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Abstract

Studies of working memory (WM) function have tended to adopt either a within-subject 

approach, focusing on effects of load manipulations, or a between-subjects approach, focusing 

on individual differences. This dichotomy extends to WM neuroimaging studies, with different 

neural correlates being identified for within- and between-subjects variation in WM. Here, we 

examined this issue in a systematic fashion, leveraging the large-sample Human Connectome 

Project dataset, to conduct a well-powered, whole-brain analysis of the N-back WM task. We 

first demonstrate the advantages of parcellation schemes for dimension reduction, in terms of 

load-related effect sizes. This parcel-based approach is then utilized to directly compare the 

relationship between load-related (within-subject) and behavioral individual differences (between-

subject) effects through both correlational and predictive analyses. The results suggest a strong 

linkage of within-subject and between-subject variation, with larger load-effects linked to stronger 

brain-behavior correlations. In frontoparietal cortex no hemispheric biases were found towards one 

type of variation, but the Dorsal Attention Network did exhibit greater sensitivity to between over 

within-subjects variation, whereas in the Somatomotor network, the reverse pattern was observed. 

Cross-validated predictive modeling capitalizing on this tight relationship between the two effects 

indicated greater predictive power for load-activated than load-deactivated parcels, while also 

demonstrating that load-related effect size can serve as an effective guide to feature (i.e., 

parcel) selection, in maximizing predictive power while maintaining interpretability. Together, 

the findings demonstrate an important consistency across within- and between-subjects approaches 

to identifying the neural substrates of WM, which can be effectively harnessed to develop more 

powerful predictive models.
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1. Introduction

A major line of cognitive neuroscience research has been directed towards understanding 

the neural basis of working memory (WM). This work has tended to adopt one of two 

methodological approaches, focusing on either within-subject effects or between-subjects 

differences (i.e., individual differences; Braver et al., 2010). In the within-subject WM 

studies, a central goal has been to identify the neural correlates underlying WM load-related 

effects, finding brain regions sensitive to WM maintenance demands (Feredoes and Postle, 

2007; Jha and McCarthy, 2000; Motes and Rypma, 2010; Pessoa et al., 2002; Rypma et 

al., 1999; Veltman et al., 2003) and/or the effects of parametric variation in WM load 

(Braver et al., 1997; Lamichhane et al., 2020; Van Snellenberg et al., 2015). In contrast, 

between-subjects WM studies have focused on understanding the neural basis of individual 

differences in WM function, which have long-been established as a major component of this 

domain (Baddeley, 2012; Engle et al., 1999; Just and Carpenter, 1992; Saults and Cowan, 

1998). In neuroimaging studies of this type, the goal has been to identify key brain regions, 

for which activity levels correlate with individual variation in WM behavioral performance 

(Mitchell and Cusack, 2008; Xu and Chun, 2006). Despite the significant advances that have 

come from each methodological approach, a key unresolved question is the extent to which 

within- and between-subjects variations in WM reflect the same or dissociable underlying 

neural systems (Yarkoni and Braver, 2010). The primary goal of the current study was 

to resolve the degree to which the neural correlates of within- and between-subjects WM 

variations overlap.

There are good reasons to think that the neural substrates of within- and between-

subjects WM variation to be anatomically and statistically dissociable. By design, brain 

regions revealed by within-subject analyses (e.g., neural load effects) show the most 

consistent activation patterns within a selected sample; conversely, regions identified 

by between-subject analyses will have a large component of variability that correlates 

with WM performance. Importantly, however, the most consistently activated regions do 

not necessarily have large variability in activation (Yarkoni and Braver, 2010). This is 

unsurprising since, statistically, between-subjects variability constitutes the error term in 

within-subject analyses, creating a potential tradeoff between within- and between-subjects 

effect sizes, all else being equal. Indeed, although the neuroimaging literature has converged 

on key brain networks, such as the frontoparietal network, as being critical for WM 

function, it has also revealed spatial dissociations between regions sensitive to within- and 

between-subjects WM variation. Early neuroimaging studies highlighted the importance of 

the prefrontal regions for WM load effects (Cairo et al., 2004; Postle et al., 2001; Rottschy 

et al., 2012), but other regions, such as the anterior cingulate cortex and parietal regions, 

were identified based on between-subject variation (Bunge, 2001; Todd and Marois, 2005; 

Xu and Chun, 2006). A more recent study that utilized data-driven approaches in a large 

sample dataset also highlighted a similar dissociation (Egli et al., 2018). In particular, 
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the authors identified a parietally-centered network that was sensitive to load-related 

individual differences, whereas a frontally-centered network was found to be sensitive to 

load-independent attention level. Yet the literature is still lacking a systematic, whole-brain 

focused investigation of this issue. The goal of the current study is to fill this gap.

A recent shift in emphasis within the cognitive neuroscience literature has been an 

appreciation of the importance of establishing predictive power when examining brain-

behavior relationships. In particular, predictive power can only truly be established when 

examining out-of-sample data, such as through the use of cross-validation approaches 

(Yarkoni and Westfall, 2017). Previous studies that have examined the predictive power of 

WM-related brain activity have tended to use whole brain activity patterns in a non-selective 

manner when constructing models to predict behavioral performance (Pornpattananangkul 

et al., 2020; Satterthwaite et al., 2013; Sripada et al., 2020). However, It has also been 

recognized that there is a trade-off between predictive and explanatory power, which can 

often be optimized by favoring models with fewer selective explanatory variables, as these 

may have a greater potential for interpretation and generalization (Kampa et al., 2014). 

Indeed, it is not yet known whether some brain regions may exhibit greater predictive 

power than others, and whether specific functional properties (e.g., neural load effects) 

might drive these predictive differences. For example, it is well established that brain regions 

show different functional properties in response to increasing WM loads, with some regions 

increasing activity, while others – predominantly in the default mode network – show a 

deactivation pattern (Buckner et al., 2008; Owen et al., 2005). Both load-activated and load-

deactivated regions have been found to predict WM performance (Satterthwaite et al., 2013). 

Nevertheless, there has yet to be a systematic examination testing whether the magnitude 

and the direction of load-related effects can serve as an informative guide regarding the 

predictive power of brain regions. Thus, a secondary goal of the current study was to 

precisely quantify and compare brain regions in terms of their relative predictive power, 

using within-subjects WM variation (neural load effects) as an index by which to rank-order 

brain regions. Moreover, we take advantage of a machine learning approach combined with 

permutation testing to quantify how predictive power of brain regions changes as a function 

of load-related effect size and sign (i.e., load-activated vs. load-deactivated).

A final goal of the present study was to demonstrate the utility of a parcel-based approach 

to whole-brain WM analysis, in contrast to the traditional voxel/vertex-based (+ clustering) 

approaches that have been deployed in the prior literature. In particular, we argue that 

the parcellation approach is advantageous, because it achieves the goal of dimensionality 

reduction in a principled manner (by relying on available pre-specified parcellation atlases, 

so is unbiased), while potentially increasing WM-related effect sizes. This potential gain 

in effect size is critical due to two reasons. First, a major goal of WM research is to 

identify neural correlates in terms of the degree of within-subject or/and between-subject 

variation they can capture (Yarkoni and Braver, 2010). Second, however, prior work has 

suggested that voxel/vertex-based analyses yield small effect sizes more generally, such that 

these approaches may be unreliable and/or have insufficient sensitivity when relying on the 

standard sample sizes employed in task fMRI research (Poldrack et al., 2017; Rottschy et al., 

2012).
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To achieve these study goals, we utilized the Human Connectome Project (HCP) 1200-

release open dataset (Van Essen et al., 2013), along with two distinct parcellation schemes, 

to systematically examine the relationship among within- and between-subjects variation in 

the N-back WM task. The Gordon et al. (2016) parcellation has recently been successfully 

utilized with this task and dataset to conduct analyses of individual differences in WM 

function (Etzel et al., 2020). The other parcellation that we employed, and used for primary 

results reporting, is the more recent Schaefer et al. (2018) scheme. The Schaefer parcellation 

has the advantage of more homogenous parcel sizes and availability in a variety of spatial 

resolutions (100–1000 parcels). For each scheme, we conducted four sets of analyses: (1) 

estimating the within-subject effect size of each parcel within each functional network and 

comparing these parcels to voxel/vertex-level analyses conducted in the same regions (c.f. 

