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Abstract 

Oxford Nanopore Technologies (ONT) offers ultrahigh-throughput multi-sample 
sequencing but only provides barcode kits that enable up to 96-sample multiplexing. 
We present TDFPS-Designer, a new toolkit for nanopore sequencing barcode design, 
which creates significantly more barcodes: 137 with a length of 20 base pairs, 410 at 24 
bp, and 1779 at 30 bp, far surpassing ONT’s offerings. It includes GPU-based accelera-
tion for ultra-fast demultiplexing and designs robust barcodes suitable for high-error 
ONT data. TDFPS-Designer outperforms current methods, improving the demultiplex-
ing recall rate by 20% relative to Guppy, without a reduction in precision.

Background
Recently, single-molecule sequencing based on ONT has emerged, offering freedom 
from long reads, point-of-care, and polymerase chain reactions (PCRs). Specifically, 
ONT has been widely applied in various research fields, including genome assem-
bly [1–6], transcriptome assembly [7–9], methylation research [10–12], and mutation 
identification [13–15]. To efficiently utilize sequencing capacity and reduce sequenc-
ing costs, multiple DNA/RNA samples can be integrated with unique barcodes and 
sequenced simultaneously on a flow cell [16]. After sequencing, demultiplexing is nec-
essary to classify the sequences according to their corresponding barcodes. To address 
the demultiplexing problem, several methods have been introduced in recent years, such 
as DeepBinner [17] and DeePlexiCon [18]. These methods utilize convolutional neural 
networks (CNNs) to directly process the native nanopore signals for demultiplexing, 
improving upon traditional sequence-based tools like Porechop. However, they do not 
explore which barcodes are most conducive to effective demultiplexing. Currently, ONT 
provides a barcode kit (EXP-PBC096) that supports the simultaneous sequencing of up 
to 96 samples. As the number of samples increases, an additional strategy is needed for 
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large-capacity multiple-sample sequencing [19]. A direct solution is to design specified 
barcodes for accurate and large-capacity sample demultiplexing.

Barcode design can be viewed as an error-correcting code design problem, and related 
theories have been developed since the 1970s [20, 21]. To address the needs of high-
throughput next-generation sequencing, Hamming codes and Reed-Solomon code bar-
codes have been introduced into DNA barcode design. Hamady et  al. [22] developed 
a new set of barcodes based on error-correcting codes. Zorita et al. [23] described an 
exact algorithm to determine which pairs of sequences lie within a given Levenshtein 
distance. Hawkins et  al. [24] presented and experimentally validated filled/truncated 
right-end edit (FREE) barcodes, which corrected substitution, insertion, and deletion 
errors for next-generation sequencing. Although numerous barcode schemes have been 
proposed, these schemes are designed on the prerequisite that the sequencing error 
rate is very low (less than 1%), which means that these schemes are likely not applica-
ble to third-generation sequencing data with higher sequencing error (∼6–15% [5]). In 
the context of nanopore sequencing, [25] utilized an evolutionary model to design 96 
“Molbit barcodes” that ensured dissimilarity in nanopore electrical signals. A specially 
trained convolutional neural network (CNN) was employed to accurately demultiplex 
these barcodes. However, this approach did not produce a kit with a larger capacity than 
the ONT barcode kit, limiting its utility for multi-sample sequencing involving a greater 
number of samples.

Barcode design must observe two key principles, i.e., large barcode capacity and high 
sequence difference. For ONT sequence data, the measure of sequence difference could 
be based on either the raw current signal or base-called nucleotides. Edit distance [26] 
can effectively measure the similarity between two DNA sequences. However, relying 
solely on edit distance for demultiplexing can result in the loss of a significant amount 
of useful data. To further improve edit distance, some approaches take into account the 
quality score of each base obtained after sequencing. This score is highly correlated with 
the probability that the base has been correctly sequenced. Some quality-aware probabil-
istic methods that account for these quality scores have been applied to sequence error 
correction [27] and demultiplexing problems [28] in next-generation sequencing (NGS). 
Many alignment-free similarity measures have also been proposed [29–32]. In contrast, 
signal-based approaches [17, 18, 33, 34] have been widely utilized in direct nanopore 
sequence analysis, most of which are based on the dynamic time warping (DTW) algo-
rithm to measure the signal difference [35–37]. Just as probabilistic methods account for 
substitution errors in NGS, DTW addresses inherent error profiles by directly compar-
ing raw nanopore signals.

