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pekar@fch.vut.cz

Abstract: Self-balancing diffusion is a theoretical concept that restricts the introduction of extents
of reactions. This concept is analyzed in detail for general mass- and molar-based balances of
reaction-diffusion mixtures, in relation to non-self-balancing cases, and with respect to its practical
consequences. Self-balancing is a mathematical restriction on the divergences of diffusion fluxes.
Fulfilling this condition enables the proper introduction of the extents of (independent) reactions
that reduce the number of independent variables in thermodynamic descriptions. A note on a recent
generalization of the concept of reaction and diffusion extents is also included. Even in the case of
self-balancing diffusion, such extents do not directly replace reaction rates. Concentration changes
caused by reactions (not by diffusion) are properly described by rates of independent reactions,
which are instantaneous descriptors. If an overall descriptor is needed, the traditional extents of
reactions can be used, bearing in mind that they include diffusion-caused changes. On the other
hand, rates of independent reactions integrated with respect to time provide another overall, but
reaction-only-related descriptor.

Keywords: diffusion; extent of reaction; independent reactions; reaction rate

1. Introduction

The simultaneous occurrence of chemical reactions and diffusion is a common phe-
nomenon encountered both in engineered and natural (biochemical) processes and cov-
ered by numerous studies and books (for example, [1–8]). The proper (thermodynamic)
modelling of reaction-diffusion systems is thus important in the design of technological
processes as well as in the study of processes of natural origin. Reactions and diffusion
cause local changes in amounts of species (concentrations); in the former case, these changes
are constrained by the reaction stoichiometry. The stoichiometric links to diffusion are
rarely studied. Both reactions and diffusion are of molecular origin; their theoretical de-
scription can be based either on microscopic (statistical, kinetic theory) or macroscopic
(phenomenological, continuum) approaches. In this text we are concerned with the latter
type. We only mention a recent work on the statistical theory of kinetics altered by diffu-
sion, which operates with stoichiometry [9] but not in the sense of constraints as described
in this work. Several reviews have recently been published overviewing the basics of a
thorough mathematical and thermodynamic description of reaction-diffusion systems at
the macroscopic level. We start with a brief report on them focusing particularly on the
stoichiometric impacts on reaction-diffusion systems.

Datta and Vilekar [10] based their detailed treatment of diffusion driving forces on
the balance of (linear) momentum, from which reaction rates were eliminated using the
equation of the continuity of mixture components, i.e., their mass balances. Thus, they
do not discuss the links between the reaction rate and diffusion and the impacts of sto-
ichiometry on these linked variables. Their approach uses barycentric velocity as the
reference for component diffusion velocities but is not restricted to this reference velocity.
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They placed a variety of diffusion driving forces into a remarkably unified framework of
continuum theory.

Whitaker [11] analyzed the balance equations of continuum mechanics and thermody-
namics to discuss the relationship between diffusion forces and fluxes. This work is based
on the Stokesian fluid mixture model for the partial (species) stress tensor and on the caloric
equation of state, which supposes that entropy and species densities are independent
variables of the total specific energy of a mixture. Though the mixture is supposed to be a
reacting mixture, no other links between chemical reactions and diffusion are developed.
The author concludes that the gradient of the chemical potential is not justified as a (single
or leading) driving force for the diffusive flux.

Morro [12] overviewed the balance equation for reacting fluid mixtures and presents
the equations for diffusion fluxes. The author came to the conclusion that the driving term
for diffusion is the gradient of chemical potential rescaled by temperature. The author
follows a similar line in a later paper [13]. Both papers involve considerations on the
constitutive equations for diffusion fluxes and an analysis of the consequences of entropic
inequality (the second law of thermodynamics). No account of the impact of stoichiometry
is given in either one.

Yet another contribution by the same author [14] is concerned with the same general
balances and equations, but in the context of a reacting mixture of thermoelastic solid
constituents. The possibility to express the rate of reaction in terms of the extent of the
reaction is briefly touched upon. However, this note is restricted only to cases in which the
diffusion is negligible, and no stoichiometric consequences are described.