Poldrack et al. 2017); (2) comparing within- and between-subject effect size, in terms of 

their relative magnitude and consistency; (3) examining how predictive power changes as a 

function of the sign and magnitude of the load-related effect size; and (4) testing whether 

load-related effect size can be utilized as a key indicator variable to guide feature selection, 

when building predictive models of WM performance.

2. Methods

2.1. Data collection and preprocessing

Neuroimaging data acquired from fMRI scans performed on 1083 healthy adults, in 

the age range of 22–35 years, were made available through the Human Connectome 

Project (HCP). The 1200 subject release dataset was used for this study (http://

www.humanconnectomeproject.org/). Participants were recruited from the area surrounding 

Washington University in St. Louis (St. Louis, MO). All participants were given extensive 

telephone screening interviews and signed the informed consent document at the beginning 

of the study (see Van Essen et al. (2013) for more detailed information regarding the 

informed consent process and screening interviews).

All functional images were acquired on a 3T Siemens Skyra scanner with a 32-channel head 

coil (TR = 720 ms, TE = 33 ms, flip angle = 52°, FOV = 208 mm × 180 mm, matrix 

size = 104 × 90, 72 slices, 2 mm isotropic voxels). More detailed information regarding 

pulse sequence and data acquisition is provided in previous publications describing the HCP 

dataset (Uğurbil et al., 2013; Van Essen et al., 2013). The data were collected over a two-day 

period. The N-back task was used to assess WM function, based on data acquired in the 

first fMRI session. Out-of-scanner behavioral assessments of both WM function and general 

cognitive ability were acquired as part of the testing protocol, with measures from the 

NIH-toolbox acquired on day one and additional non-Toolbox measures acquired on day two 

(Barch et al., 2013; Van Essen et al., 2013). Preprocessing of fMRI data was implemented 

using the HCP minimally preprocessed pipeline, which outputs data in CIFTI format on the 

associated grayordinates spatial coordinate system. Procedures for the HCP pipeline have 

been comprehensively described in previous publications (Glasser et al., 2013; Van Essen et 

al., 2013).
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2.2. Dimension reduction using predefined parcellation schemes

For the tasks included in the HCP dataset, 3D spatial maps of the contrast of parameter 

estimates (COPEs) were computed with FSL software (Smith et al., 2004). These COPEs 

were released as part of the HCP publicly available distribution package, and reflect 

the magnitude of brain activation differences between task conditions (i.e., within-subject 

effects). For the current study, we used COPE #11 in the HCP N-back task, which provides 

the contrast estimate between the high-load condition and the low-load condition (i.e., 

2-back – 0-back), averaging across different stimulus types. Thus, a positive parameter 

estimate indicates higher activation in the high-load compared to low-load condition (which 

we hereafter refer to as load-activated), whereas a negative parameter estimate indicates 

the reverse pattern (which we hereafter refer to as load-deactivated). The COPE data were 

then summarized, by averaging vertex-wise estimates into predefined parcels. We used two 

independent, predefined parcellation schemes for dimension reduction in order to assure that 

our findings are not the result of a particular parcellation scheme but are generalizable. We 

used the 400 cortical parcels (7 networks) atlas provided by Schaefer et al. (2018) and the 

333 cortical parcels (13 networks) atlas provided by Gordon et al. (2016). Although the 

Schaefer parcellation has various levels of resolution (100–1000 parcels), the 400-parcel 

set was selected here because it was the one most thoroughly examined in the original 

paper (Schaefer et al., 2018), and it is close in size, and thus comparable, to the Gordon 

parcellation. We report all results for the Schaefer 400 parcellation in the main text; Gordon 

parcellation results are included in the Supplementary Materials, as they were very similar in 

all respects.

2.3. Behavioral measures

The N-back task was the primary in-scanner task used to assess WM function in the 

HCP. The N-back is probably the most popular neuroimaging paradigm for assessing WM 

function, via load (and content) manipulations (Barch et al., 2013; Braver et al., 1997; 

Lamichhane et al., 2020; Owen et al., 2005). The task included two runs of four blocks, 

which consisted of four distinct visual-spatial stimulus types, including places, tools, faces 

and body parts. In the analyses presented here, we ignored the manipulation of stimulus 

type, and collapsed the data across these four conditions. Although examinations of WM 

content manipulations are also an important focus of investigation, it was beyond the scope 

of the current study; consequently, the decision to collapse across stimulus type was made 

to increase the statistical power and reliability of the behavioral performance estimates (and 

COPEs). Specifically, the in-scanner behavioral variable of interest was accuracy in the 

2-back condition. For the 2-back condition, participants were asked to decide whether the 

stimulus presented on the current trial was the same as the stimulus two trials back. The 

relationship between this in-scanner working memory performance measure and the COPE 

parameter estimate was used to compute the individual difference (i.e., between-subjects) 

effect size, which was compared with the WM load (i.e., within-subject) effect size in an 

equivalent manner.

As part of the HCP protocol, participants performed several cognitive tasks in an out-of-

scanner behavioral session. Here we selected four out-of-scanner behavioral measures 

to test the degree to which load-related N-back activity provides a more generalizable 
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indicator of individual differences in WM capacity and cognitive functioning, by predicting 

out-of-scanner indices. The rationale is that the out-of-scanner measures should be less 

impacted by any covarying state-related or non-specific factors that might be reflected in 

N-back performance. Specifically, we selected the List Sorting task which examines WM 

capacity; the Picture Vocabulary which examines Language/vocabulary comprehension; Oral 

Reading Recognition which examines language and reading decoding; and the Penn Matrix 

Reasoning task which examines general fluid intelligence (Barch et al., 2013). These out-of-

scanner tasks were selected because they either directly probe WM capacity (Tulsky et al., 

2014) or have been found to be highly related to individual differences in WM function in 

prior work (Cooper et al., 2019; Pornpattananangkul et al., 2020). In the current study, the 

primary focus was on the List Sorting task, as it is an explicit measure of WM capacity. 

Since the other out-of-scanner measures do not directly tap into WM capacity per se, 

these analyses were primarily conducted for comparison, benchmarking, and generalization 

purposes, and are reported in Supplementary Materials.

2.4. Outlier exclusion

We identified outlier parcels based on extreme COPE values, using a cutoff of above or 

below 3 times their interquartile range (known as the 3 IQR rule; cf., Pornpattananangkul 

et al. 2020). Participants with 10% or more of their parcels showing extreme values were 

identified as outliers and excluded from further analyses. This outlier detection approach 

was intended to remove participants with potentially poor brain registration. The 3 IQR rule 

was also applied to the behavioral measures and did not identify any outliers. This criterion 

excluded 52 outliers and the final sample used in all subsequent analyses included in a 

total of 989 participants that completed both the in- and out-of-scanner tasks of interest. 

We also replicated all analyses without any outlier exclusion; all primary results remained 

unchanged.

2.5. Estimating vertex- and parcel- based measures of load-related effect size

To replicate the voxel-level N-back effect size measured reported in Poldrack et al. (2017), 

we quantified the load-related effect size of each vertex using Cohen’s d, which was 

computed as the mean effect divided by the standard deviation of the data. To provide 

a network-level estimate of load-related effect size, we grouped all vertices into either 

7 (Schaefer) or 13 (Gordon) networks and computed the mean effect sizes within each 

network. To quantify parcel-level N-back load-related effect size, we first averaged vertex-

wise estimates into predefined parcels, and computed parcel-level Cohen’s d the same way 

as described above. Parcels were then grouped into either 7 (Schaefer) or 13 (Gordon) 

networks and the mean parcel-level effect sizes were computed within each network. These 

parcel-wise effect sizes were then compared with those computed vertex-wise.

2.6. Defining the neural correlates of within- and between-subject variation

For each parcellation scheme, WM within-subject variation was measured in terms of the 

N-back load-related effect size. We defined neural correlates of the load-related effect by 

selecting parcels that had significant differences in activation between the high working 

memory load (2-back) and low load (0-back) conditions (Rottschy et al., 2012). Specifically, 

we conducted one-sample t -tests using the contrast COPE (2-back – 0-back estimates) 
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against a population mean of 0 to identify parcels exhibiting positive (i.e., load-activated 

parcels) and negative (i.e., load-deactivated parcels) differences, using a whole brain 

Bonferroni correction (p < 0.000125) to determine statistical significance. Both sets of 

parcels were load-sensitive and investigated in subsequent analyses involving within-subject 

WM load effects.