In this study, we propose a Designer for a barcode kit that employs a well-defined 
Threshold to reduce the sampling space of the DTW-based Farthest Point Sampling 
algorithm (TDFPS-Designer) for accurate barcoded sample demultiplexing in nanop-
ore sequencing. TDFPS-Designer selects barcodes within a given sequence space by the 
farthest point sampling algorithm, directly based on the comparison of nanopore sig-
nals. Additionally, a DTW distance-based demultiplexing strategy is designed to ensure 
accurate sample label assignment. Three barcode kits with different barcode lengths 
were designed by TDFPS-Designer. Experiments demonstrated that TDFPS-Designer is 
capable of designing barcode sets with ≥ 99% demultiplexing accuracy, superior to the 



Page 3 of 18Qi et al. Genome Biology          (2024) 25:285 	

randomly selected barcodes and ONT official strategy. Specifically, there is almost no 
“collision” during the demultiplexing of TDFPS-Designer’s barcode set. When demul-
tiplexing large-capacity samples with high sequencing error rates, the demultiplexing 
recall of TDFPS-Designer’s barcode kit is approximately 20% higher than that of current 
official ONT tools, which provides an alternative for the demultiplexing of barcode kits 
with high sequencing error.

Results
Algorithms overview

TDFPS-Designer selects barcode candidates from a specified set of an entire k-mer 
space or user-defined sequences. The workflow of TDFPS-Designer is illustrated in 
Fig. 1. The sampling space is first reduced to a subset of sufficiently distinct sequences, 
such that the DTW distance between any two sequences in the subset is greater than the 
threshold r (Fig. 1a). Here, we begin by randomly selecting a sequence, and the relation-
ship between the randomly selected sequence and the final set of barcodes is explored 
in detail in Additional File 1: S1. The demultiplexing strategy of TDFPS-Designer is 
depicted in Fig. 1b, where demultiplexing is performed directly from the DTW distance 

Fig. 1  The workflow of TDFPS-Designer. a Barcode design strategy (initial). Given a k-mer space or a 
user-defined sequence set, the hash value (Eq. (2)) of each read is calculated, and the sequences are sorted 
according to the hash value in ascending order. Next, a subset of sequences is selected evenly from the 
sorted sequence items. The hash values of the selected sequences should have significant distinctness. 
These selected sequences are then converted into simulated nanopore current signals. Algorithm 1 is used 
to select the exact signals as barcode signals, ensuring that the DTW distances between these signals are 
relatively large and greater than a given threshold r. b Demultiplexing strategy. To demultiplex nanopore 
signals, the barcode regions of reads are identified and compared to the current signals translated from the 
standard barcode references (items of the barcode sets). Afterwards, the DTW distance matrices between the 
sequenced barcode signals and the standard barcode current signals are calculated, based on which a top-k 
selection is carried out to determine the demultiplexing results. c Barcode design strategy (final). Based on 
the initially designed barcodes, the demultiplexing process is simulated. Barcodes with poor demultiplexing 
performance are filtered out, resulting in the final kit of barcodes
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matrix. To further enhance the robustness of the initially designed barcodes, our method 
can automatically simulate the demultiplexing process and filter out barcodes with poor 
demultiplexing performance, resulting in the final set of designed barcodes (Fig. 1c). The 
use of TDFPS-Designer is described comprehensively in Additional File 1: S2.

Benchmark datasets

All simulated datasets were generated by DeepSimulator1.5, squigulator [38], Badread 
[39], and our own multisample sequencing simulator. The simulated electrical sig-
nals could achieve ∼88–92% base-calling accuracy (Additional File 1: S3), while the 
real-world electrical signals based on MinION R9.4 can achieve ∼85–94% sequencing 
accuracy [5], which indicates that the difference between the simulated electrical cur-
rent signals and the real electrical current signals is negligible. In addition, we carefully 
studied the construction process of the ONT multisample sequencing library to ensure 
maximum consistency between the simulated data and the real data. We also employed 
Badread to produce sequences with different sequencing error rates. This allowed us to 
examine the impact of sequencing error rates on demultiplexing, which influences both 
the capacity of the resulting barcode kit and the selection of demultiplexing strategies.

A few small datasets were generated for the initial evaluation of our barcode design 
strategy (Additional File 1: S4.1). On the other hand, we thoroughly investigated the 
library preparation process of ONT and integrated it into our data simulator. The 
detailed use of the simulator and the introduction of parameters are given in Additional 
File 1: S4.2. Based on our data simulator, we generated different types of datasets, and 
the details of these multisample sequencing datasets are shown in Table 1. The detailed 
data generation process can be found in Additional File 1: S4.3.

Table 1  Datasets for evaluating all methods

Here, the full name of ETEC is Enterotoxigenic Escherichia coli, the full name of STEC is Shiga toxin-producing Escherichia 
coli, and the full name of HC is Historical Shigella. For “ONT_EXP-NBD104,” “ONT” implies that it is designed by ONT, and 
“EXP-NBD10” is its kit name. “ONT_EXP-NBD104” and “ONT_SQK-16S024” imply the same meaning as “ONT_EXP-NBD104.” 
Specifically, L-ESH_TD137, L-ESH_TD410, and L-ESH_TD1779 include 1% negative samples that were not successfully 
barcoded. These negative samples serve as a “noise class”

Dataset Sample Type of barcode kit Size of 
barcode 
kit

Barcode 
length 
(bp)