Already several decades ago, Bowen published a detailed mathematical analysis of the
effects of the permanence of atoms (mass conservation) on reaction rates—essentially an
analysis of the linear algebra consequences of stoichiometry [15]. He not only showed that
rates of individual independent reactions are a consequence of this linear algebra, but also
derived a limitation on the use of reaction extent as a descriptor of reaction rates. His results
limit this use to non-diffusing reacting mixtures only. Later, Truesdell in his comprehensive
treatment on the rational thermodynamics [16] noted briefly that this restriction is too strong
and showed that reaction extent can also be used for mixtures with diffusion, providing
that the diffusion is self-balancing. These interesting and important results seem not to
have been analyzed or applied in chemical reaction engineering or in the thermodynamic
modelling of reaction-diffusion systems. This is probably because both authors present only
general results, though Bowen gives an example of a mixture of different water phases.

The aim of this work is to look at self-balancing diffusion and the applicability of the
reaction extent in more detail. The self-balancing diffusion is the principal object of this
study; this work shows what are practical manifestations of the general definition of the self-
balancing diffusion (Truesdell gave only the definition), how it could be detected in reality,
reformulated into molar description (in contrast to the original, mass-based approach), and
what are the consequences of the diffusion not being self-balancing. Another aim is to note
the links to a recent generalization of extents [17].

2. Results and Discussion
2.1. Self-Balancing Diffusion and the Extent of Reaction

The charm of self-balancing diffusion is that it enables the extent of reaction to be
introduced properly as a descriptor of reaction kinetics, instead of the reaction rate Jα in
(S14), or rα in (40). Then, we should consider only n− h extents instead of n rates. Let us
select some reference point, usually the starting point of a reaction, in which the vectorω
has a (constant) valueω0, and define a new vector:

ξ =ω−ω0. (1)
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If the diffusion is self-balancing then, according to (42), the vector
.
ξ is in the reaction space

and thus also the vector ξ lies there [16]. The latter vector can therefore be expressed in the
basis gp of the (n− h)-dimensional reaction space [15]; [18] (p. 153):

ξ =
n−h

∑
p=1

ξpgp. (2)

This basis is defined as follows [18] (p. 153):

gp =
n

∑
α=1

Ppαeα, p = 1, . . . , n− h (3)

where, Ppα is the stoichiometric coefficient of component α in (independent) reaction p.
Combining (S16), (1)–(3) we obtain

n−h

∑
p=1

Ppαξp =
wα − w0

α

Mα
, α = 1, . . . , n. (4)

Vector ξ is called the vector of extents of reactions because its components (coordinates)
ξp in the reaction space are the extents of (independent) reactions p. The condition of self-
balancing diffusion (45) can be thus understood as a condition required for the introduction
of reaction extents in a reaction-diffusion system [16]. This condition seems to be unknown
in the area of chemical reaction engineering and thus has never been tested. Definition (1)
shows that .

ξ =
.
ω (5)

and n components (in the mixture space) of the vector
.
ω can be replaced by n− h compo-

nents (in the reaction space) of the vector
.
ξ. In this way, the number of quantities necessary

for the mathematical description of thermodynamics of a reaction-diffusion system is
reduced. Further, if the diffusion is self-balancing, we can express the mass fractions in
arbitrary reaction time from (4) as a function of extents only:

wα = w0
α + Mα

n−h

∑
p=1

Ppαξp. (6)

The components (coordinates) ξp are equivalent to the extents of reactions used tradition-
ally in chemical (engineering) kinetics. The existence of extents enables the number of
independent variables to be reduced. Thus, according to (4) or (6), n mass fractions wα

can be replaced only by n− h reaction extents ξp. Remember that the vector ξ lies in the
n-dimensional mixture space and, in the case of the self-balancing diffusion, also in its
(n− h)-dimensional subspace (the reaction space) at the same time. The question of its
(and similarly located vectors) dimension is then pointless. From a practical point of view,
extents of reactions express concentration changes (caused by reaction or by diffusion) in a
different manner; whereas reaction rates in (S20) express actual concentration changes per
unit of time, reaction extents, as defined by (1), express these changes relatively to some
fixed point in time, i.e., they are not of the ‘per time’ dimension. In other words, reaction
rates are a sort of differential quantity, whereas extents are a sort of integral quantity.

