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Abstract

Background: Demand for gastrointestinal endoscopy in Australia is increasing as a result of the expanding national
bowel cancer screening program and a growing, ageing population. More services are required to meet demand
and ensure patients are seen within clinically recommended timeframes.

Methods: A discrete event simulation model was developed to project endoscopy waiting list outcomes for two
large metropolitan health services encompassing 8 public hospitals in Australia. The model applied routinely
collected health service data to forecast the impacts of future endoscopic demand over 5 years and to identify the
level of service activity required to address patient waiting times and meet key policy targets. The approach
incorporated evidence from the literature to produce estimates of cost-effectiveness by showing longer term costs
and Quality Adjusted Life Years (QALYs) associated with service expansion.

Results: The modelling revealed that doing nothing would lead to the number of patients waiting longer than
clinically recommended doubling across each health service within 5 years. A 38% overall increase in the number
of monthly procedures available was required to meet and maintain a target of 95-98% of patients being seen
within clinically recommended timeframes to the year 2021. This was projected to cost the funder approximately
$140 million in additional activity over a 5 year period. Due to improved patient outcomes associated with timely
intervention, it was estimated that the increased activity would generate over 22,000 additional QALYs across the
two health services. This translated to an incremental cost-effectiveness ratio of $6467 and $5974 per QALY for each
health service respectively.

Conclusions: Discrete event simulation modelling provided a rational, data based approach that allowed decision
makers to quantify the future demand for endoscopy services and identify cost-effective strategies to meet
community needs.
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Background

The use of data in health care is undergoing a revolu-
tion. Health services are increasingly utilizing informa-
tion technology, including electronic health records, to
capture accurate and comprehensive information across
all levels of patient interactions with the system [1].
Health related apps and wearable technology provide a
repository of data, with implications for research still
evolving. Also emerging is the potential for Blockchain
technology to create immense, decentralized, patient
generated health databases that are updated in real time
[2]. Although challenges exist, the use of routinely col-
lected administrative health data has the potential to
transform health service planning. Specifically, the
wealth of available data can provide decision makers
with a rich and constantly evolving understanding of the
broader system which in turn enhances their ability to
plan for and deliver effective and efficient services.

Discrete event simulation (DES) is a modelling tech-
nique that is able to capitalize on the value inherent in
detailed patient-level data. DES models are typically de-
signed to represent the process flow of a complex system
and the way in which individuals move through and
interact with other agents in the system [3]. This pro-
vides a systematic, transparent and comprehensive ap-
proach to applying data and evidence in the decision
making process. Over the past decade, DES models have
emerged as an increasingly important and powerful tool
in health service management and delivery [4]. The use
of individual simulations, as well as the incorporation of
time to event parameters, mean that DES techniques are
uniquely placed to model the effects of capacity con-
straints and waiting lists [5].

In Australia, waiting lists for public endoscopy services
have rapidly increased over the past decade driven by popu-
lation growth and ageing, the introduction of a National
Bowel Cancer Screening Program (NBCSP) [6], the increas-
ing need for ongoing surveillance procedures and the
substitution of surgical techniques with endoscopy proce-
dures [7]. This trend is expected to continue over the next
several years in line with population trends and the expan-
sion of the NBCSP to cover bi-annual screening for all
Australians aged 50 to 74 years by 2020. As a result, many
health services are becoming unable to see all patients
within the clinically recommended time frames. Addressing
this issue was identified as an area of priority by the state
health department responsible for funding and delivering
public endoscopy procedures in a metropolitan region of
South-East Queensland, Australia.

The aim of this study was to develop a DES model to
inform endoscopy service planning in two large public
health services. The model was designed to forecast the
impacts of future endoscopic demand and to identify ac-
tivity levels required to reduce waiting list times and
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meet policy targets. In addition, it incorporated esti-
mates of future costs and Quality Adjusted Life Years
(QALYs), allowing incremental cost-effectiveness ratios
to be produced.

Methods

A discrete event simulation (DES) model of the endos-
copy system was developed using AnyLogic [8] to cap-
ture the major patient pathways from referral through to
diagnosis and ongoing follow up care. A screenshot of
the model structure in AnyLogic is in Additional file 1.
The model adopted a timeframe of 5 years and was sep-
arately applied to two large, public metropolitan health
services referred to hereafter as health service A (HSA)
and health service B (HSB). Both were similar in size
and nature, with each containing four hospital-based en-
doscopy units and servicing a community population of
approximately 900,000 and 1 million people respectively.