We defined neural correlates of between-subjects WM effects by selecting parcels in which 

the between-subjects variability in load-related activation was associated with variability 

in 2-back behavioral performance. Specifically, we computed the Pearson correlation 

coefficient (r) between each parcel’s load-related activation level and the 2-back task 

performance to identify parcels exhibiting either a positive or negative linear relationship 

with behavioral performance, again using a whole-brain Bonferroni correction (p < 

0.000125) to determine statistical significance. Both sets of parcels were investigated in 

subsequent analyses involving between-subject WM load effects.

2.7. Comparison of within-subject and between-subject WM effects

In order to directly compare within- and between-subject WM effects, we computed a 

normalized ranking of both effect sizes across the full set of parcels. The Cohen’s d 
coefficient was used to quantify and rank order parcels according to their sensitivity to 

WM load; the Pearson correlation coefficient (r) was used to quantify and rank order parcels 

according to their sensitivity to individual differences in behavioral performance. Thus, 

each parcel was assigned two rank scores based on the absolute value of their effect size 

for within- and between-subjects effects, respectively. Next the Spearman’s correlation (rs) 

between the two rank scores was computed separately for each of three parcel sets: load-

activated, load-deactivated, and load-insensitive (i.e. parcels that did not show a statistically 

significant load-related effect). A strong positive correlation coefficient indicates that the 

parcels contribute to within- and between-subjects WM variations in a consistent fashion. 

Conversely, a weak correlation coefficient indicates that there not a strong linkage between 

the two types of WM effect.

Further, to visualize the spatial distribution of parcels exhibiting a bias towards within- 

or between-subjects effect, we computed the difference of the rank scores for each parcel 

(between - within effect size ranking). Based on this rank difference score, a positive value 

indicates that a parcel is biased to be more sensitive to within-subject variation, while a 

negative value indicates that the parcel is biased to be more sensitive to between-subjects 

variation. These rank difference scores were then normalized and visualized on the brain 

surface to identify any potential spatial or anatomical gradients in these biases.

2.8. Building univariate predictive models of WM load-related effects

We investigated the degree to which the WM load-related effect size and direction of 

effect (i.e., load-activated vs. load-deactivated) indicated the predictive power of a parcel. 

Similar to the correlational approach, predictive models were used to index a parcel’s 

sensitivity to between-subjects variation but from a distinct inferential perspective. In 

standard correlational analyses, the Pearson’s r value is an index that attempts to explain 
behavioral individual differences (i.e., explanatory power) observed in the N-back task, in 
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terms of load-related activation. Yet such approaches are not explicitly implemented to 

predict behavioral performance of a new individual (i.e., predictive power), based on their 

neural activity pattern (or to predict the behavioral performance of that same individual in a 

different WM task; Yarkoni and Westfall, 2017). In order to build truly predictive models, it 

is necessary to utilize cross-validation approaches in which predictions are evaluated on held 

out (out-of-sample) data.

To provide a benchmark, univariate models were first used to establish the predictive 

accuracy of each parcel in isolation, estimated through cross-validation. Specifically, 

for each parcel, a simple linear regression model was trained on 9 folds of the data 

with the load-related neural activity used to predict individual differences in behavioral 

performances, with predictive accuracy tested on the left-out fold. The predictive power 

was quantified as the Pearson correlation coefficient between the predicted and actual 

behavioral performance, averaged across 10 folds. Next, we ranked each parcel according 

to its load-related effect size, with separate grouping for load-activated and load-deactivated 

parcels, to explore how univariate predictive accuracy varied as a function of load-related 

effect size.

2.9. Building multivariate predictive models of WM load-related effects

A second phase of predictive modeling tested whether multivariate predictive models would 

outperform univariate models. In particular, prior findings have suggested that the pattern of 

neural activity across parcels may contain additional information that can be leveraged to 

increase predictive power (Marek et al., 2020; Pornpattananangkul et al., 2020). To examine 

this issue systematically, we examined whether the predictive power varied for parcels 

within different load-related effect size ranges. We took advantage of a machine learning 

multivariate approach to build predictive models, in which the load-related activation of sets 

of parcels were used to predict both in- and out-of-scanner behavioral performance in a 

multivariate manner.

To conduct these types of predictive analyses, we first grouped parcels according to their 

load-related effect sizes into 12 bins that each spanned a range of 0.2 effect size: 4 bins 

of load-deactivated parcels with load-related effect sizes ranging from −0.1 to −0.9; 7 

bins of load-activated parcels with load-effect sizes ranging from 0.1 to 1.5; and 1 bin of 

load-insensitive parcels. We included additional load-activated parcels (N = 8) in the 1.3 to 

1.5 bin and additional load-deactivated parcels (N = 9) in the −0.7 to −0.9 bin. For each 

of the 100 iterations of sampling, we randomly and repeatedly sampled 10 parcels without 

replacement from each bin, measuring the predictive power at each bin for that sampling; 

prediction power was then averaged across iteration for each bin. An important benefit 

of this type of sampling approach is that it enables a comparison of averaged predictive 

accuracies across bins that is not confounded by the number of predictive features (i.e., 

number of parcels) in the respective bins. For example, there are 25 load-activated parcels in 

the 0.1 to 0.3 bin but 58 load-deactivated parcels in the −0.1 to −0.3 bin. As a result, without 

controlling the number of parcels, it is unclear whether any predictive accuracy differences 

observed between the two bins were due to the properties of the parcels or the number of 

predictive features. Conversely, with this analytic approach, we could systematically test 
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whether changes in predictive power occurred reliably both as a function of the direction 

(i.e., load-activated versus load-deactivated) and magnitude of load-related effect size.

For each round of sampling, we used support vector regression (SVR) to test the predictive 

power of each parcel bin through a 10-fold cross-validation framework. For each bin, a 

linear SVR model (C = 1.0, epsilon = 0.1) was trained on 9 folds of the data and tested 

on the left-out fold. The predictive accuracy was measured as the correlation between 

the predicted and the actual performance scores (Satterthwaite et al., 2013; Sripada et al., 

2020). The final predictive accuracy for each bin was averaged across 10 folds and across 

100 rounds of sampling. Moreover, we also tested the predictive power of each bin on 

out-of-scanner tasks (e.g., List Sorting) to test whether the inferences derived from these 

parcel groups generalized to working memory performance more broadly, rather than just 

in-scanner N-back performance specifically.

In order to statistically quantify how the predictive power of parcels changes as a function 

of load-related effect size, we developed a unique, nested permutation test, adapted from 

the permutation paradigm used in Etzel and Braver (2013). As shown in Fig. S1, for each 

round of sampling, we pooled and shuffled the sampled parcels across the 12 bins (nParcels 

= 120), randomly assigning each bin a new set of 10 parcels. The same SVR cross-validation 

framework was applied to measure the null predictive accuracy for each bin. This shuffling 

process was iterated 1000 times, resulting in a total 1000 null predictive accuracy measures 

per bin per sampling process. These null measures were then averaged across the 100 

sampling processes. Using these null measures, we constructed null distributions for: 1) the 

beta values for linear trend tests that focused on the effect of bin; and 2) the predictive 

power differences between any two parcel bins. Thus, we could estimate the probability of 

observing the linear trend and predictive power differences measured by the real, unshuffled 

data.

2.10. Using load-related effect size for feature selection

In a last phase of analysis, we explored whether the load-related effect size could be 

treated as a useful indicator variable from which to select features in building predictive 

models. In particular, selecting features according to load-related effect size (larger to 

smaller) could be a useful heuristic that enables a more parsimonious predictive model, i.e., 

one that provides an optimal mixture of interpretability and explanatory power, combined 

with maximal predictive accuracy. Specifically, beginning with the parcel with the largest 

load-related effect size, we sequentially added parcels as features to predict both in-scanner 

and out-of-scanner working memory performance, using the load-related effect size as the 

metric by which to add each new feature (parcel). In other words, we iteratively built a set of 

models, in which each was constructed by successively adding features (parcels) according 

to rank-ordered effect size, then measuring the change in predictive power as the model 

accumulated each new feature. The goal of this analysis was to determine if a load-related 

effect size cutoff could be identified, whereby adding further features (parcels) would no 

longer improve model performance.