Generally, the time derivative of the vector of extents in (5) still embraces diffusion
rates, not only reaction rates, as (42), (S19) and (5) show:

.
ξ = σ+ω+. When there is no

diffusion (σ = 0), reaction extents are equivalent to reactions rates:
.
ξ =ω+. Equation (5)

does not imply identity or one-to-one proportionality between reaction rates and reaction
extents. This lack of identity or one-to-one proportionality is seen if the derivatives of ex-
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tents, which for self-balancing diffusion are also located in the reaction space, are expressed
on the basis of this space and combined with

.
ξ = σ+ω+, (3) and (S16). Accordingly,

Mα Jα − divραuw
α = ρMα

n−h

∑
p=1

Ppα
.

ξp. (7)

The one-to-one proportionality is achieved only in non-diffusing mixtures (uw
α = 0) or,

at least theoretically, in “divergence-less” diffusion (divραuw
α = 0). The latter case can

be illustrated by a simple one-dimensional diffusion along the x-axis, when the y- and
z-components in the diffusion velocity vector are zero. Accordingly,

∂(ραuw
αx)

∂x
= 0 ⇒ ραuw

αx = const. ⇒ uw
αx =

const.
ρα

, (8)

where const. can be a function of the other two space coordinates (and time).
Note that the whole analysis was based only on two very general principles—the

mass conservation and the permanence of atoms, and thus is valid for any specific reaction-
diffusion system or model. Further, it shows general impacts of the reaction stoichiometry,
which is closely related to the permanence of atoms, on diffusion.

2.2. Self-Balancing Diffusion in Practice

What does self-balancing diffusion mean and when is diffusion self-balancing? The
answer is very simple, when the rank of the matrix of atomic composition (for details see [18]
(p. 151)) is equal to one. In this case, there is only one basis vector f1 with components S1α. The
atomic mass of the only atomic element (or pseudoatomic substance—see the example of NO2
in dimerization below), E1, can be expressed using the molar mass of any component—without
any loss of generality, let us choose M1. Then E1 = M1/S11 and the general condition (44) is

M1σ1 +
M1

S11
S12σ2 + · · ·+

M1

S11
S1nσn = 0. (9)

Multiplying (9) by S11/M1 we obtain

S11σ1 + S12σ2 + · · ·+ S1nσn ≡ σ·f1 = 0 (10)

which is the self-balancing diffusion condition (45) for the case h = 1 and in this case
every diffusion is self-balancing. As an example, let us use the reacting mixture of NO2
and N2O4, which describes the dimerization of nitrogen dioxide. If NO2 is selected as the
pseudoatomic substance (numbered as 1), the matrix of atomic composition ‖Sσα‖ is

[
1 2

]
.

The self-balancing condition is then

σNO2 + 2σN2O4 = 0. (11)

Thus, the divergences of the diffusion fluxes of the individual components are combined
in this condition according to the representation of the pseudoatomic substance in these
components. The general condition (44) is really very close to the self-balancing condition
in this simple case: MNO2 σNO2 + MN2O4 σN2O4 = 0. Note that in this example there is only
one independent reaction because n− h = 1.

As an example of a mixture where h = 2, let us select the mixture for ammonia
synthesis: N2 (1), H2 (2), and NH3 (3). There are two atomic substances: N (1) and H (2).
The compositional matrix is [

2 0 1
0 2 3

]
.
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The two basis vectors are: f1 = (2; 0; 1) and f2 = (0; 2; 3). There are two self-balancing
diffusion conditions:

2σN2 + σNH3 = 0, (12a)

2σH2 + 3σNH3 = 0. (12b)

The first condition restricts the diffusion fluxes according to the representation of nitrogen
atoms in all components, whereas the second restricts the diffusion fluxes according to
hydrogen atoms. Self-balancing diffusion means that the divergences of diffusion fluxes
are balanced with respect to the atomic composition of corresponding components:

2
MN2

divjw
N2

+
1

MNH3

divjw
NH3

= 0, (13a)

2
MH2

divjw
H2

+
3

MNH3

divjw
NH3

= 0. (13b)

The first Equation (13a) refers to the balance with respect to nitrogen, whereas the second,
(13b), refers to the balance with respect to hydrogen. Both equations contain the diffusion
fluxes of reactant and product.