Model structure

A visual depiction of the model is in Fig. 1. Category 4
patients were the most urgent and had a 30 day clinic-
ally recommended timeframe for being seen by a s-
pecialist, while category 5 were recommended to be
seen within 90 days and category 6 within 365 days. The
type of follow up care patients’ received after an endos-
copy was informed by clinical guidelines; this was
consistent with service provision and confirmed by a
recent internal audit of post-endoscopy management in
HSB. Post-endoscopy outcomes were assumed to have
implications for patient quality of life, health system
costs and mortality rates.

Data inputs

A comprehensive list of data inputs are in Additional file 2.
Data on patient presentations, waiting list outcomes, endos-
copy outcomes and costs within the endoscopy system
were largely populated with existing administrative data.
Where existing data were not available, estimates were
based on an audit of hospital data. Estimates of the 5 year
survival rates, costs and utility weights associated with post-
endoscopy ongoing care states were sourced from the
literature.

The Australian health care system is funded by both
state and federal budgets, with hospital procedures, in-
cluding endoscopy services, largely funded by state gov-
ernments. Costs in this study were valued from the
perspective of the state government in recognition of
their role as the decision maker in this context.

QALY estimates were derived by multiplying the
length of time a patient spent in a given health state,
multiplied by the utility weight assigned to that health
state. Utility weights are a measure of patient presence
on a scale where zero is equivalent to death, and one is
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Fig. 1 Flow chart describing major patient pathways through a simulation of the endoscopic care system. Legend: Patients could present to the
system via general practitioner referrals, the National Bowel Cancer Screening Program (NBCSP), hospital wards and emergency departments.
Once assessed, patients were categorized according to their urgency and placed on the endoscopic waiting list if appropriate. Following a period
of waiting, patients who did not drop off the waiting list were seen for endoscopy and subsequently allocated to a form of ongoing care which
included specialist treatment for chronic conditions, treatment for early or late stage colorectal cancer, a future endoscopic surveillance
procedure (rejoining the waiting list as category 9), a recall procedure to be conducted due to inconclusive results. Where no ongoing treatment
protocol was indicated, patients transitioned to general practitioner management where they assumed the characteristics of the

equivalent to full health [9]. As utility values were not
directly available from the administrative datasets, these
were sourced from the published literature and applied
to the chronic condition, early bowel cancer and ad-
vanced bowel cancer health states. We adopted the sim-
plifying assumption that all other health states in the
model had a utility weight equivalent to one.

Modelled scenarios

A ‘do nothing’ scenario was modelled to provide a base-
line estimate of waiting list, cost and QALY impacts over
5 years under the assumption that no changes to existing
endoscopy services were implemented. The model then
ran a number of simulations to estimate the waiting list
impacts associated with specific increases in the weekly
number of endoscopic procedures available. Category
specific targets were set and the model was used to
simulate the capacity and funding levels required to
reach these within a given timeframe. Targets were set
to achieve 98% of Category 4 patients, and 95% of cat-
egory 5 and 6 patients, being seen within clinically rec-
ommended waiting times. Patients who breached their

clinically recommended waiting time are referred to as
‘long waits’.

The modelled results have been reported in terms of
increased levels of capacity within the system. It is not
assumed that capacity directly correlates with activity
levels. Rather, capacity levels reflect the upper limit of
possible activity. Activity levels within the model are in-
stead driven by waiting list sizes and demand projec-
tions. At various points within the model, activity may
be equal to or less than the overall capacity limit. Costs
and QALY outcomes are based on the level of activity.

Key assumptions

The model adopted the annual demand projections pro-
vided by the state health department; this included initial
presentations via general practitioner, outpatient, NBCSP
and emergency settings, as well as subsequent presenta-
tions including for surveillance, recall or early detection
endoscopic treatment.

Waiting list numbers and waiting times were also mod-
elled to reflect known data, including data on monthly
waiting list trends where available. Surveillance patients
were classified as category 9 with clinically recommended
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waiting times that varied between 1 to 5years as pre-
scribed by national clinical guidelines [10]. Given there
was no pre-defined administrative process for prioritising
patients on the waiting list, the model ran a number of ex-
periments to determine how to best align the modelled
process to known trends. The best fit resulted from a
process whereby emergency department patients had im-
mediate priority (reflecting real world practice), followed
by categories 4, 5, 6 and 9 patients, prioritized by how
close they were to breaching their clinically recommended
waiting times. For example, a category 4 patient at 66% of
their goal time (i.e. 20 days waiting) was prioritized above
a category 6 patient at 50% of their goal time (i.e. 182 days
waiting). This was further augmented by a “twenty days”
rule whereby patients approaching 20 days before their
goal time were more heavily prioritised. While this rule
was not an explicit guideline used in waiting list manage-
ment, we found that it was able to provide the best fit in
reflecting real world outcomes. Specifically, it affected cat-
egory four patients more strongly than other patients due
to their short goal time (i.e. 30 days), helping to keep their
waiting times more consistently managed as observed in
practice.