To evaluate this feature selection principle, we compared the observed model performance 

to predictive models in which the features were randomly selected (i.e., without reference 
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to load-related effect sizes). Specifically, for each predictive feature size, we randomly 

sampled without replacement the same number of predictive features and estimated the 

model performance. This process was performed with 1000 iterations, generating a null 

distribution for each predictive feature size. Note that due to computational constraints, 

we only conducted this analysis for predictive models up to 60 features. The 5% to 95% 

envelope of each null distribution was computed and plotted to benchmark the observed 

model performance.

2.11. Data and code availability

Behavioral and processed fMRI data supporting the primary findings of this study are 

available at the 1200s HCP release (http://www.humanconnectomeproject.org/). The code 

for performing the specific analyses described in this paper can be found through the Open 

Science Framework at https://osf.io/atkum/.

3. Results

3.1. Parcels have larger effect sizes

The load-related effect size was computed for each vertex (N = 64,984 vertices) or parcel (N 
= 400 parcels) within each Schaefer network (N = 7 networks; Fig. 1a). We quantified 

the standardized effect size using Cohen’s d. As predicted, parcels located within the 

frontoparietal control network (FPN; termed “Control” in the Schaefer scheme) showed 

the highest averaged effect sizes (d = 0.93 ± 0.47; Fig. 1b), with 66% (34/52) of the parcels 

reaching the level of d = 0.8, which is standardly defined as a large effect size; conversely, 

only 19% (10/52) of the parcels had less than a medium effect size (d < 0.5). On the other 

hand, the vertex-level effect sizes within the same network were much lower on average 

(d = 0.57 ± 0.35; Fig. 1c), which is consistent with the effect size measures reported in 

Poldrack et al. (2017). Specifically, only 28% (1934/6907) of the vertices in the Control 

network showed a large effect size (d > 0.8), whereas about 43% (2959/6907) of the vertices 

had less than a medium effect size (d < 0.5). These results were replicated using Gordon 

parcellation scheme (Fig. S2a), with FPN and the Dorsal Attention Network (DAN) showing 

mean parcel-level effect sizes of d = 0.92 ± 0.49 and d = 0.80 ± 0.47 (Fig. S2b), but much 

smaller mean vertex-level effect sizes of d = 0.59 ± 0.33 and d = 0.44 ± 0.37, respectively 

(Fig. S2c). This increase of effect size highlights the advantages of utilizing predefined 

parcellation schemes and parcels as the primary units of analysis, rather than the traditional 

voxel-wise approach. Importantly, the gain in sensitivity from using parcels did not come 

at a cost of specificity, as a clear differentiation and interpretable ordering was observed 

across brain networks. In particular, although large effect sizes were observed in both the 

FPN/CONT and DAN, other brain networks that are thought to be only weakly associated 

with WM, such as the Visual and Limbic networks, exhibited small effect sizes centered 

near zero (and this was the same as was found with vertex-based effect sizes).

3.2. Identification of WM-involved networks

Utilizing the parcel-based approach, the goal of the next set of analyses was to identify 

the parcels that exhibited statistically reliable within- or between-subjects WM effects. 

Specifically, parcels showing within-subject WM effect should exhibit consistent activation 
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changes across all participants in response to increasing WM load; on the other hand, 

parcels showing between-subjects WM effect should exhibit associations between their 

load-induced activity variations and behavioral performances. To first identify parcels that 

showed significant within-subject WM effects, we performed parcel-wise (N = 400 parcels) 

one-sample t-tests with the preprocessed contrast estimates between 2-back and 0-back 

(2-back – 0-back) conditions for each subject (N = 989). In total, 353 parcels showed 

sensitivity to changes in working-memory load demands (whole-brain Bonferroni corrected 

at p < 0.000125; Fig. 2a, Fig. S3a). In particular, among load-sensitive parcels, many 

exhibited increased activity with increased load (i.e., load-activated parcels; N = 157; Mean 

Cohen’s d = 0.74 ± 0.41; range: 0.12 to 1.75). However, a substantial subset of cortical 

parcels responded in the reverse manner, with decreased activity associated with increased 

load (i.e., load-deactivated parcels; N = 196; Mean Cohen’s d = −0.49 ± 0.24; range: 

−1.16 to −0.12). We then used brain-behavior correlations to identify parcels that exhibited 

between-subjects WM effects. The analysis revealed 177 parcels, for which load-related 

activity was associated with between-subject differences in 2-back task performance (whole 

brain Bonferroni correlated p < 0.000125; Fig. 2b, Fig. S3b). In this case, most parcels 

exhibited a positive correlation between load-related activity and 2-back performance (N = 

120; Mean r = 0.24 ± 0.08; range: 0.12 to 0.44); a smaller number exhibited a negative 

correlation (N = 57; Mean r = −0.17 ± 0.04; range: −0.28 to −0.12).

We compared these two types of effects by examining their overlap, via conjunction 

analysis. Indeed, a high degree of overlap was observed. Almost 99% of the parcels 

exhibiting between-subjects WM effects (i.e., brain-behavior correlations) also exhibited 

significant within-subject (i.e., load-related) effects (175/177 parcels). Furthermore, the 

sign of the two effects was also highly consistent. That is, parcels that exhibited positive 

correlations with behavioral performance also tended to show load-related increase in 

activity (94% of the parcels that exhibited positive behavioral correlations were also load-

activated; 113/120 parcels) and vice versa (100% percent of the parcels that exhibited 

negative behavioral correlations were also load-deactivated; 57/57 parcels). This systematic 

whole-brain analysis of the relationship between neural correlates of the two types of 

WM effects (within-subjects vs. between-subject) suggests that they are in fact strongly 

overlapping – rather than discrepant, as might have been assumed on purely statistical 

grounds – in terms of their spatial distribution.

3.3. Parcels contribute to between and within-subject variations equivalently

To probe this relationship at a finer grain, a correlational approach was used to examine the 

degree to which the two types of WM effects were coupled. For this analysis, we normalized 

the effect size of each measure (load-related effect, brain-behavior correlation) by rank 

ordering each across parcels, and then conducting a Spearman’s correlation (rs) on the two 

ranks. Fig. 3a illustrates these relationships, for load-activated, load-deactivated, and load-

insensitive parcels, respectively. The results show that the two effects were very strongly 

correlated when considering load-activated parcels (rs = 0.79). However, the effect was 

significantly weaker for load-deactivated parcels (rs = 0.47; zdiff = −5.09, p < 0.001), suggest 

that for load-deactivated parcels the coupling was weaker. Moreover, when examining the 

load-insensitive parcels, there was no relationship between the two effects, as expected (rs 
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= 0.11, p = 0.46). These results suggest that WM-related neural activity reflects within- 

and between-subjects variation in a largely consistent fashion, particularly for load-activated 

parcels.

Nevertheless, it is possible that subtle anatomical dissociations or gradients might be present 

which favor one type of effect over the other, as has been alluded to in many previous studies 

(Yarkoni and Braver, 2010). To examine this issue, we visualized differences in the rankings 

of the two effect-sizes by plotting them on the brain surface, according to the magnitude of 

difference or bias (i.e., favoring the within-subject or between-subject effect). Specifically, 

a positive ranking difference would suggest that the within-subject WM effect size of a 

given parcel is ranked higher than its between-subject WM effect size, thus showing a 

bias towards within-subject WM variation; conversely, a negative ranking difference would 

suggest a bias towards between-subject WM variation. Visual inspection of these patterns 

(Fig. 3b) seems to indicate that parcels which show a bias towards one type of effect 

are evenly distributed across the cortex, and without a strong pattern of spatial clustering 

(e.g., prefrontal vs. parietal, left vs. right hemisphere, etc.). The same pattern of results 

was observed using Gordon parcellation scheme (Fig. S4). To quantify these observations, 

we counted the number of parcels in the frontal and parietal region per hemisphere that 

showed bias towards either type of effect. Then Chi-square tests were used to test for 

the presences of bias. Indeed, we did not observe any spatial distribution biases toward 

either type of effect across frontal and parietal lobes or left and right hemispheres (all p > 

0.05; Table 1). Additionally, we tested whether within- and between-subject effect biased 

parcels were differentially distributed among functional networks. Interestingly, as shown in 

Table 2, we found that the parcels in the dorsal-attention network were significantly biased 

toward between-subject variation (X2 1, N = 46 = 28.17, p < 0.001) whereas parcels in the 

somatomotor network were significantly biased toward within-subject variation (X2 1, N = 77 

= 28.69, p < 0.001). The same pattern of results was replicated using Gordon parcellation 

(Table S1). These results suggest that individual differences in working memory are more 

likely to be contributed by networks associated with higher cognitive function rather than 

perceptual/sensorimotor function.

