important 
role in PE progression. Studies have also shown that the down-
regulation of ERK signaling can aggravate oxidative injury in 
trophoblasts.[36] Moreover, PE cases showed oxidative stress-in-
duced downregulation of p38 MAPK, which may be caused by 
elevated phosphorylation of p38 MAPK, leading to defects in 
growth of placenta.[37,38] In pregnancy, expression of epidermal 

growth factor receptor activated MAPK/ERK1/2 signaling path-
way in placental tissues to regulate blastocyst implantation may 
result in occurrence of PE.[39] Consistent with these results, our 
study demonstrated that these MAPK signaling pathway mem-
bers including epidermal growth factor receptor and ERK1 
(MAPK3) may serve as hub genes in module brown. In addition, 
Chen et al[34] found that hypoxia, accompanied by dysfunction 

Figure 7. Interaction network of hub genes and potential miRNA–mRNA regulatory networks. (A–C) Interaction network of the top 10 respective hub genes in the 
module turquoise, brown, and blue. Using Cytoscape package to obtain a network from DEGs based on WGCNA method and cytoHubba package to search 
the hub genes in R Studio. The color depth indicates the strength of hub genes. Low to high significance ranked by colors from yellow to red. (D–F) Interaction 
networks of predicted miRNAs and their target genes; blue squares represent miRNAs, yellow squares represent hub gene mRNAs. Edges between squares 
denote interactions between miRNAs and hub genes mRNAs. DEG = differentially expressed genes, WGCNA = weighted gene coexpression network analysis.
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of placental multipotent mesenchymal stromal cells, induced 
cAMP decrease and Rap1 inactivation in trophoblasts, which 
resulted in decreased trophoblast adhesion and migration during 
the PE process. Members of the fibroblast growth factor (FGF) 
family, which were detected in our hub gene analysis as FGF7, 
FGF9, and FGF10, were shown to participate in the MAPK/
ERK/cAMP signaling pathway to modulate uterine–conceptus 
interactions.[40–42] In a previous study, FGF10 expression was 
shown to be localized to first trimester extravillous tropho-
blasts, indicating its potential role in PE pathophysiology.[43] In 
our study, older maternal age and shorter gestational age were 
simultaneously observed in subgroup II, suggesting that PE 
women with older age may manifest more serious disease lead-
ing to premature birth. Moreover, we also identified classical 
markers such as FLT1, FLT4, and FN1 as hub genes, and this 
suggests that the pathogenesis of PE in subgroup II patients may 
have a typical placental origin.

In subgroup III, genes in module blue and gray were upregu-
lated and module blue showed a significant positive association 
with gestational age and infant z-score. Our gene enrichment 
analysis showed that these genes were enriched in chemokine 
signaling pathway and immune-related BPs such as nature killer 
(NK) cell-mediated cytotoxicity, neutrophil, T-cell activation, 
and lymphocyte proliferation. The hypothesis that the immune 
system is involved in the development of PE has already been 
confirmed by many reports.[44–46] Autoimmune response may 
alter the maternal immune pathology, interfering with adap-
tions for placentation, and increase the incidence of PE as well 
as intrauterine growth restriction.[47] A typical characteristic of 
the maternal immunological preparatory response to pregnancy 
is a T-helper type-2 lymphocyte (Th2) proportion increase 
simultaneously with Th1 upregulation.[48] A suboptimal inter-
action between uterine NK cells and the trophoblast is believed 
to lead to maternal spiral artery modification alteration in 
patients with PE.[49] Extensive infiltration of activated neutro-
phils in blood vessels of PE women may lead to systemic vas-
cular inflammation and multiorgan involvement. Walsh et al[50] 
discovered that cytokine interleukin-17A may increase neutro-
phil chemokines like CXCL5 and CXCL6 gene expression in 
vascular smooth muscles and result in neutrophil boost in PE 
pregnancy. The balance expression of chemokines at the mater-
nal-fetal interface affects the immune cell profile and function 
in the decidua.[51] In our analysis, most of detected hub genes 
are chemokines associated with multiple immunocytes, such as 
monocytes (CCR2), T cells (CCL5, CXCL11, and CXCL16), 
Th1 cells (CXCL9, CXCR4), and NK cells (CCL4). In addi-
tion, decreased expression of another hub gene, C3AR1, was 
also discovered in preeclamptic pregnancies with fetal growth 
restriction, indicating an inability of preeclamptic placentas to 
clear the excess of activated complement, promoting accumula-
tion of immune complexes and inflammation.[52] Interestingly, 
subgroup III showed mild PE clinical features while containing 
most subgroup-specific genes and differentially expressed genes 
compared with normal cases; this suggests the existence of a 
protective mechanism in these patients, which calls for further 
research. Accordingly, our results indicate that subgroup III may 
be interpreted as a maternal-fetal incompatibility coupled with 
a maternal immune response hyperfunction.