The self-balancing condition can be combined with the general condition (44). First,
let us modify the general condition:

M·σ = −
n

∑
α=1

Mα
1

ρMα
div jw

α = −1
ρ

n

∑
α=1

div jw
α = 0. (14)

Consequently,
n

∑
α=1

divjw
α = 0. (15)

The divergence of the ammonia diffusion flux can be eliminated from (13), giving

3
MN2

divjw
N2

=
1

MH2

divjw
H2

. (16)

This equation expresses the consequences of the self-balancing condition for diffusion in
terms of the diffusion fluxes of reactants. Equation (15) can then be written by eliminating,
for example, the hydrogen flux divergence using (16); the result is Equation (13a). This
example thus shows that conditions (14) and (13) are consistent, but not equivalent—the
specific condition (13a) does not follow from the general condition (14); the former is
stronger than the latter.

Equation (16) can be transformed into molar diffusion fluxes j′wα , which have units
mol m−2 s−1:

jw
α

Mα
=

ραuw
α

Mα
= cαuw

α = j′wα . (17)

The result is:
3divj′wN2

= divj′wH2
. (18)

Thus, self-balancing diffusion means the balancing of reactant molar diffusion fluxes (their
divergences) as stated by (18) in this example.

Generally, the number of self-balancing conditions is equal to the number of atoms
(or pseudoatomic substances) present in the reacting mixture. Each condition balances the
(divergences of the) molar diffusion fluxes of all components containing the given atom γ
with respect to the number of the atom in each component. Thus,

σ1 fγ1 + σ2 fγ2 + · · ·+ σn fγn = 0 (19)
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where fγα represents the number of atom γ (or pseudoatomic substance) in component α.
It would be desirable to look at published experimental data if such diffusion was observed
and in which circumstances. Equation (18) suggests that such diffusion could occur when
the initial (input) reaction mixture contains reactants in stoichiometric ratio.

2.3. Molar-Based View

The above analysis was based on mass balances formulated in terms of densities (mass
concentrations or mass fractions). In chemistry or chemical engineering, molar amounts
and molar concentrations (molar fractions) are more common. However, molar balances
do not enable similarly simple and clear equations to be formulated. This is because of
the fact that—in contrast to mass—molar amounts are not conserved in chemical reactions.
Because ρα = cα Mα, balance (36) is transformed as:

∂cα

∂t
+ divcαvα =

rα

Mα
= Jα. (20)

The divergence term can be modified using the barycentric velocity:

divcαvα = divcαuw
α + cαdiv vw + vw.grad cα. (21)

Thus, instead of (40), we have

.
cα = −divcαuw

α − cαdiv vw + Jα (22)

which, in contrast to (40), also contains the (divergence of) the barycentric velocity and
is not of the form of (42). This form results only when the barycentric velocity is zero (or
divergence-less):

.
cα = −divcαuw

α + Jα. (23)

Note that cαuw
α = j′wα , the molar diffusion flux in the barycentric reference.

Another way to transform mass balance into molar balance is to apply the material
derivative with respect to the corresponding component α:

c̀α
α =

∂cα

∂t
+ vα.grad cα, α = 1, . . . , n. (24)

The result is
c̀α

α = −cαdiv vα + Jα (25)

but does not contain diffusion velocity. It can be introduced generally with respect to an
arbitrary referential velocity: uref

α = vα − vref. Then

c̀α
α = −divcαuref

α − cαdiv vref + Jα (26)

which, however, is of the form of (22) and not (42), unless the referential velocity is zero
(or divergence-less). Finally, we need not strive to have the material derivative in molar
balances; thus, we can write (20) as

∂cα

∂t
+ divcαuref

α + divcαvref = Jα. (27)

This again is of the form of (22), and the form of (42) can be achieved for zero referential
velocity or for the divergence-less “referential molar diffusion flow” cαvref.

The concept of self-balancing can be transferred to various balances using a proper
definition of vectors in the general balance form of (42). Several examples are given
in Table 1.
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Table 1. Definitions of vectors to be used in addressing self-balanced diffusion in various balance
frameworks.