3.4. Load-effect sizes indicates parcel’s univariate predictive power

Although a tight relationship was observed between within-subject and between-subject 

WM effects, to quantify whether these effects can truly be considered predictive in nature, 

a cross-validation approach is required (Yarkoni and Westfall, 2017). In particular, we 

examined the impact of load-related effect size on the predictive accuracy of each parcel 

separately, by focusing on out-of-sample test data. The predictive accuracy was quantified 

as the correlation strength between predicted and actual behavior performance, examined in 

the out-of-sample data. The results suggested that load-related effect size is highly correlated 

with a parcel’s univariate predictive power (load-activated parcels: r = 0.90, p < 0.001; load-

deactivated parcels: r = 0.58, p < 0.001). Fig. 4a shows the top and bottom 30 load-activated 

parcels ranked by load-related effect sizes, and the impact of the load-related effect size in 

predicting between-subject variation in WM performance is very easily seen. Specifically, 

the load-activated parcels with the largest effect sizes (d = 1.37) tended to be the ones 

showing the strongest predictive power (mean r = 0.32), whereas those with smaller effect 
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sizes (d = 0.22) tended to show weaker predictive power (mean r = 0.10). A similar pattern 

was observed for load-deactivated parcels, yet with less prominent effects (Fig. 4b): parcels 

with the largest effect sizes (d = − 1.12) exhibited the strongest predictive power (mean 

r = 0.19), while parcels with smaller effect sizes (d = −0.49) exhibited weaker predictive 

power (mean r = 0.10). The Gordon parcellation scheme yield very similar patterns (Fig. 

S5).

3.5. Load-effect sizes indicates parcels’ multivariate predictive power

The prior set of results suggests: (a) that the magnitude of WM load-related effects 

provide clear information regarding the power of parcels to predict between-subjects WM 

performance effects; and (b) that this effect might be stronger for load-activated than 

load-deactivated parcels. The next set of analyses examined this question more directly, 

while also switching to a multivariate approach. Specifically, multivariate approaches enable 

greater dimensionality reduction, while also testing whether pooling data from multiple 

parcels achieves a concomitant potential increase in predictive power. We first binned load-

sensitive parcels according to their load-related effect sizes, and then estimated the relative 

predictive power of each parcel bin using an iterative machine learning framework and 

permutation-based statistical inference (see Method: Building multivariate predictive models 

of WM load-related effects). The results show that for load-activated parcels, a larger load-

related effect size was strongly associated with better predictive power for both in-scanner 

and out-of-scanner task performance, which was statistically confirmed using linear trend 

analyses (Fig. 5, Fig. S6). Specifically, parcel bins were rank ordered in terms of linearly 

increasing effect size (0–6 for load-activated bins) and were then used as independent 

variables to explain the observed mean of predictive accuracies (in-scanner measures: b 
= 0.047, permutation test: p < 0.001; out-of-scanner measures: b = 0.025, permutation 

test: p < 0.001). Furthermore, at the largest effect size bins (> 1.1), the predictive power 

tended to be greater than that observed in univariate analyses (i.e., above 0.4 for in-scanner 

and 0.2 for out-of-scanner predictions). A qualitatively distinct pattern was observed for 

load-deactivated parcels. There was no significant linear relationship observed for either 

in-scanner (b = 0.02, permutation test: p = 0.064) or out-of-scanner behavioral measures 

(b = 0.003; permutation test: p = 0.33). Moreover, we found that for a matched level of 

load-related effect size, load-activated parcels tended to have significantly higher power 

than load-deactivated parcels in predicting both in- and out-of-scanner behavioral measures. 

Specifically, when predicting both the in-scanner 2-back task performance and the out-of-

scanner list-sorting task performance, parcels with matched load-related effect sizes between 

0.5 and 0.9 (the maximum effect size for load-deactivated parcels), significantly greater 

predictive power was obtained in the load-activated bins relative to the load-deactivated bins 

(permutation test: all p < 0.05).

3.6. Using load-effect size to guide feature selection

The preceding analyses point to the utility of load-related effect size, multivariate 

analyses, and load-activated parcel sets when predicting between-subjects variation in WM 

performance. As a final analysis, we directly tested the hypothesis that load-related effect 

size can serve as an effective guide to select the most useful features (parcels) when 
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building predictive models. In particular, we tested models built in an iterative manner, in 

which features were added to the model successively, according to their ranked load-related 

effect size (i.e., starting from the parcel with the largest effect size and continuing in 

descending order). To examine the predictive gain of using load-related effect size as a 

feature selection guide, for each model, we compared performance to a null model, in which 

the same number of features (parcels) were selected at random, using a permutation-based 

approach for statistical inference (see Method: Using load-related effect size for feature 

selection). Fig. 6a shows that when predicting in-scanner working memory performance, 

the model accuracy plateaued at around r = 0.53 (R2 = 28% variance explained) when the 

top 30 parcels ranked by load-effect size were included as predictive features. These top 30 

parcels were almost exclusively in fronto-parietal regions contained within the control and 

dorsal-attention networks (24 out of 30), re-emphasizing the importance of these regions 

and networks in both within- and between- subjects WM effects (Fig. 6c). Importantly, 

when using load-related effect size to guide feature selection, the model performance was 

significantly higher than the same number of parcels were selected at random. In particular, 

the performance of the load-related models consistently surpassed the 95% cutoff of the 

null distribution at most feature levels. Both in-scanner as well as out-of-scanner predictive 

models were tested using both parcellation schemes in order to assess the generalizability of 

the approach (Fig. S7).

Interestingly, however, when predicting out-of-scanner working memory performance, the 

model accuracy reached its peak at around when only the top 5 parcels, ranked by load-

related effect size, were included as predictive features, with an asymptotic value of r = 

0.27 (R2 = 7.3% variance explained; Fig. 6a). It is worth noting that although this value 

is lower than the in-scanner models, it is also consistent in demonstrating the advantage 

of using load-related effect size. This is shown by the 95% cutoff of the null distribution 

never surpassing the observed model performance with up to 5 features. More importantly, 

the asymptotic level of model performance when predicting both in- and out-of-scanner 

performance was consistently achieved when utilizing only the top load-related effect size 

parcels as predictive features. Indeed, when all available predictive features were used, the 

predictive accuracy was lower, particularly for out-of-scanner prediction (Fig. 6b), which 

confirms the importance of the utility of selective features, and conversely, the potential 

vulnerability to over-fitting when using more expansive models. Lastly, this analysis also 

confirms the value of multivariate relative to univariate models as the multivariate predictive 

power was greater than even the top univariate predictive parcel (Fig. 6b).

4. Discussion

The goal of the current study was to test the utility of whole-brain parcellation as a 

dimension reduction approach from which to systematically investigate the relationship 

of within-subject (load-related) to between-subjects (individual differences) WM variation. 

This examination yielded a number of important findings. First, parcel-based analyses 

appear to be an effective form of dimension reduction, in that they yielded high WM load-

related effect sizes while also retaining clear specificity to well-established brain regions and 

networks (frontoparietal control and dorsal attention). Second, a tight coupling was observed 

between the strength of within- and between-subject effects, particularly for regions showing 
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a load-activated pattern (high load > low load activation), with large load-related effect 

sizes predicting stronger brain-behavior relationships. Third, the strength of neural load 

effects provided an excellent guide to the power of parcels in predicting between-subjects 

WM performance variation, though this pattern was much stronger when comparing load-

activated with load-deactivated (low load > high load) parcels. Fourth, we validated that this 

property of load-activated parcels can be effectively leveraged as a heuristic guide to feature 

selection, to build more powerful predictive models of both in-scanner and out-of-scanner 

WM performance. We elaborate on each of these findings and their implications below.