Number of reads

S-ET_ONT12 ETEC ONT_EXP-NBD104 12 24 12,000

S-ET_ONT24 STEC ONT_SQK-16S024 24 24 24,000

S-ET_ONT96 ETEC, STEC, and HS ONT_EXP-PBC096 96 24 96,000

M-ESH_TD795 ETEC, STEC, and HS Initially designed by TDFPS-
Designer

795 20 795,000

M-ESH_TD1093 ETEC, STEC, and HS Initially designed by TDFPS-
Designer

1093 24 1,093,000

M-ESH_TD2120 ETEC, STEC, and HS Initially designed by TDFPS-
Designer

2120 30 2,120,000

 L-ESH_TD137 ETEC, STEC, and HS Finally designed by TDFPS-
Designer

137 20 691,850

 L-ESH_TD410 ETEC, STEC, and HS Finally designed by TDFPS-
Designer

410 24 2,070,500

 L-ESH_TD1779 ETEC, STEC, and HS Finally designed by TDFPS-
Designer

1779 30 8,983,950
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Evaluation metrics

The goal of our approach is to design enough barcodes with different lengths that can be 
easily demultiplexed. For this purpose, we evaluate the demultiplexing performance of 
different demultiplexing algorithms (Guppy and our method) on our designed barcode 
kits using precision, recall, average accuracy and F1-score, which reflect whether the bar-
codes we designed can be easily demultiplexed. Precision measures how many instances 
are indeed positive given that the model predicted some instances to be positive. In sim-
ple terms, precision reflects the credibility of the model’s prediction of positive samples. 
Recall, also known as the true positive rate or sensitivity, quantifies the ability of a model 
to capture all positive examples from a dataset. Each barcode corresponds to a precision 
(recall, F1-Score). For example, after demultiplexing, assuming that the barcode label of 
sequence in {read1, read2..., readn} is barcode, the set of sequences that actually carry this 
barcode is B, then the formula to calculate recall for this barcode is |{read1,read2...,readn}∩B|

|B|
 . 

Once we obtain all the indicators corresponding to all barcodes, the average of all accu-
racy rates is recorded as the average accuracy, the minimum precision (recall, F1-score) 
is recorded as the minimum precision (recall, F1-score), and the second minimum pre-
cision (recall, F1-score) is recorded as minimum-2 precision (recall, F1-score). When 
working with numerous barcodes, a high average accuracy in demultiplexing results 
does not necessarily mean a consistently high accuracy across all barcodes. There might 
be instances where the algorithm performs well for most barcodes but poorly for spe-
cific ones. Relying solely on average accuracy might not offer a complete assessment of 
demultiplexing effectiveness. By considering minimum/minimum-2 precision (recall, 
F1-score) alongside average accuracy, we can gain a more comprehensive understand-
ing of the algorithm’s performance. All metrics are calculated using the “sklearn” Python 
package.

Experimental environment

All the experiments were run on an Ubuntu 18.04.6 system with an Intel(R) Xeon(R) 
Platinum 8260 CPU, 1 Tb memory, and an A100-PCIE-40GB.

TDFPS‑Designer can effectively extract the barcode region from the raw nanopore signal 

to ensure accurate demultiplexing results

We assessed the effectiveness of our barcode extraction strategy by calculating the 
DTW distance between the extracted barcode signals and the standard barcode signals. 
To generate experimental data, we obtained 12,000 extracted barcode signals and 1000 
randomly intercepted signals, from which we obtained two distance matrices (Fig. 2a). 
Based on these matrices, we generated two different distance distributions (Fig. 2c). As 
shown in Fig. 2c (right), the probability that the distance between a signal and the stand-
ard barcode signal is less than 110 is very low (∼0.0061). In contrast, Fig. 2c (left) shows 
that 94.35% of the DTW distances between the extracted barcode signals and the stand-
ard barcode signals are less than 110, indicating that our extraction strategy is highly 
effective. In terms of efficiency, by using a single thread, we can extract the barcode 
regions of approximately 255 sequences in just 1 s.



Page 6 of 18Qi et al. Genome Biology          (2024) 25:285 

TDFPS‑Designer can design specialized barcodes for different sequencers

ONT offers various sequencers, such as the MinION sequencer and PromethION 
sequencer, each with different chemistries, such as R9.4 and R10.4. The R9.4 has been 
widely adopted, demonstrating mature and stable performance, while the R10.4 aims to 
further enhance sequencing accuracy, and they may generate different nanopore signals 
(Fig. 3a). For each sequencer, we designed 96 barcodes, each 20 bp in length, matching 
the capacity of the ONT barcode kit but with shorter lengths. We generated different 
types of nanopore signals (use Squigulator) based on these barcodes (with 100 simulated 
signals per barcode) and used TDFPS-Designer for demultiplexing. The results showed 
that these barcodes could be accurately demultiplexed (Fig. 3b), suggesting that our algo-
rithm can customize barcode kits for different sequencers. In the subsequent analysis, 
we primarily discuss the barcodes designed for the MinION R9.4.