Balance
.
ω ω+ σ

(40)
n
∑

α=1

.
wα
Mα

eα

n
∑

α=1

Jα

ρ eα −
n
∑

α=1

1
ρMα

(divραuw
α )eα

(23)
n
∑

α=1

.
cαeα

n
∑

α=1
Jαeα −

n
∑

α=1
(divcαuw

α )eα

(22) “ “ −
n
∑

α=1
(divcαuw

α + cαdiv vw)eα

(27)
n
∑

α=1

∂cα
∂t eα

“ −
n
∑

α=1

(
divcαuref

α + divcαvref)eα

2.4. When Diffusion Is Not Self-Balancing

Of course, definition (1) can be used generally, but if diffusion is not self-balancing, it
yields nothing special. Combining (1) with (42), and after integration, we obtain only

ω−ω0 ==

t∫
0

(
σ+ω+

)
dt, (28)

i.e., the extent is just another denomination of the integral comprising diffusion and
(component) reaction rates. Note that in chemistry a reaction network with specified
stoichiometric coefficients is designed first, and then the extents of individual reactions in
the network are defined by relationships similar to (4):

ξi =
wα − w0

α

Piα Mα
. (29)

However, in (29), wα should refer only to the concentration of component α reacting in
reaction i, which is practically indeterminable. In contrast, the technique described in
this work first naturally derives a set of acceptable and independent reactions satisfying
the permanence of atoms (and related linear algebra) together with their stoichiometric
coefficients and only then introduces the extents by (4); this is the mathematically correct
procedure. In the general case, there is probably no need to introduce the extents of
reactions, their role could be played by rates of independent reactions (independent in the
sense of linear algebra [15]) derived by the reported technique. Introducing these rates into
balances (S14), we obtain:

.
wα

Mα
= − 1

ρMα
divραuw

α +
1
ρ

n−h

∑
p=1

Ppα Jp, α = 1, . . . , n (30)

where Jp is the rate of (independent) reaction p [18] (p. 153). Equation (30) illustrates that
changes in the concentration of each component are caused by diffusion (the first term on
the right hand side) and the reactions in which it takes place (the second term)—only n− h
independent reactions can be considered. In contrast, balance (S14) does not directly show
individual reactions and their rates.

2.5. Note on Generalized Extents; Summarizing Notes

Rodrigues et al. [17] proposed a generalization of the concept of the reaction extent
(and other extents in general) to distributed reaction systems (i.e., space-distributed systems
with diffusion). A more detailed comparison can be found in Supplementary Material.

Here, we only note that the approach of Rodrigues et al. [17] can be combined with the
methodology presented in this paper by a (formal) splitting of the vectorω into reaction
and diffusion contributions:

ω =ωr +ωd. (31)
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Defining
.
ωr =ω

+,
.
ωd = σ, (32)

using (42) we obtain
.
ωr +

.
ωd =ω+ +σ =

.
ω. (33)

The equations under (32) are analogs of (S25) and (S26) taken over from [17]. They seem
to bring nothing new to the methodology of this paper. The vector ω+ is always in the
reaction space and therefore so is vector

.
ωr. If the vector σ is not in the reaction space, then

neither is
.
ωd and the situation with introducing the extent of reaction with reference to a

fixed point in time (ω0) is the same as that without the splitting described in (31).
On the other hand, Equation (32) can be utilized similarly as in [17] to define gen-

eralized extents, i.e., in (S25) and (S26), which is not within the scope of this work. The
advantage of introducing generalized reaction (xr) and diffusion (xd) extents should con-
sist of a clear indication of which concentration changes (of a component) are caused by
reactions and which by diffusion. Yet, reaction-caused changes are already given by the
rates of independent reactions, cf. Equation (S20) and text around Equation (30):

.
ωr ≡ω+ =

n

∑
α=1

Jα

ρ
eα = ∑n

α=1

(
1
ρ

n−h

∑
p=1

Ppα Jp

)
eα ≡ J. (34)