Despite a prioritisation process that emphasised prox-
imity to clinically recommended waiting times, an elem-
ent of ‘randomness’ was built into this process in order
to more closely reflect reality. As such, patients were not
necessarily treated in the order they were added to the
waiting list. This prioritisation logic enabled the model
to closely mirror observed patient waiting times and
long wait trends.

Increased capacity for endoscopy procedures may be
attained by either extending the operating hours of exist-
ing procedure rooms, building new procedure rooms, or
a combination of both. Also required for the expansion
of activity levels is a sufficient level of qualified medical
and nursing staff, and adequate funding levels to accom-
modate this. The interplay of these factors varied across
each of the individual hospitals and clinics accounted for
in the modelling. We therefore determined that account-
ing for these internal and external constraints on
changes to activity levels were beyond the scope of our
analysis and more suited to modelling, and decision
making, within the individual hospital setting. The ana-
lysis presented here therefore does not assume or pre-
scribe to a particular strategy to increase capacity. As a
result, costs associated with increasing capacity beyond
standard procedure costs (for example, staff overtime or
capital costs associated with new equipment or facilities)
were excluded from this analysis.

Model validation
The model was validated through three mechanisms.
The first was to closely match well-established waiting

Page 4 of 8

list projections and endoscopy costs to the health system
under the ‘do nothing’ scenario. The second was to ap-
proximate measures, where possible, from a number of
different sources. For example, internal feedback loops
were validated against historical trend data. This process
included running AnyLogic optimization experiments to
reduce the differences in simulated waiting list outcomes
versus the non-simulated projections. The third mechan-
ism involved a sense check by experts that included a
team of health economists, health service managers and
senior clinicians who agreed that the model was per-
forming as they would expect and that results were
representative of their system. Further information on
the validation process, including calibrated measures
and margins of error, are reported in Additional file 3.

Sensitivity analysis

A sensitivity analysis examined the impact of uncertainty
in the demand projections. Scenarios where projections
were 20% lower and 20% higher than the base case as-
sumption were modelled.

Results

The base case model predicted an increase in long wait
patients by 46% for HSA and 97% for HSB (Table 1) be-
tween 2017 and 2021, assuming no increases to the
number of endoscopy procedures available.

For HSA, the model identified a tipping point at 480
procedures per week. At this capacity level, patient out-
comes began to dramatically improve but improvement
was inconsistent across categories and did not allow for
clinically recommended wait times to be met within mod-
elled targets. To sustain target clinical waiting times over
the course of the 5 year projections, the model estimated
that an increase in the number of available procedures by
37% to 560 procedures per week would be necessary. For
HSB, a tipping point was found at 480-510 procedures
per week, depending on urgency category. An increase of
38%, to 580 procedures per week was required to meet
and sustain waiting list targets.

The cost to the funder of increasing capacity levels to
those recommended by the modelling was estimated to
be $82.9 million over 5 years for HSA, translating to 12,
819 QALYs gained and an ICER of $6467 per QALY
(Table 2). For HSB, the estimated cost was $60.8 million
over 5 years, with 10,177 QALYs gained and an ICER of
$5974 per QALY.

A sensitivity analysis revealed that a 20% reduction
in projected demand levels would require less than
half of the additional capacity and costs estimated
under the base case scenario in each health service
(Table 3). Conversely, demand levels 20% higher than
projected would translate to a total cost increase of
66% across HSA and HSB combined.
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Table 1 Projected increases to long wait patients by category under a ‘do nothing’ scenario

Category Number of long wait patients
Model starting point 2017 2018 2019 2020 2021 % change 2017-2021
Health Service A
4 # 632 533 486 480 507 —20%
5 # 2154 239 2603 2942 3347 55%
6 # 360 554 601 654 743 106%
Total # 3146 3483 3690 4076 4596 46%
Health Service B
4 # 330 242 217 245 273 -17%
5 # 946 1080 1292 1607 1937 105%
6 # 0 89 162 241 308 -
Total # 1276 1410 1670 2092 2517 97%