4.1. Toward using predefined parcellation scheme for dimension reduction

Previous analyses have highlighted the problems of having small sample sizes for 

neuroimaging research (Button et al., 2013; Desmond and Glover, 2002; Nee, 2019; Szucs 

and Ioannidis, 2020; Turner et al., 2019) For example, Poldrack et al. (2017) pointed out 

that at the median sample size of fMRI studies (at around the year 2016), a relatively large 

effect size of Cohen’s d = 0.75 is required to have adequate statistical detection power (i.e., 

> 80%), but yet that the typical voxel/vertex-level effect sizes for the N-back WM task, as 

measured with the HCP data, was under d = 0.5. In the current study, we first replicated 

the finding reported in Poldrack et al. (2017), and found that the mean vertex-level effect 

size for the most engaged network (i.e., FPN control network) was barely above d = 0.5, 

with only ~30% vertices surpassing the cutoff of d = 0.75. Next, we performed the same 

effect size analyses at the level of parcels rather than voxels/vertices. This change yielded 

a qualitative difference from the pattern of results reported above, and with that reported in 

Poldrack et al. (2017). Specifically, when conducting the same analyses at the parcel level, 

we found that over half of the parcels within the frontoparietal control network showed large 

effect sizes (and ~70% of the parcels in this network had effect sizes greater than 0.75). 

This finding suggests that even with the typical sample sizes used in standard small-scale, 

single-lab fMRI studies of WM (N ~ 30), parcel-based analyses should be adequately 

powered to reliably identify load effects. Conversely, we found that in brain networks not 

typically associated with WM load effects (Visual, Limbic), none of the parcels achieved 

these large effect sizes. This pattern indicates that parcel-based analyses are highly effective 

in strongly increasing sensitivity while retaining specificity. Thus, the current results point 

to the utility of parcel-based analyses as a powerful dimension reduction approach for 

neuroimaging studies.

Parcel-based analyses also fare well when compared to other dimension reduction 

approaches that have been frequently adopted in the neuroimaging literature. In particular, 

component analyses (e.g., PCA, ICA) are a preferred data-driven approach to dimension 

reduction, as they can be used to extract the latent sources from all brain voxels (or 

vertices) simultaneously, reducing the feature counts from a hundred thousand to typically 

less than a hundred (and often on the order of a dozen or two), while still capturing most 

of the variance in the original dataset. The loadings from these extracted components are 

then used to examine the relationship between neural activity and behavioral performance, 

mapping the anatomical location of each latent source (Egli et al., 2018; Sripada et al., 

2020). Although component-based approaches are powerful for reducing dimensionality and 

building predictive models, they also have significant limitations. In particular, component 
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maps require significant effort to generate, and are difficult to report and communicate in a 

compact and replicable manner. In contrast, with predefined parcellation schemes, identified 

neural substrates from one study can be easily communicated (by parcel ID) to other 

researchers, and as such can easily be utilized by these researchers in follow-up analyses 

or new studies (e.g., Tables 3, S2). Moreover, along with previous literature, it has been 

suggested that analyses with predefined parcellation schemes output meaningful results, 

not only for predictive modeling, but also for applications involving univariate analysis, 

multivariate analyses (Etzel et al., 2020) or connectivity analyses (Cole et al., 2016, 2021). 

Indeed, the approach we utilized here could easily be adopted with other domains examined 

in the HCP, such as language, emotion, and reward processing, to verify the expected gain in 

effect size and utility for task-related analyses of interest. As such, we strongly advocate for 

the wider adoption of predefined parcellation schemes as the dimension reduction approach 

of choice for task-related neuroimaging data analyses.

Nevertheless, it is important to note that the use of predefined parcellation schemes in 

task fMRI analyses is still nascent, and as such there are many potential complexities that 

have not been adequately investigated. First, it is important to acknowledge that individual 

differences in whole brain network architectures have been observed (Mueller et al., 2013; 

Seitzman et al., 2019). Thus, a predefined parcellation scheme might be more applicable 

to group-averaged data analyses with big sample size (like the current study) compared 

to clinical oriented case studies, which may be benefit more from individual-specific 

parcellation techniques (e.g., Gordon et al., 2017; Wang et al., 2015). Second, many 

parcellation schemes are defined from whole-brain resting-state functional connectivity 

profiles, yet it is still not well understood the degree to which brain network structure 

might change across resting and task states. For example, the default mode network (DMN) 

defined by the Schaefer parcellation includes a few highly load-activated parcels from the 

lateral prefrontal cortex (Table 3), which are usually excluded from the conventional DMN 

when studying working memory (e.g., Čeko et al. 2015). Recent work has suggested that 

these parcels might actually function as bridges connecting the DMN with other large scale 

networks, such as the frontoparietal network (Gordon et al., 2020). Further investigation 

is required to understand the exact role of these parcels during WM task performance. 

Third, the publication of new parcellation schemes has greatly proliferated in recent years, 

with various approaches and constraints incorporated into the parcel generation algorithm. 

As such, a clear “gold standard” has yet to emerge regarding which parcellation scheme 

to use, or even of the granularity of parcellation (e.g., 100, 400 or 1000 parcel schemes 

within Schaefer). In fact, it seems likely that the types of brain data one works with (e.g., 

resting vs. task state data) and the type of analyses one performs (e.g., network analyses vs. 

multivariate pattern analyses) may have an important impact on which parcellation scheme 

is most appropriate or effective. Even the issue of how evaluate various parcellation schemes 

in terms of benchmarks or metrics is one that is only just now finding its way into the 

literature (Dadi et al., 2020; Zhi et al., 2021). Therefore, for the current study, we replicated 

all analyses with two separate parcellations (Gordon, Schafer). The results were strongly 

consistent, which provides strong reassurance regarding the generality of our conclusions. 

Nevertheless, to provide even more generality, additional parcellation schemes would need 

to be tested, albeit with highly diminishing returns. As such, more work is needed to provide 
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researchers with the tools and information to enable selection of the most appropriate 

parcellation scheme for a particular neuroimaging analysis.

4.2. Tight coupling between within-subject and between-subject WM effects

In the cognitive neuroscience of WM, an important yet unanswered question is: to what 

degree do the brain regions that support WM (i.e., those showing large neural load effects) 

overlap with brain regions that are most sensitive to individual differences in WM (i.e., 

regions showing strong neural-behavioral correlations; Yarkoni and Braver, 2010)? One 

possibility is that the neural mechanisms used for WM maintenance and manipulation are 

distinct from those that translate these processes into successful behavioral actions (Egli et 

al., 2018; Gray et al., 2003; Osaka et al., 2003; Postle et al., 2001). Kane (2003) used a 

car metaphor to illustrate the potentially dissociable relationship between WM load effects 

and individual variation in WM performance. In this metaphor, most cars use a similar basic 

braking mechanism (involving pads, drums, master cylinders, etc.) and the components of 

this mechanism can be identified by analyzing cars stopping (vs. accelerating; within-subject 

WM load effects), but variation in stopping distance (between-subjects WM variation) 

might arise from wholly different mechanisms (aerodynamics, tire balance, weight, pedal 

placement, etc.), which is only revealed by analyzing different cars that vary on these 

mechanisms. Yet an alternative, and highly plausible, possibility is that variation in the 

functioning or efficacy of the brain network utilized for WM maintenance and manipulation 

is also the primary source of individual variation in WM task performance (Gray et al., 

2003; Lee et al., 2006). The primary goal of the current study was to directly compare 

brain regions identified by these two experimental approaches, in a systematic way, by 

leveraging the large sample-size of the HCP data set to conduct analyses in a rigorous and 

well-powered manner.

Our results clearly favor the overlapping neural mechanisms account of WM function. 

In particular, we observed three key findings that support this interpretation. First, the 

brain regions showing significant within- and between-subjects WM effects showed a close 

anatomic overlap, targeting frontoparietal and dorsal attention networks. Second, when 

directly comparing the magnitude of both types of effects, a tight coupling was observed, 

in that parcels exhibiting the highest within-subject effect sizes also tended to show the 

strongest correlations with behavioral performance (i.e., high between-subject effect sizes). 