If the reaction rates are expressed explicitly as functions of concentrations, e.g., by the
mass-action law common in kinetics, a model for the diffusion flux is employed (e.g., Fick’s
law), the differential equations of mass balance can be solved, concentrations at any time
(and space point) can be obtained, and from them their time derivatives and the rates of
independent reactions at any time can be calculated, giving the (rate of) change caused by
reactions; the remaining change is the result of diffusion, as Equations (S14) or (42) also
indicate: σ =

.
ω−ω+. The only difference is that the reaction rates (or diffusion fluxes)

show actual rates of concentration changes, whereas the extents show changes relative to
some reference. Thus, units of extent do not contain time units, as already noted below
(6). Concretely, the units of ξ based on (S16) are mol g−1, the units of xr are mol m−3, and
the units of Jp are mol m−3 s−1. Extents are thus useful when one is not satisfied with
actual or instantaneous characteristics (rates) but, for a particular reason, prefers overall or
integral quantities (extents). On the other hand, reaction rates can also be integrated using
(34), giving an overall descriptor. Integration in (28) provides a combined (reaction plus
diffusion) overall descriptor.

Note that Equation (34) enables the compact balance form (42) to be expressed in terms
of reaction rates:

σ =
.
ω−ω+ =

.
ω− J =

.
ξ− J (35)

(Equation (5) was used in the last equality). Equation (35) shows explicitly that (only) when
there is no diffusion, (independent) reaction rates are directly equal to the time derivatives
of the extents of these reactions.

3. Methods and Materials

The full theoretical overview is presented in Supplementary Material, here only the
basic facts are reproduced (for details see [15,16,18]). A list of symbols is attached at the end;
here, we only stress that the composition is expressed using the mass density ρα, which is
the mass of constituent α in unit volume of the whole mixture; in chemistry it is usually
called the mass or weight concentration.

The local mass balance for constituent α is:

∂ρα

∂t
+ divραvα = rα (36)
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and for the whole mixture
∂ρ

∂t
+

n

∑
α=1

divραvα = 0. (37)

using the barycentric velocity vw, balance (37) is rewritten (the material derivative relative
to the barycentric velocity is symbolized by a dot):

.
ρ + ρ div vw = 0. (38)

The diffusion velocity uw
α , defined relative to the barycentric velocity:

uw
α = vα − vw, (39)

is used to rewrite the component balance (36) in the following form:

ρ
.

wα = −divραuw
α + rα. (40)

Defining an abstract n-dimensional vector space, called the mixture space, with a basis
eα [15] (see also [18] (pp. 151–152)), and

M =
n

∑
α=1

Mαeα, (41)

the balances (40) can be written in the compact form

.
ω = σ+ω+, (42)

where the vectors σ andω+ with units mole kg−1 s−1 are defined in Supplementary Material.
Due to the linear algebra of the permanence of atoms, the mixture space is divided into

two orthogonal subspaces—one (of the dimension h < n) which has no special name and is
denoted as W, the other (of the dimension n− h) which is called the reaction space [15]. This
division is an outcome of linear algebra of stoichiometry. The reaction rates and, thus, also
the vectorω+ lie in the reaction space. In contrast, the vector of molar masses is located in
the subspace W [15] and from the orthogonality of the two subspaces it follows that

M·ω+ = 0. (43)

From (S17), it follows that M· .
ω = 0, and combining with (42) and (43) we obtain

M·σ = 0. (44)

This is a general condition of diffusion in chemically reacting mixtures, which restricts the
(divergence of) diffusion fluxes (hidden in σ).

Diffusion is called self-balancing by Truesdell [16] if the vector σ also lies in the
reaction space. Then, the vector

.
ω is also located in the reaction space [16]. Any vector

from the reaction space is perpendicular to the basis of the subspace W, which we denote
fσ (σ = 1, . . . , h). Consequently, we can formulate the following condition for diffusion to
be self-balancing:

σ · fσ = 0. (45)

4. Conclusions

Self-balancing diffusion is a theoretical condition that enables the proper introduction
of extents of (independent) reactions as an overall reference to some fixed point (the
composition at this point) conforming to the linear algebra of the permanence of atoms
and stoichiometry. Unfortunately, this condition seems to have been ignored in chemistry
and chemical engineering. Such extents reduce the number of independent variables in the
thermodynamic description of reacting mixtures by replacing concentration variables (mass
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fractions, e.g.,), because the number of (independent) reactions is lower than the number of
components (and component reaction rates). Theoretical descriptions of reaction-diffusion
systems, including mathematical modeling of their thermodynamics, can and even should
use this reduced number of variables approach. This approach is mathematically sufficient
to account for (concentration) changes caused by reactions and diffusion processes. On the
other hand, further theoretical work is necessary to analyze the relation of this approach to
the traditional one, which ignores mathematical dependences arising from stoichiometry.