Barcodes designed by TDFPS‑Designer are easier to demultiplex than randomly selected 

barcodes

In biological experiments, barcodes are often randomly selected as short DNA frag-
ments using various methods, such as random nucleic acid synthesis or selection 
from existing barcode libraries. We evaluated the effectiveness of our barcode design 

Barcode signalAdapter signal Extracted barcode signalSimulated nanopore signals (number=12000)

interception strategyRandomly intercept

length=310bp

random database Extracted barcode database

DTW DTW

Standard nanopore signals

barcode_kit_id=EXP-NBD104
number of barcodes=12

randomextracted

scatter

scatter

a b

c

Fig. 2  a Based on the barcode kit (EXP-NBD104, 12 barcodes), a total of 12,000 simulated nanopore signals 
are generated, and each barcode corresponds to 1000 signals. We randomly intercept 1000 signal lengths 
of 310 in each signal (left) and use the extraction strategy to obtain the barcode signal (length = 310). The 
distance matrix between these two groups of signals and the standard nanopore signal of the barcode 
is calculated, and the corresponding distance distribution is obtained. b ① The positions of the barcode 
signal and adapter signal. The red number indicates the position of the barcode signal. ② The position of 
the barcode signal obtained by the extraction strategy. ③ Nanopore signal image of barcode. ④ Image of 
standard (or noiseless) barcode nanopore signal. c ① Distribution of DTW distances between the extracted 
barcode signals and the standard barcode signals. The proportion of distance values above 110 is 5.55%. 
② Distribution of DTW distances between randomly selected signals and standard barcoded signals. The 
proportion of distance values above 110 is 99.39%
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strategy based on the accuracy of demultiplexing. We first used both a random strat-
egy and TDFPS-Designer to design 100 barcodes, each 15 bp in length, and evaluated 
their demultiplexing performance (Fig. 4a). We found that some barcodes generated 
by the random strategy could not be demultiplexed accurately, with an precision of 
less than 0.84, which is ∼10% lower than the ones of TDFPS-Designer, and every bar-
code designed by TDFPS-Designer could be accurately demultiplexed. Additionally, 
we used both strategies to generate 96 barcodes, each 24 bp in length, and compared 
them with ONT barcodes (Fig.  4b). The results showed that all three types of bar-
codes had stable demultiplexing performance, which can be attributed to the large 
sequence space of the 24 bp barcodes, leading to a very low probability of collisions 
between randomly generated barcodes (i.e., one barcode being mistakenly demulti-
plexed as another barcode). To further validate our findings, we designed 500 bar-
codes, each 24 bp in length, using both the random strategy and TDFPS-Designer, 
and evaluated their demultiplexing performance (Fig. 4c). The results indicated that 
barcodes designed by TDFPS-Designer outperformed those generated randomly, sug-
gesting a tendency for collisions between randomly generated barcodes in this case.

Fig. 3  Performance of TDFPS-Designer for four different sequencers. a The electrical signals generated by 
“GGC​GTC​TGC​TTG​GGT​GTT​TAA​CCT​TTT​TTT​TTT​AAT​GTA​CTT​CGT​TCA​GTT​ACG​TAT​TGC​T” on four sequencers. b 
The demultiplexing performance of TDFPS-Designer on four different barcode kits. These barcode kits, each 
containing 96 barcodes of 20 bp in length, were specifically designed by TDFPS-Designer for four different 
sequencers. For better visualization, all overlapping points have been expanded horizontally

Fig. 4  Performance comparison between random strategy and TDFPS-Designer. a Demultiplexing results 
of 100 15-bp barcodes generated by random strategy and 100 15bp barcodes designed by TDFPS-Designer. 
“Designed” indicates barcodes designed by TDFPS-Designer. “Random” indicates randomly generated 
barcodes. b Demultiplexing results of 96 24-bp barcodes generated by random strategy, designed by 
TDFPS-Designer, and ONT. For better visualization, all overlapping points have been expanded horizontally. 
c Demultiplexing results of 500 24bp barcodes generated by random strategy and 500 24-bp barcodes 
designed by TDFPS-Designer. For better visualization, all overlapping points have been expanded horizontally
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TDFPS‑Designer can design large‑capacity barcode kits with different lengths and ensure 