Finally, there was no easily observable spatial gradient or pattern in the parcels that 

exhibited stronger within- or between-subject effects. This finding counters the idea that 

there is clear dissociation in WM neural mechanisms with prefrontal showing stronger 

load-related effects and parietal showing stronger sensitivity to individual variation (c.f., 

Egli et al. 2018; Yarkoni and Braver 2010). Nevertheless, we did observe subtle biases in 

some brain networks related to greater sensitivity to one type of variation. Specifically, as 

a load-activated network with large load-related effect sizes, parcels in the dorsal-attention 

network tended to show greater sensitivity to individual differences relative to the magnitude 

of load-related effect size. Conversely, in the somatomotor network, which mostly contained 

parcels exhibiting a load-deactivated pattern, there was relative insensitivity to individual 

differences. These results are consistent with our overall finding that load-deactivated 
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regions were less predictive of individual differences in WM task performance relative to 

load-activated regions, as discussed further below.

It is important to consider potential reasons why our results might appear discrepant from 

prior work emphasizing dissociations in within-vs. between-subjects WM effects. One factor 

relates to sample size. Specifically, having sufficient power to detect between-subjects WM 

effects requires a much larger sample than is necessary for detecting within-subject effects 

(Braver et al., 2010; Yarkoni and Braver, 2010). As discussed above, it is only more recently 

that fMRI studies have provided sample sizes necessary for conducting a comprehensive 

analysis of between-subjects WM variation. Thus, most of the prior published work on this 

topic either had exceedingly low power for replication (Bunge, 2001; Todd and Marois, 

2005), or instead focused on isolated a priori regions of interest (e.g., Osaka et al. 2003). By 

taking advantage of the large sample size of the HCP and a whole-brain parcellation scheme, 

the current study provides a powerful approach by which to resolve prior discrepancies in 

the literature. It is also the case that the discrepancy might be more apparent than real. 

Indeed, in a supplementary analysis, we used the intraclass correlation coefficient (ICC) 

as an independent metric of between-subject variation. As expected, the ICC was highly 

negatively correlated with load-effect size, strongly confirming the tradeoff between these 

two types of effects (Fig. S9a). Nevertheless, ICC proved to be a much weaker predictive 

indicator of brain-behavior relationships than load-effect size (Fig. S9b), supporting the 

general conclusions of our primary analyses.

Nevertheless, the current findings are subject to two important limitations. First, due to the 

nature of the N-back task design in HCP, we were only able to measure the load-effect 

and individual differences for 2-back performance (relative to 0-back). Working memory 

tasks with higher working memory load demands would provide the ability to detect 

load-related effects and their relationship to WM task performance in a richer and more 

nuanced manner. For example, in recent work, Lamichhane et al. (2020) used an N-back 

design that involved 6 parametric levels of WM load. The analyses utilized several different 

metrics to describe load-related effects and relate these to individual differences in WM 

performance. These analyses identified a single region in left dorsolateral PFC, for which 

load-related effects predicted WM performance; though again the sample size in that study 

was too small (N ~50) to conduct a comprehensive whole-brain analysis of between-subjects 

WM effects. An ideal design would be one that examined the relationship within- and 

between-subjects WM variation using a parametric WM load manipulation, rather than with 

a single high-load level. Such experimental designs can be achieved using N-back tasks 

with multiple parametric levels (e.g., Lamichhane et al., 2020) or other WM tasks that 

involve a wide range of load manipulations such as the Self Ordered memory task (Van 

Snellenberg et al., 2015) and the Sternberg Item Recognition task (Rypma et al., 2002). Yet 

a second limitation to consider is that even with the sample-size of the HCP (N ~ 1000), it is 

possible that this dataset is still too small to generate precise and generalizable estimates of 

predictive power. In particular, a recent study has suggested that the brain-wide associations 

we observed here (i.e., the correlation between neural activity and WM performance) may 

still be subject to strong effect size inflation and mis-estimation due to sampling variability, 

that does not resolve until samples are at least twice as large as the HCP dataset (Marek 

et al., 2020). However, it is worth noting that Marek et al. (2020) examined the brain-wide 
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associations using resting state functional connectivity as the neural measure to predict 

individual differences in behavioral task performance. Some studies have suggested that 

neural measures derived from cognitively demanding task states will have more robust 

and consistent predictive power to capture individual differences in behavioral performance 

(Sripada et al., 2020).

4.3. Magnitude and direction of load-related effect size indicates predictive power

A correlational approach (or simple linear regression) measures the degree to which the 

neural activity of a parcel can be used to explain individual differences in behavioral 

performance. However, correlational approaches do not necessarily indicate whether such 

a parcel can be reliably used to predict out-of-sample data (Yarkoni and Westfall, 2017). 

Consequently, in addition to standard correlational analyses, we used cross-validation 

approaches to directly explore how predictive power for between-subjects WM effects 

varied as a function of load-related effect size. To explore this issue more thoroughly, both 

univariate and multivariate approaches were used to measure predictive power. Similar to 

what has now been observed in many fMRI analyses, we found that multivariate models 

substantially outperformed univariate ones in predicting both in- and out-of-scanner tasks 

(Fig. 6b, Fig. S7). Importantly, however, both approaches converged in suggesting that the 

predictive power of a parcel (or a set of parcels) increases as the load-related effect size 

increases.

An additional key finding in these analyses was that the univariate and multivariate models 

both provided evidence load-activated parcels had reliably greater predictive power than 

load-deactivated parcels (Fig. 5). Note that this difference in predictive power between 

load-activated and load-deactivated parcels was not an artifact of controlling (the absolute 

value of) load-related effect size or the number of predictive features (parcels). In fact, 

supplemental analyses revealed that the general pattern still held even when comparing 

the predictive power of all load-deactivated regions to load-activated regions (Fig. S8). 

We speculate that there are two possible reasons why load-deactivated parcels might 

exhibit less predictive power than load-activated. First, regions that typically exhibit a 

load deactivation pattern (e.g., the default mode network) appear to be sensitive to more 

general and non-specific factors, such as mind-wondering, arousal, and fatigue, that may 

only peripherally or indirectly contribute to task performance. Second, while load-activated 

regions included parcels mostly from brain networks that are well-established to support 

higher cognitive functions, such as WM and attention control (e.g., Control/Frontoparietal 

and Dorsal Attention networks), load-deactivated parcels were primarily associated with 

perceptually-oriented regions, such as those that make up the Visual and Somatomotor 

networks. Together, the anatomic location and functional properties of load-deactivated 

parcels are consistent with the finding that these parcels were less predictive of task 

performances relative to load-activated ones.

However, the current findings do diverge from Satterthwaite et al. (2013), who reported 

results from a large sample N-back study indicating that load-activated and load-deactivated 

regions have similar predictive power. Two key differences between the current study and 

Satterthwaite et al. (2013) may account for this discrepancy. First, Satterthwaite et al. (2013) 
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defined load-deactivated regions of interest (ROI) only from the default mode network. 

In contrast, the current study found that load-deactivated regions could also be located in 

perceptually-relevant brain networks (Visual / Somatomotor). Second, Satterthwaite et al. 

(2013) defined ROIs based on the weights of another cross-validated predictive model, 

leading to ROIs of high predictive power. In the current study, parcels were selected 

according to load effect size, rather than predictive power. Additionally, we want to 

stress that load-deactivated parcels were defined according to a contrast between two load 

conditions (2-back, 0-back), rather than between 2-back and a fixation baseline. We believe 

this contrast was appropriate, given our primary interest in identifying brain regions whose 

activity was specifically modulated by WM load. However, based on this contrast, we did 

not differentiate regions showing distinct deactivation profiles (i.e., baseline > 0-back > 

2-back vs. 0-back > 2-back > baseline). Although beyond the scope of the current paper, 

identifying whether such dissociable patterns of deactivation are present, and whether they 

exhibit distinct profiles of predictive power for cognitive task performance, would be an 

interesting question for future work.