# Data are not publicly available and have been omitted due to their sensitive nature. Figures are below those reported for subsequent years

Discussion

This is the first Australian study to apply simulation
modelling to inform decision making in endoscopic ser-
vice planning. The model estimated that a 37 and 38%
increase in the number of weekly procedures available
was required for HSA and HSB respectively to meet
and sustain waiting list targets over 5 years. This trans-
lated to an ICER of $6667 per QALY for HSA and
$5974 per QALY for HSB. When considering a recent
estimate of a reference ICER for the Australian health
care system of $28,003, this represents a high value use
of resources [11]. This lends support to the evidence

Table 2 Modelled cost-effectiveness outcomes

that bowel cancer screening is a cost-effective interven-
tion [12, 13].

The use of DES techniques to inform service planning
in health care is an emerging field. A 2010 study used a
combination of simulation modeling and linear program-
ming with the aim of reducing access times for endoscopy
services in a teaching hospital in the Netherlands [14].
The authors reported that more efficient scheduling prac-
tices were able to overcome long access times and allow
for performance targets to be met. Further, a 2017 study
used DES methods combined with demand forecasting in
a hybrid approach that aimed to improve the match

Cost-effectiveness Health Service A (N=91,564)

Health Service B (N =84,805)

outcomes Current capacity (410 Recommended capacity  Difference Current capacity (420 Recommended capacity  Difference
procedures) (560 procedures) procedures) (580 procedures)

Costs to funder over 5 years ($ Millions)
Nurse-Led Colon 0.44 05 0.1 05 05 0.0
Consent Clinic
Specialist 85 85 0.0 86 86 0.0
Outpatient Clinic
Facilitated Open 3 3 0.0 3 3 0.0
Access
Elective surgery 10.5 12.7 2.2 105 12.4 1.9
costs
Endoscopy costs: 145.7 191.8 46.1 154.7 195.8 41.1
outpatient
Endoscopy costs: 108.8 142.8 34 65.1 82.6 17.5
inpatient

Total costs to funder 2782 361.1 829 2431 3039 60.8
Average QALYs per 2.03 217 0.14 2.00 212 0.12
patient®

Total QALYs 185,875 198,694 12,819 169,610 179,787 10177

ICER $6467 per QALY $5974 per QALY

QALY quality adjusted life years, ICER incremental cost-effectiveness ratio

®QALYs are recorded only for the time patients spend within the modelled system
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Table 3 Additional capacity levels and costs associated with changes to demand projections

Modelled outcomes Base case Lower estimate Upper estimate
Health Service A
Monthly presentations 1150 920 1380
Recommended capacity increase 150 70 240
Health service funder costs over 5 years (SM)? 829 318 136
Health Service B
Monthly presentations 1200 960 1140
Recommended capacity increase 160 70 240
Health service funder costs over 5 years (SM)* 60.8 17 104

?Costs relate to additional activity only

between demand and capacity [15]. The approach was de-
termined to provide plausible forecasts that could inform
future health service capacity planning and resource
allocation. DES methods have also been used to evaluate
operational performance in a colonoscopy suite, account-
ing for factors including the number of endoscopists,
procedure rooms, and turnaround time [16]. Other recent
studies have applied DES modelling to analyse waiting list
outcomes in outpatient neurosurgery and orthopedic
clinics, as well as for surgical procedures [17-21].

A Kkey strength of our analysis was its ability to model
a complex, integrated and multi-facility system. As noted
in a 2010 review of DES modelling in health care, such
studies are typically unit-specific and model discrete
components of broader systems, for example, an emer-
gency department, clinic or operating room. [4] The
model presented here comprises a comprehensive, sys-
tem-level representation that spans multiple referral and
assessment points as well a number of post-endoscopy
patient health states. An additional strength of the ap-
proach we have taken is the use of existing, routinely
collected data to populate the model. This has the ad-
vantage of saving on both the time and cost associated
with prospective data collection, and allows for the
model to be constantly updated over time. The identifi-
cation of clear tipping points in both settings highlighted
the potential for this modelling technique to identify the
minimum required service level to improve waiting list
outcomes in the context of growing demand.

While the flexibility inherent in simulation modelling
is one its core strengths, it does require specialized ex-
pertise and software that may limit its accessibility to
many organisations. The use of individual level data also
means that these techniques are often best suited to
modelling a specific unit or system, with limitations for
generalisability. As such, this analysis should be viewed
as a case study that has been tailored to the two health
services in question. The results cannot be assumed to
apply in other endoscopy services.