their stable demultiplexing

Based on TDFPS-Designer, we designed three final barcode kits, each derived from 
an initial kit that ensures the difference in DTW distance (see the “Methods” section). 
TDFPS-Designer provides demultiplexing functionality, and we conducted prelimi-
nary tests on the demultiplexing performance of TDFPS-Designer on these kits, com-
paring it with Guppy (Table 2). We can see that our demultiplexing method and Guppy 
achieve almost perfect demultiplexing results on the three datasets (S-ET_ONT12, 
S-ET_ONT24, and S-ET_ONT96) with ONT barcodes. Guppy’s demultiplexing method 
is specially designed for ONT barcodes, so its minimum F1-Score is slightly higher than 
TDFPS-Designer by 1% to 4%, and the average accuracy is almost the same. In demul-
tiplexing both the initial and final barcode kits, TDFPS-Designer demonstrated higher 
demultiplexing accuracy, exceeding Guppy by 4% to 9%. Additionally, Guppy classified 
a large number of reads as unclassified, which is costly. We have constructed a more 
detailed analysis of this aspect below. On the other hand, by observing the minimum/
minimum-2 F1-score, we can see that both Guppy and TDFPS-Designer do not perform 
well in demultiplexing certain barcodes in the initial kits. This indicates the necessity 
for TDFPS-Designer to further filter barcodes from the initial kits (see the “Methods” 
section, Fig. 1c). In the final designed barcode kits, TDFPS-Designer showed nearly per-
fect demultiplexing performance, with an accuracy greater than 99%, exceeding Guppy 
by 9%, and with minimum/minimum-2 F1-scores greater than 95%, surpassing Guppy 
by 8%. These results suggest that TDFPS-Designer can successfully demultiplex all 
barcodes in the final kits. It is worth noting that Guppy’s minimum F1-score was only 
∼0.17, as it classified a large number of reads as “unclassified” when testing the final 

Table 2  Classification performance of demultiplexing tools on benchmark datasets

All datasets were generated by Badread (R9.4). “Run time” refers to the GPU-accelerated demultiplexing time when barcode 
regions are extracted, which is obtained by the “time -v” command

Dataset Unclassified Minimum/minimum-2 
F1-score

Average accuracy Run time (m:s)

Guppy6.5.7 TDFPS-
Designer

Guppy6.5.7 TDFPS-
Designer

Guppy6.5.7 TDFPS-
Designer

Guppy6.5.7 TDFPS-
Designer

S-ET_
ONT12

12 0 0.997/0.998 0.989/0.993 0.999 0.995 0:03 0:06

S-ET_
ONT24

66 0 0.995/0.996 0.971/0.978 0.997 0.993 0:09 0:14

S-ET_
ONT96

306 0 0.988/0.991 0.964/0.965 0.997 0.994 1:18 1:21

M-ESH_
TD795

71,913 34 0.768/0.820 0.819/0.839 0.902 0.967 37:54 18:03

M-ESH_
TD1093

97,384 238 0.851/0.860 0.767/0.833 0.909 0.947 94:17 39:54

M-ESH_
TD2120

188,586 588 0.874/0.875 0.924/0.934 0.910 0.979 468:03 130:10

L-ESH_
TD137

71,833 7083 0.174/0.873 0.953/0.958 0.904 0.994 7:33 5:48

L-ESH_
TD410

212,769 21,537 0.175/0.881 0.969/0.975 0.906 0.997 47:46 32:05

L-ESH_
TD1779

882,063 95,294 0.183/0.877 0.965/0.996 0.911 0.999 1003:38 741:15
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kits, leading to poor precision in the “noise class” (see Table 1) and resulting in a very 
low minimum F1-score. In terms of efficiency, when barcode regions in all sequences are 
extracted, our method is faster than Guppy, which benefits from a well-designed GPU 
acceleration mechanism [40].

TDFPS‑Designer is more robust than Guppy in handling sequencing errors

We evaluated Guppy’s and TDFPS-Designer’s demultiplexing performance on datasets 
with different sequencing error rates (Fig.  5a). Figure  5b shows Guppy’s demultiplex-
ing performance on three datasets with initial barcode kits. We can see that sequencing 
errors severely impact the performance of Guppy, with a minimum recall of less than 
65% on M-ESH_TD795 (Guppy R9.4), implying that some barcodes were not success-
fully demultiplexed, and we can see that almost all barcodes are effectively demulti-
plexed when the sequencing error rate is lower (Guppy R10.4). In addition, we can see 
from Fig. 5c that both Guppy and TDFPS-Designer exhibit high demultiplexing preci-
sion. However, Guppy shows relatively low recall when demultiplexing data with high 
sequencing errors, with the recall for some samples falling below 80% (Fig. 5d), ∼20% 
lower than TDFPS-Designer. This further suggests that Guppy struggles to handle 
sequencing errors effectively. More in-depth analysis reveals that Guppy classifies a large 
number of samples as “unclassified” under both types of sequencing data (Fig. 5e). This 
is because Guppy retains only the least ambiguous data, which ensures precision but 
causes a lot of data waste, whereas TDFPS-Designer effectively avoids this issue.

Fig. 5  Guppy’s and TDFPS-Designer’s demultiplexing analysis on different datasets with different 
sequencing error rates. a Sequencing accuracy distributions for two different error models. b Scatterplot 
of demultiplexing recall for Guppy on datasets with different sequencing error rates. “Guppy R9.4” 
(“Guppy R10.4”) indicates that multi-sample sequencing data generated by ONT R9.4 (R10.4) were 
demultiplexed using Guppy. c False discovery rate (1 - precision) vs. miss rate (1 - recall) scatterplot of 
Guppy and TDFPS-Designer on L-ESH_TD137 (top), L-ESH_TD410 (middle) and L-ESH_TD1779 (bottom). 
For better visualization, all overlapping points have been expanded horizontally. d Boxplot of Guppy’s and 
TDFPS-Designer’s demultiplexing recall on different datasets. e Bar charts of the unclassified values for Guppy 
and TDFPS-Designer on different datasets
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Despite the continuous improvements in ONT sequencing accuracy, uncertainties still 
shroud the sequencing error rate, particularly in the context of nonmodel organisms and 
RNA samples [41]. In these scenarios, our demultiplexing approach emerges as a viable 
alternative solution.

