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Animal models

YAP and TAZ are dispensable for physiological and malignant
haematopoiesis
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YAP and TAZ are two transcriptional co-activators regu-
lated by the Hippo pathway kinases (MST1,2 and
LATS1,2), cytoskeletal tension, and several other signaling
pathways [1–3]. As such, YAP/TAZ are emerging as key
regulators of cell growth and tissue homeostasis, both in
lower organisms and in mammals [3]. In particular, YAP/
TAZ are activated in somatic stem cells to support self-
renewal and pluripotency and, when ectopically expressed,
can reprogram terminally differentiated cells into a stem
cell/progenitor like state [4, 5].

Although a systematic genetic analysis is still missing,
there is evidence implicating YAP/TAZ in the regulation of
the haematopoietic system, both in physiological and in
pathological conditions.

In cord blood-derived human haematopoietic stem cells
(HSCs), TEAD1, the obligatory partner of YAP/TAZ,
regulates differentiation in early B cells [3]. TAZ, but not
YAP1, has been implicated in the lineage choice during
naive T cell differentiation, where it functions as a coacti-
vator of RORγt favoring pro-inflammatory TH17

differentiation over the immunosuppressive Treg fate [6].
This may also account for the reported role of the MST
kinases (Yap/Taz inhibitors) in limiting autoimmune
responses [7, 8].

While in solid tumors, YAP/TAZ are emerging as either
potent oncogenes or downstream targets of oncogenic
pathways, their role in haematopoietic malignancies appears
to be context dependent. In multiple myeloma (MM) and
leukemias, YAP seems to exert a tumor suppressive func-
tion by regulating the Abl1-dependent DNA damage
response, which leads to apoptosis in cancer cells. This
explains why deletion or downregulation of YAP/TAZ are
frequently observed in MM and leukemias [9]. On the other
hand, TEADs have been proposed to reinforce transcrip-
tional activation of oncogenic programs and enhancer
reprogramming during B cells transformation [10] and
upstream Hippo pathway components are lost in leukemias
and lymphomas [11, 12], thus arguing for a pro-oncogenic
role of YAP/TAZ in some hematological malignancies.

To analyze the role of Yap and Taz in the adult hae-
matopoietic system, we crossed mice double homozygotes
for conditional knockout alleles of both Yap and Taz
(Yapflox/flox/Tazflox/flox mice) with Mx1-CRE mice (Supple-
mentary Figure 1). Conditional activation of the Mx1-CRE
led to an efficient and stable deletion of both alleles, thus
ruling out counter selection of Yap/Taz floxed cells upon
prolonged haematopoiesis (Supplementary Figure 2a, b).
Blood analysis revealed no difference in the number of
circulating white blood cells (WBCs) over time (Fig. 1a).
Similarly, FACS analyzes of WBCs lineages confirmed the
lack of alterations both in circulating and in bone marrow
cells (BMCs) (Supplementary Figure 2). Red blood cells
(RBCs) were largely unaffected by Yap/Taz loss, with the
exception of a mild, decrease in RBCs count and hemo-
globin concentration detected starting from 6 months post
deletion (Fig. 1b, c). This was not paralleled by a statisti-
cally significant decrease in circulating erythroid
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progenitors (Ter119+ cells, Supplementary Figure 2g),
arguing against a general defect in RBCs differentiation.

FACS analyses revealed no difference in the frequency
of early haematopoietic progenitor cells (Lin- and LSK) or

in HSCs (Fig. 1d–f). Survival analysis showed a partially
penetrant lethality of YapΔ/Δ/TazΔ/Δ males (Fig. 1g).
Importantly, these mice did not show any hematological
defect (Fig. 2h, i and Supplementary Figure 3), or signs of
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Fig. 1 Analysis of peripheral adult haematopoiesis upon Yap/Taz loss. a–c Peripheral blood analysis of Yapflox/flox/Tazflox/flox (Y/T f/f) or YapΔ/Δ/
TazΔ/Δ (Y/T Δ/Δ) mice. a WBCs, b RBCs, and c hemoglobin at 4, 6, and 10 months post recombination. d–f FACS analysis of BMCs: d Lineage-
negative cells, e LSK progenitors, and f HSCs (Lin-, Kit+, Sca+, CD48−, CD150+, and CD34− cells). g Kaplan–Meier survival analysis (M:
males, F: females). h, i Peripheral blood analysis: h RBCs and i WBCs. l, m coBMT experiments: l Chimerism assessed at different time points
post-BMT. inj= donor cells mix. m Chimerism of the secondary coBMTs, as in l
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progressive cachexia or anemia, which are typically asso-
ciated with pan-cytopenia of the haematopoietic system.
While the cause of lethality of YapΔ/Δ/TazΔ/Δ males is still
under investigation, it is most probably related to the
activity of the Mx1-CRE in the liver.

To test the role of Yap and Taz during enforced hae-
matopoiesis, we performed competitive adoptive transfer
experiments of BMCs (coBMT). Cells derived either from
YapΔ/Δ/TazΔ/Δ mice or from Yapflox/flox/Tazflox/flox control
(CD45.2+) were mixed with wild-type BMCs (CD45.1+)
at different ratios (i.e., 1:1 and 1:4) and transplanted in
lethally irradiated C57/Bl6 CD45.1 mice. Peripheral blood
analysis showed that YapΔ/Δ/TazΔ/Δ and Yapflox/flox/Tazflox/flox

BMCs reconstituted lethally irradiated mice equally well
(Fig. 1l and Supplementary Figure 4).