Subgroup I had the least number of differentially expressed 
genes with the normal controls, suggesting that subgroup I 
may exhibit normal-like expression patterns. Compared to 
subgroup III, no significant differences were observed with 
respect to gestational age or maternal age. However, the intrin-
sic biological characteristics in subgroups I and III showed 
great differences. Subgroup I showed a significant correlation 
with module turquoise and genes enrichment analysis showed 
that most genes were enriched at focal adhesion. Our hub gene 
analysis showed that all hub genes in module turquoise are 
collagen family member genes. Collagen is one of the most 
abundant components of extracellular matrix which could 

influence and regulate trophoblast invasion and participate 
in the remodeling of the decidua at the maternal–fetal inter-
face.[53] Studies have shown that excessive collagen deposition 
may affect smooth muscle growth and decrease the remodel-
ing of spiral arteries, which may be an important factor in the 
pathogenesis of early-onset PE.[54,55] A previous study identi-
fied aberrant expression of collagen fragments in PE; COL4A1 
and COL4A2, which code for collagen type IV α chain 1 and 
chain 2, respectively, were identified as maternal PE suscep-
tibility genes.[56] Ohmaru-Nakanishi et al found significant 
upregulation of COL1A1 expression in fibroblasts from PE 
placentas compared with normal placentas; in addition, pla-
cental fibroblasts were also shown to increase the production 
of collagen type I and IV in hypoxic conditions in vitro.[57,58] 
Thus, subgroup I may represent an earlier disease stage based 
on its normal-like expression patterns and early-onset collagen 
abnormal expression.

Finally, miRNA–mRNA network was constructed to detect 
possible miRNA involvement. miR-34a-5p and miR-106a-5p 
were found to be correlated with all 3 significant gene mod-
ules, indicating their potential involvement in the pathogen-
esis of PE. Xue et al[59] reported upregulation of miR-34a-5p 
in placental tissues and serum of patients with severe PE; they 
found that miR-34a-5p inhibited the invasion and migration 
of trophoblast cells targeting Smad4. In previous studies, miR-
34a elevation was shown to inhibit trophoblast proliferation, 
migration, and invasion and to simultaneously promote apop-
tosis.[60,61] However, miR-106 was reported to promote prolifer-
ation, migration, and invasion of cytotrophoblast via blocking 
syncytiotrophoblast differentiation.[62,63] Our results indicated 
that miR-19b-3b and miR-210-3p participated in the network 
of module blue and turquoise. Studies have shown downreg-
ulation of miR-19b-3p and upregulation of miR-210-3p in 
the peripheral circulation of women with PE compared with 
healthy pregnant women.[64,65]

Our findings suggest that PE patients belonging to different 
subgroups may have different genomic patterns. Further stud-
ies are required to validate these findings, especially for the 
miRNA–mRNA predictions. In conclusion, our study observed 
heterogeneity between PE subgroups and attempted to explain 
the heterogeneity according to different gene expression pat-
terns. Our findings suggest that patients in unique subgroups 
may benefit from more personalized treatment. The predicted 
hub genes and miRNAs identified in this study may help develop 
new therapeutic targets in the future.
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