Discussion
In nanopore sequencing, pooling multiple samples together for sequencing can save time and 
cost. However, separating raw sequencing data from multiple samples can be challenging. 
Barcodes are crucial for this purpose, while ONT provides barcode kits that support simulta-
neous sequencing of up to 96 samples. To enable simultaneous sequencing of more samples, 
we propose TDFPS-Designer, a new tool for designing barcodes using the TDFPS algorithm. 
The TDFPS algorithm improves the farthest point sampling algorithm. It uses the DTW dis-
tance as a measurement and a well-designed threshold to reduce the sampling space. Based 
on the TDFPS algorithm, TDFPS-Designer selects sequences that are sufficiently different 
from each other in the sequence space to construct barcode sets with different length. For the 
barcode kit, TDFPS-Designer has an efficient demultiplexing strategy, starting directly from 
the DTW distance matrix and completing the demultiplexing process, which ensures that the 
demultiplexing F1-score of all barcodes is above 95%. Additionally, TDFPS-Designer adopts a 
GPU acceleration mechanism to improve the efficiency of demultiplexing and barcode design.

Although Guppy is the current state-of-the-art tool for demultiplexing problems, 
experiments have shown that Guppy’s demultiplexing performance is very susceptible 
to sequencing errors. In contrast, our method effectively overcomes this challenge, offer-
ing users a dependable demultiplexing solution for handling extensive sample demulti-
plexing issues. Our proposed barcode design strategy can design more barcodes while 
ensuring a stable demultiplexing effect, indicating that TDFPS-Designer has great devel-
opment potential. To further enhance the performance of TDFPS-Designer, we plan to 
investigate more accurate barcode extraction strategies that can improve the accuracy of 
demultiplexing. This will be a focus of our future work.

Conclusions
In this study, we developed TDFPS-Designer, a new tool for designing barcodes using the TDFPS 
algorithm. The TDFPS algorithm enhances the farthest point sampling algorithm by employing 
the DTW distance as a measurement and implementing a well-designed threshold to minimize 
the sampling space. This method ensures that the sequences selected for barcode kits are suffi-
ciently different from one another, enabling the construction of barcode kits with various lengths. 
Notably, the barcode kits designed by TDFPS-Designer are nearly 1.4 to 18.5 times larger than 
those provided by ONT, supporting the design of barcodes with arbitrary lengths. Experimental 
results demonstrate that the barcodes designed by TDFPS-Designer exhibit greater robustness 
compared to randomly generated barcodes. Moreover, the demultiplexing strategy employed by 
TDFPS-Designer is more effective in handling sequencing errors. Notably, under the condition 
of maintaining high demultiplexing accuracy, the recall rate of TDFPS-Designer is approximately 
20% higher than that of Guppy. This suggests that the DTW algorithm in TDFPS-Designer is 
well-suited for handling the more common insertions and deletions in ONT, thereby ensuring a 
higher recall rate. This improvement ensures the feasibility and reliability of current multi-sample 
sequencing applications in non-model organisms and direct RNA sequencing.
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Methods
TDFPS-Designer is developed using Python and C++. The primary function of this soft-
ware is to design barcodes for ONT sequencing, facilitating the barcoding of a larger 
number of samples and enabling efficient demultiplexing. The use of TDFPS-Designer is 
described comprehensively in Additional File 1: S2 and https://​github.​com/​junha​iqi/​TDFPS​
Desig​ner.​git. Next, we provide details for each part of TDFPS-Designer.

Barcode design strategy: the maximum capacity of the barcode kit

Given a demultiplexing system S, dataset D, and an accuracy value pacc , we define the bar-
code kit as BK, and the dataset D integrates BK for multisample sequencing as DBK . pmin

DBK
 

represents the minimum accuracy of the demultiplexing system S under D, where the 
minimum accuracy is defined in the “Evaluation metrics” section. For a dataset D, if the 
demultiplexing performance of S on D only depends on |BK| (the size of BK), then there is a 
maximum capacity in theory:

TDFPS-Designer tries to find the BK with a demultiplexing capacity close to the maximum 
capacity. If a brute force scheme is adopted, we need to find all possible BK and calculate 
pmin
DBK

 , which is obviously an NP-hard problem. It is presumed that there should be relatively 
large differences between the barcodes in the BK with the maximum capacity to facilitate 
demultiplexing. TDFPS-Designer uses the DTW distance to specify the barcode differences.