Moreover, YapΔ/Δ/TazΔ/Δ BMCs gave rise to differ-
entiated cells of the myeloid and lymphoid lineages with the
same efficiency of Yapflox/flox/Tazflox/flox BMCs (Supplemen-
tary Figures 4 and 5). Coherently with these results, YapΔ/Δ/
TazΔ/Δ and Yapflox/flox/Tazflox/flox BMCs contributed equally
well to the stem cell and progenitors compartments, when
transplanted in competition (Supplementary Figure 4c).
Secondary coBMT experiments confirmed the haemato-
poietic proficiency of YapΔ/Δ/TazΔ/Δ BMCs (Fig. 1m).
Overall, these results suggest that Yap/Taz are dispensable
for adult haematopoiesis and HSCs self-renewal. This is in
line with similar studies conducted in other somatic tissues
[3, 13] and reinforces the notion that YAP/TAZ might be
more relevant in proliferative responses elicited by either
regenerative or pathological cell growth. Obviously, our
observations do not rule out a role for YAP/TAZ in lineage-
restricted functions or their relevance in particular settings:
an example is provided by the recent report showing how
Taz regulates T-cell-mediated inflammatory responses [6].
Along the same line, Yap loss in myeloid cells potentiated
the production of IFN-β and mediated immune responses to
viral infections [14]. Thus, we believe our observations will
be the ground for further investigation focused on more
specialized haematopoietic functions.

To directly assess the role of YAP/TAZ in acute myeloid
leukemia (AML) development, we took advantage of an
established orthotopic mouse model of AML, based on the
retroviral transduction of hematopoietic progenitor cells
(HPCs) with the MLL-AF9 oncogene, alone or in combi-
nation with activated mutant NRAS (N-RASG12D) (Sup-
plementary Figure 6a). As expected, N-RASG12D

transduction did not provide any growth advantage in
Yapflox/flox/Tazflox/flox cells; similarly no growth advantage
was detected in YapΔ/Δ/TazΔ/Δ HPCs transduced with N-
RASG12D (Supplementary Figure 6b). MLL-AF9 conferred
substantial growth advantage both alone or in combination
with N-RASG12D, with similar extent both in Yapflox/flox/

Tazflox/flox and in YapΔ/Δ/TazΔ/Δ HPCs (Supplementary
Figure 6b).

In line with these results, MLL-AF9 strongly stimulated
the development of AML progenitors, with similar effi-
ciency both in Yapflox/flox/Tazflox/flox and in YapΔ/Δ/TazΔ/Δ

cells, while no CFU-stimulating activity was detected by N-
RASG12D transduction in either control or Yap/Taz-deleted
HPCs (Fig. 2a).

N-RASG12D HPCs did not give rise to AML once
transplanted, regardless of their genotype, thus suggesting
that Yap/Taz are not limiting factors (i.e., tumor suppres-
sive) in RAS-driven transformation of HPCs (Fig. 2b).
MLL-AF9 gave rise to AML with 100% penetrance and
similar latency in both control and Yap/Taz-deleted HPCs
(Fig. 2b). Accordingly, whole body leukemic cells dis-
semination was unaffected by Yap/Taz deletion (Supple-
mentary Figure 6c, d) and leukemic progenitors and
leukemic stem cells frequencies were similar in leukemias
derived from either control or Yap/Taz-deleted cells
(Fig. 2c). Overall, these results suggest that (i) Yap/Taz are
dispensable for cell transformation and dissemination in
MLL-AF9-driven leukemia and that (ii) Yap/Taz are not
tumor suppressive in either N-RASG12D or MLL-AF9-
driven AMLs. This suggests that the proposed gatekeeper
function of YAP/TAZ [9] may be only relevant in selective
settings, when specific genetic lesions may engage YAP/
TAZ-regulated tumor suppressive mechanism(s).

Considering the growing interest in pharmacologically
targeting YAP/TAZ to eradicate a variety of solid tumors,
Yap/Taz dispensability in haematopoiesis has direct impli-
cations on the safety of such approach in terms of unwanted
side effects, potentially detrimental for systemic haemato-
poiesis, which are frequently associated with cancer treat-
ments. The hematological safety is further supported by the
observation that deletion of Yap/Taz, despite their role as
tumor suppressors in multiple myeloma and leukemias [9],
does not predispose to spontaneous blood malignancies.
The partial lethality of YapΔ/Δ/TazΔ/Δ males, which is of non-
hematological origin, is a cautionary note, which should be
considered when Yap/Taz inhibitors will be evaluated in
preclinical and clinical studies.
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Fig. 2 Yap/Taz do not contribute
to MLL-AF9-driven leukemia.
Modeling of MLL-AF9 and
RAS-driven AMLs by viral
transduction of haematopoietic
progenitors from Yapflox/flox/
Tazflox/flox (Y/T f/f) or YapΔ/Δ/
TazΔ/Δ (Y/T Δ/Δ) mice. a
Colony forming unit (CFU)
assay (n= 6). b Kaplan–Meier
analysis of mice xenografted
(time= 0) as indicated. c
Peripheral blood analysis of
mice transplanted with HPCs
transduced with MLL-AF9 cells
(n= 6). Left: leukemic
progenitors; right: leukemic
stem cells
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