4.4. Load effect being a good indicator for feature selection

A primary goal of cognitive neuroscience research is to find effective neural markers that 

can reliably predict individual differences in behavior. A number of recent studies have 

attempted to build predictive models from whole-brain task-related activity patterns in 

order to predict WM performance (Egli et al., 2018; Pornpattananangkul et al., 2020) and 

general cognitive ability (Sripada et al., 2020). However, despite their success in predicting 

behavior, our results argue that including neural activity from the whole brain might be 

suboptimal. Instead, selectively choosing predictive features for the model may further 

maximize its predictive accuracy (Fig. 6b). Specifically, when including all 400 features 

(Schaefer parcellation scheme), the model predictive accuracy for the in-scanner (N-back) 

WM task was around r = 0.49, which is around the same accuracy level compared to 

previous models (Pornpattananangkul et al., 2020; Satterthwaite et al., 2013). However, our 

results show that the model achieved a better performance when only the top 30 features 

ranked based on load-effect size were used (r = 0.53). The same pattern was observed 

when predicting out-of-scanner behavioral measures and using the other parcellation scheme 

(Figure S7). Together, these results suggest that predictive models for WM performance 

may benefit from feature selection approaches, particularly when these are guided by a 

functionally relevant principle.

More specifically, the current study results provide a clear indication that load-effect size 

can serve as a principled basis from which to guide feature (i.e., parcel) selection. We 

conducted permutation-based analyses which compared feature selection based on WM load 

relative to random selection of an equivalent number of features. These analyses revealed 

that WM load-based feature selection can almost always lead to the best model performance, 

given any predictive feature size (Fig. 6a). Indeed, in supplementary analyses, we found that 

the load-based approach to feature selection fared very well when compared to a standard 

machine-learning approach to feature selection (the forward stepwise algorithm; Fig. S10) 

that is designed to maximize predictive power, but in a ‘blind’ data-driven fashion (i.e., 

rather than according to interpretable principles). Importantly, only the top 30 features 
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ranked by load-effect size were needed for the model to achieve optimal performance. 

When predicting out-of-scanner working memory performance, it seems that a load-based 

feature selection principle had little contribution when more than 10 features were selected. 

However, the results did show that with load-effect size as an indicator, a model could 

achieve peak performance (better than when all 400 features were included) when only the 

top 5 load-related features were selected. Together, the current study provides evidence that 

feature (parcel) selection is an important step toward building the optimal predictive model 

for individual differences in working memory function, and that load-effect size is a good 

indicator to guide the feature selection process in a principled manner.

4.5. Constraints on generality

As described above, there are a few limitations of the current study which provide important 

constraints regarding the conclusions that can be drawn from it. In addition to the fact that 

the study involved only a categorical (high / low) rather than parametric manipulation of 

WM load, and may still have had an insufficient sample size to yield robust results, it is 

important to consider the HCP sample, the use of the N-back task, the focus on activation 

rather than connectivity effects, and the stimuli themselves as providing constraints on 

generality. We address each of these points briefly. The HCP sample included only healthy 

young adults (22–35), and thus the results may not generalize well to developmental, aging, 

or other populations suffering from clinical impairment. The N-back task is only one out of 

many potential experimental paradigms used to probe WM function (Wilhelm et al., 2013). 

Further, although it is one of the most popularly used in neuroimaging studies, the N-back 

task suffers from many well-known limitations as a pure probe of both WM maintenance 

functions and also individual differences (Kane et al., 2007). Even within the N-back, 

the HCP task is relatively non-representative, as prior work has more frequently tended 

to focus on verbal (letters, words) or spatial materials, rather than the mostly non-verbal 

stimuli (e.g., places, faces) used in the HCP, with some clear anatomic distinctions observed 

across these stimulus factors (Owen et al., 2005). Thus, it is quite plausible that the pattern 

observed here may not generalize to other N-back variants. Finally, although some recent 

studies have focused on the potential for task-based activation patterns to be used as robust 

predictors of individual differences (Etzel et al., 2020; Satterthwaite et al., 2013; Sripada et 

al., 2020) more attention has been given towards connectivity approaches, both resting-state 

and task-based, in this domain. As mentioned above, it is not yet clear whether the critical 

factors that impact detection of connectivity-based individual difference analyses (Finn et 

al., 2015; Marek et al., 2020), generalize to analysis approaches, such as this one, that 

involve activation-based metrics. We add this section to remind researchers that all these 

factors need to be kept in mind when drawing implications from the current work towards 

future studies (Simons et al., 2017; Yarkoni, 2020).

5. Conclusion

The current study jointly informs two distinct issues within cognitive neuroscience: 1) the 

degree of overlap in the neural substrates of WM function related to within-subjects (e.g., 

load-related) and between-subjects (individual differences) effects; and 2) the neural indices 

that show the greatest predictive power for detecting individual differences in cognitive 
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function. Our findings demonstrate that, at least within the HCP dataset and N-back task 

variants used in that study, neural load effects are tightly linked with individual variation in 

cognitive task performance, and as such, can be used as the basis for feature selection to 

build predictive models of individual differences in WM function (as well as other indicators 

of general cognitive ability). In so doing, the current work highlights the utility of large 

sample datasets, whole-brain parcel-based approaches, and the use of informed feature 

selection in neurally-based predictive modeling. As such, our findings provide a strong 

foundation for future studies that can expand upon these efforts.
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Fig. 1. 
Parcel- and vertex-wise load effect sizes with Schaefer parcellation scheme. (a) The 

Schaefer predefined parcellation scheme. The color map shows the respective functional 

network. (b,c) The parcel-level and vertex-level load-related effect sizes, respectively. 

Vertices and parcels were grouped for each functional network. The number in the 

parenthesis indicates the number of parcels within each network.
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Fig. 2. 
Neural correlates of within- and between-subject variations defined using Schaefer 

parcellation scheme. (a) Parcels showing within-subject WM effect (i.e., load-sensitive). The 

color indicates the load-effect size, with red indicating load-activated parcels and blue load-

deactivated parcels. (b) Parcels showing between-subjects WM effect (i.e., neural-behavioral 

correlations). The color indicates the sign and size of the correlation, with red indicating 

positive and blue negative correlations.
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Fig. 3. 
(a) The relationship between parcel’s within-subject effect size and explanatory power, 

as measured by load-related effect size and brain-behavior correlation using Schaefer 

parcellation scheme. The labels for x and y axis are the ranked order for within- and 

between- subject effect sizes, with smaller number indicating higher rank. The correlation 

between the rank orders for the two effect sizes were computed separately for load-activated, 

deactivated, and insensitive parcels (* indicates p < 0.001). (b) The spatial relationship 

between parcels being more senstive to within-subject effect and those being more sensitive 

to between-subjects effect. The color map represents the degree to which a parcel is more 

sensitive to a type of difference. Warm colors indicate a parcel being more sensitive to 

within-subject variation and cool more sensitive between-subject variation.
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Fig. 4. 
The relationship between load-related effect size and predictive accuracy for Schaefer 

parcels. (a) Univariate predictive accuracy of the top and bottom 30 load-activated parcels 

ranked by load-related effect size (i.e., Cohen’s d). (b) Univariate predictive accuracy of the 

top and bottom 30 load-deactivated parcels ranked by the absolute values of the load-related 

effect size. Predictive power was examined with the left-out samples using cross-validation; 

predictive accuracy was quantified as the correlation between the predicted and observed 

scores.
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Fig. 5. 
The predictive accuracy for each Schaefer parcel bin for a) In-Scanner (N-back) and b) 

Out-of-Scanner (List-Sorting) performance. Parcels were binned based on load-related effect 

sizes. Each point represents the predictive accuracy averaged across 100 rounds of sampling 

from the respective bin. The asterisk indicates a significant difference in predictive accuracy 

between load-activated and load-deactivated parcel bins being matched in load-related effect 

size (p < 0.05 permutation test). The gray dashed line indicates the predictive accuracy for 

the load-insensitive bin.
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Fig. 6. 
The change in model predictive accuracies as adding in the next useful predictive feature. 

(a) The model predictive accuracy when using different number of predictive features. The 

black line represents the observed predictive accuracy that uses load-related effect sizes to 

guide feature selection. The color of the data point represents whether the most recently 

added predictive feature is a load-activated or load-deactivated parcel. The gray ribbon 

represents the 5% – 95% envelope of the predictive accuracy distribution if the same number 

of predictive features were randomly sampled. (b) The predictive accuracies of models with 

vs. without feature selection. The bar plot shows the averaged predictive accuracy from the 

10-folds cross-validation framework. The horizontal dashed line in the bar plots indicate the 
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highest univariate predictive accuracies. (c) Parcels that show the top 30 largest load effect 

size, with the yellow color highlighting the top 5 parcels ranked by load-effect size.
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