Barcode design strategy: selection of barcodes

Our barcode design strategy supports two input modes: the sequence length of the barcode 
kit and a given set of sequences of the same length. These input modes determine the unique 
sequence space from which we spatially pick sequences to serve as barcodes. Unfortunately, 
the sequence space can be very large. For example, there are over one million ( 410 ) choices 
within a barcode space of 10 bp barcode length and 109.9 billion ( 420 ) choices within a bar-
code space of 20 bp barcode length. To improve computational efficiency, we apply a simple 
initial selection scheme when the sequence space exceeds 1 million. In addition, our algorithm 
supports filtering out certain sequences when determining the sampling space to design bar-
codes that meet specific biological criteria, these biological criteria include balanced guanine-
cytosine (GC) content, minimal homopolymer runs, and no self-complementarity of more 
than two bases to reduce internal hairpin propensity [24]. Figure 1a shows an illustration of 
this scheme. We define a hash function H on the nucleotide alphabet = {A,T ,C ,G} of 
DNA sequences, where H(A) = 0 , H(C) = 1 , H(G) = 2 , and H(T ) = 3 . We extend this 
function to DNA sequences, as defined in Eq. (2):

where S = s1s2...sn represents a DNA sequence of length n.
Equation (2) reflects the relationship between sequences and their corresponding hash 

values. The greater the difference in hash values, the higher the probability that the two 
sequences have differences. We use this relationship to determine our initial selection 
strategy. We calculate and sort the hash values of all sequences and then use uniform 

(1)C(D, p) = max({|BK | |BK , pmin
DBK

> pacc}).

(2)H(S) = H(s1)× 4
k−1 +H(s2)× 4

k−2 + ...+H(sn),

https://github.com/junhaiqi/TDFPSDesigner.git
https://github.com/junhaiqi/TDFPSDesigner.git


Page 12 of 18Qi et al. Genome Biology          (2024) 25:285 

random sampling to select one million items. We then select the sequences correspond-
ing to these items to build the initial set of sequences. The final designed barcodes will 
all come from this initial set. Uniform random sampling selects samples across the entire 
range of sorted sequences, increasing the differences between the selected sequences. 
Uniform distribution in sampling reduces the probability of selecting similar (or adja-
cent) sequences, thereby enhancing the diversity of the sampled sequences.

To select the initial barcode set from the initially screened sequence set, we use a 
combination (called TDFPS algorithm) of the farthest point sampling algorithm and 
DTW algorithm and improve efficiency by incorporating a well-determined threshold r 
through experiments (in Fig. 6 below) . The goal is to ensure that the designed barcodes 
have enough differences to avoid sequencing errors affecting the demultiplexing results. 
We measure the difference between barcodes using the DTW distance between their 
corresponding signals. Specifically, the DTW distance between any two barcode signals 
in the final set should be greater than the threshold r.

Algorithm 1 outlines the selection of the initial barcode set. First, we convert the DNA 
sequence collection into a set of standard nanopore signals by the function seq2sig. We 
define the procedure DTWSetVersion to calculate the minimum DTW distance between 
a signal and a set of signals. A new signal is identified as a barcode signal if and only if 
the DTW distance between this signal and the barcode signal set is large enough. Select-
ing the barcode directly based on the farthest point sampling algorithm would require 
running the DTW algorithm ∼ n3 times, where n is the size of the signal set. When 
the candidate barcode set is very large, this approach would still require considerable 
computational resources. To overcome this limitation, we reduce the size of the signal 
set based on the threshold r. Whenever a new barcode signal is selected, if the DTW 
distance between the signal in the signal set and this new barcode signal is less than 

Fig. 6  The process for determining the threshold r. a Distribution of DTW distances between nanopore 
signals corresponding to sequences. b The workflow for synthetic data generation. c Summary of 
demultiplexing accuracy at different sequence lengths and edit distances. d The linear relationship between 
sequence length and DTW distance
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threshold r, it will be deleted, which could greatly reduce the size of the signal set and 
improve the screening efficiency. We also accelerate the calculation efficiency of the 
DTW matrix using CUDA and the diagonal parallel method, which improves the calcu-
lation efficiency of the DTW by ∼ 3 orders of magnitude [40].

Algorithm 1 Get the final barcodes from the initial sequence set

We selected the final barcode kits from the initial barcode set (Fig. 1c). The initial bar-
codes exhibited high DTW dissimilarity, ensuring they could be easily distinguished. 
To further enhance the robustness of demultiplexing these barcodes, TDFPS-Designer 
ultimately screened the final barcodes by simulating a demultiplexing pipeline. Specifi-
cally, after the user specifies the sequencing platform (e.g., MinION R9.4 or MinION 
R10.4) and the multi-sample sequencing library information (adapter sequences and 
flanking sequences), all barcodes in the initial set are automatically used to construct 
a multi-sample sequencing library and generate a small batch of sequencing data. This 
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sequencing data is then automatically demultiplexed by TDFPS-Designer. Subsequently, 
TDFPS-Designer analyzes the demultiplexing results, calculating the demultiplexing 
precision, recall, and F1-Score for each barcode. Barcodes with low precision (recall and 
F1-score) suggest potential conflicts with other barcodes in the kit, and TDFPS-Designer 
filters these out to obtain the final barcode kit.