The number of conditions of self-balancing diffusion is equal to the number of atoms
or pseudoatomic substances present in a reacting mixture, i.e., forming the components
of the reacting mixture. Each condition balances the divergences of component diffusion
fluxes with respect to the numbers of the corresponding atom (or pseudoatomic substance)
in each component.

Even in the case of self-balancing diffusion, there is no direct one-to-one proportion-
ality between extent and reaction rates; generally, extents (their time derivatives) also
encompass diffusion rates. Direct proportionality is achieved only for “divergence-less”
diffusion and, of course, when there is no diffusion. Regardless of self-balancing, the
linear algebra of the permanence of atoms (stoichiometry) puts a general restriction on the
divergences of diffusion fluxes (Equation (44)).

The contribution of chemical reactions to concentration changes is expressed by the
rates of independent reactions, which are also derived by applying linear algebra to the
permanence of atoms and stoichiometry. In this sense, there is no need to introduce
extents. However, extents can be useful when there is a need for some overall (integral)
characteristic of concentration changes and not only for an instantaneous one. Note that
the self-balancing diffusion is not any specific model of diffusion or diffusion flux. It is a
general result of two general principles—mass balance and permanence of atoms.

It is hoped that this theoretical work will stimulate experiments aimed at finding
and comparing real cases in which diffusion is or is not self-balancing, i.e., experimental
works inspecting the divergence of diffusion fluxes. The first step could be to analyze some
existing data on a reaction-diffusion system employing and ignoring the self-balancing
condition and to compare results. Another way could be to take experimentally deter-
mined parameters—rate constants and diffusion coefficients—of a reaction-diffusion sys-
tem, to perform computer modelling and look at diffusion fluxes and at fulfilling the
self-balancing condition.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/ijms231810511/s1, details on theoretical background (Section 3), details on relationships to the concept of
generalized extents (Section 2.5).
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Nomenclature

cα molar concentration of component α

cb vector of formal concentrations defined by Equation (S27)
da surface element
dv volume element
eα, eα base vectors of the n-dimensional mixture space, α = 1, . . . , n
fσ base vectors of the h-dimensional subspace W, σ = 1, . . . , h
gp base vectors of the (n− h)-dimensional reaction space, p = 1, . . . , n− h
h rank of matrix of atomic composition

https://www.mdpi.com/article/10.3390/ijms231810511/s1
https://www.mdpi.com/article/10.3390/ijms231810511/s1
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jw
α mass diffusion flux of component α in the barycentric reference

j′wα molar diffusion flux of component α in the barycentric reference
J vector of n− h independent reaction rates
Jp rate of independent reaction p
Jα moles of component α produced (or consumed) by chemical reactions in unit

volume per unit of time (component molar reaction rate)
M vector of molar masses
Mα molar mass of component α

n number of components
n normal vector on surface
p number of independent reactions
Ppα stoichiometric coefficient of component α in (independent) reaction p
rα mass of component α produced (or consumed) by chemical reactions in unit

volume per unit of time (component mass reaction rate)
Sσα number of (pseudo)atoms σ in component α

t time
uref

α diffusion velocity of component α in reference ‘ref’
uw

α diffusion velocity of component α in barycentric reference
vα velocity of component α

vw barycentric velocity
wα mass fraction of component α

xd vector of generalized extents of diffusion
xr vector of generalized extents of reactions
ξ vector of extents of reactions
ξp extent of the independent reaction p
ρ density of (reacting) mixture
ρα mass density (mass or weight concentration) of component α

σ vector defined by Equation (S19)
ω vector defined by Equation (S16)
ω+ vector defined by Equation (S20)
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