There were a number of limitations we encountered
with the use of administrative datasets for simulation

modelling, a purpose for which it was not originally
intended. These data were able to provide good estimates
of process based measures, for example waiting list num-
bers and waiting list movements. However, we identified
several gaps in these numbers when extrapolating to over-
all demand or activity levels. For example, several patients
undergo an endoscopy without ever being on the waiting
list; this could be following an emergency department
presentation or as part of an unplanned hospital admis-
sion. These presentations needed to be accounted for
separately which involved synthesizing different datasets
that were not directly comparable, and augmenting these
estimates with clinical opinion. There were other chal-
lenges we encountered that may be generalized to admin-
istrative health service data more broadly. A major
limitation was the lack of patient reported outcome mea-
sures, for example quality of life. As a result, our analysis
is limited by the simplifying assumption that patients are
in a state equivalent to full health for the duration of time
they spend waiting to be seen for an endoscopy. Utility
values reflecting the health related quality of life for pa-
tients with cancer and chronic conditions were taken from
the published literature, but it is unknown whether they
may differ in this cohort specifically. Long term clinical
outcomes including patient survival were also unavailable,
further limiting the ability of the model to capture patient
health outcomes over the longer term.

Another limitation of the administrative data we
used was the use of health service reimbursement
rates as a proxy for cost of service provision. There is
evidence that the actual costs incurred by the health
service may vary across sites [22]. This discrepancy
may ultimately inhibit best practice decision making
for the sites in question. Our model assumes a con-
stant marginal cost per additional procedure. In prac-
tice however, there may be higher marginal costs of
additional activity (for example due to staff overtime
or capital expenditure on new facilities or equipment),
or conversely, lower marginal costs achieved through
greater economic efficiencies. Marginal costs depend
on the level of latent capacity within the system as



Carter et al. BMC Health Services Research (2019) 19:608

well as decision makers’ preferences for managing
additional activity; we did not have sufficient informa-
tion to incorporate these considerations into the
model. In addition, we have only accounted for the
costs borne by the immediate decision maker, the
state health department. This excludes any nationally
funded longer term costs associated with ongoing
care including pharmaceutical costs, outpatient visits
and medical procedures.

Not captured in our model are issues relating to the
supply of qualified medical staff if activity levels were to
be increased to recommended levels. Sustaining a health
workforce that can meet the demands of an ageing
population has been identified as a key policy challenge
in Australia [23]. A limited supply of endoscopists may
have implications for waiting lists beyond what can be
addressed through funding for increased activity levels.
Further, there is some evidence to suggest that longer
procedure times may be associated with higher rates of
adenoma detection [24]. These findings are preliminary
and need to be examined in further studies, but highlight
the potential clinical implications that need to be consid-
ered in increasing activity levels within a service.

Despite these limitations, we understand that the out-
comes of this study were useful to policy makers. Senior
decision makers within the state health department have
confirmed that the modelled findings helped inform
funding allocations as part of an action plan to improve
access to endoscopy and reduce the number of long wait
patients. The plan saw the allocation of $160 million
over 4 years to increase the number of endoscopy ser-
vices provided across the state by 50,000.

Conclusions

Health service decision makers are increasingly faced with
financial pressures that reflect growing, ageing populations
as well as more costly clinical interventions. In response to
concerns around the sustainability of the health care sys-
tem, there has been a movement towards value base care
whereby decision makers aim to maximise health benefits
from fixed budgets. The use of data to inform rational deci-
sion making with a focus on cost-effectiveness is critical to
achieving this aim. The methods we have presented here
may have implications for health service managers in mak-
ing a case for investments in new infrastructure based on
forward looking capacity planning, as opposed to small an-
nual funding increments that may contribute to over-bur-
dened services.

Our results demonstrate the power of discrete event
simulation in using patient level data to inform health
care decision making, specifically in terms of managing
demand and improving waiting list outcomes. The
model was able to provide a recommendation of the
level of service activity required to meet specific policy
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targets within given timeframes, as well as an estimate
of the cost-effectiveness associated with this. This
provided decision makers with a rational, data based
approach in determining the allocation of scarce health
care resources.

Additional files

Additional file 1: Model structure. Screenshot of the model structure as
developed within the Anylogic software program. (JPG 774 kb)
Additional file 2: Model inputs. A comprehensive summary of the
modelled input parametes and respective data sources. (PDF 118 kb)
Additional file 3: Validation processes. A detailed description of the

model validation process, including calibrated measures and margins of
error. (PDF 80 kb)
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