Barcode design strategy: threshold determination

In theory, the demultiplexing accuracy depends on the difference between barcodes. 
Here, we want to determine a DTW distance through experimentation so that under 
this distance, a simple demultiplexing scheme can achieve sufficient precision. The 
determined distance threshold r is used as the termination condition of the TDFPS 
algorithm (Fig. 1a).

We generate template sequences of different lengths (ranging from 10 bp to 20 
bp) for a given DNA sequence. By specifying an edit distance d, we generate 1000 
sequences from these templates, where the edit distance between each generated 
sequence and its corresponding template sequence is d. As the DTW distance is 
correlated with the edit distance, larger editing distances between DNA sequences 
correspond to larger DTW distances between the corresponding nanopore signals 
(Fig.  6a). For each template sequence, we generate a dataset containing subsets of 
sequences with different edit distances from the template sequence (Fig. 6b: (1) and 
(2)). Using DeepSimulator1.5 [42], we simulate nanopore signals from each template 
sequence and its corresponding dataset, calculate the DTW distance matrix between 
the template signal and signals in the dataset, and identify the demultiplexed result 
based on the row index of the smallest element in each column of the matrix. As 
shown in Fig.  6c, the demultiplexing accuracy exceeds 99% when the edit distance 
is 10 under different sequence lengths, indicating that the difference between bar-
codes is large enough. Moreover, we analyse the numerical distribution of the DTW 
distance for an edit distance of 10 under different sequence lengths and determine a 
linear function that determines the corresponding threshold (Fig. 6d).

Demultiplexing strategy

Figure  1b outlines our demultiplexing strategy. The first step involves detecting 
the barcode region in the nanopore signal. We design a heuristic strategy based on 
Oxford Nanopore’s official multisample sequencing library construction scheme 
and the semiglobal DTW algorithm [43] to extract the barcode signal. This strat-
egy involves detecting the region of the adapter signal to determine the position of 
the barcode signal and estimating the length of the barcode signal. Specifically, we 
assume that the sequence length of the barcode is n (excluding flanking sequences), 
and the estimated barcode signal length is 10n+ c , where c defaults to 70, based on 
the structural division of the nanopore signal (see Fig. 2a and b).

After extracting the barcode signals, we calculate the DTW distance matrix 
between these sequenced signals and the standard barcode signals, and the row 
index of the minimum value in each column of the distance matrix corresponds 
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to the demultiplexed result. Specifically, upon extracting the minimum value from 
each row of the distance matrix, we employ the 5− σ method to detect anomalies. 
Any signals with a distance exceeding the threshold of mean+ 5× std are classified 
as anomalous data, potentially devoid of associated barcodes. Here, mean and std 
denote the mean and standard deviation of all distances, respectively.

Determination of final barcode kits

We used TDFPS-Designer to design final kits with barcodes of different lengths: 20 
bp, 24 bp, and 30 bp, resulting in 137, 410, and 1779 barcodes, respectively. Spe-
cifically, we first designed 795, 1093, and 2120 barcodes of 20 bp, 24 bp, and 30 bp, 
respectively, based on the TDFPS algorithm. These barcodes ensure sufficient DTW 
distance differences, forming initial barcode kits. We used these barcode kits to 
generate three medium-sized datasets (M-ESH_TD795, M-ESH_TD1093, M-ESH_
TD2120). We then demultiplexed these datasets. Figure  7a shows the distribution 
of demultiplexing recall. We can see that there is a positive correlation between the 
demultiplexing recall and the barcode length, indicating that the maximum capacity 
of the barcode kit is positively correlated with the barcode length. Additionally, we 
delved into the relationship between the number of barcodes and the minimum recall, 
which directly affects the estimation of the maximum capacity of the barcoded kit (as 
shown in Fig. 7b). It can be seen in Fig. 7b that once the number of barcodes exceeds 
a certain threshold, the minimum recall will drop significantly. This drop means that 
there will be “collisions” between certain barcodes, meaning that the demultiplexing 
system will have difficulty distinguishing certain barcodes accurately. To address this 
issue, TDFPS-Designer can simulate the generation of small batches of multi-sample 
sequencing data based on the initial barcode kit, automatically perform demultiplex-
ing, and select the final barcodes from the initial barcode kit based on the demulti-
plexing results. These barcodes ensure > 95% precision, recall, and F1-Score during 
this process, forming final barcode kits. All parameters and corresponding output 
files are available at [44].

a
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Fig. 7  Demultiplexing analysis of TDFPS-Designer on three medium-sized datasets (M-ESH_TD795, 
M-ESH_TD1093, and M-ESH_TD2120). a Boxplots of the demultiplexing accuracy of TDFPS-Designer on 
three medium-sized datasets. b Line graph between the lowest demultiplexing accuracy and the number of 
barcodes
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