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Chimeric antigen receptor (CAR) T cells
have revolutionized the treatment of hema-
tological malignancies. Yet, primary and sec-
ondary resistance,1 severe toxicities,2 and
low activity in solid tumors3 continue to
hamper the advancement of CAR-T cell
technologies. Therefore, modifications of
molecular precision are increasingly used to
enhance CAR-T cell potency and to over-
come the above challenges.4 The CAR
construct is shuttled into T cells via lentivirus
or a retrovirus in approved CAR-T cell prod-
ucts. Modifying these viral vectors offers a
straightforward way to introduce additional
potency enhancers and/or toxicity control-
lers into CAR-T cells. An attractive option
is to use small RNA inhibitors to block
CAR-T cell exhaustion and CAR-T cell
toxicity and generally to modulate CAR-T
cell phenotype.

The article in the recent of issue ofMolecular
Therapy Nucleic Acids by Rossi et al.5 shows a
promising approach to integrate multiplex
short hairpin RNA (shRNA)-expressing
loci into the viral vector used to manufacture
CAR-T cells. In particular, the authors
screened 48 human microRNA (miRNA)
clusters and their miRNA expressing scaf-
folds and finally developed a chimeric
expression cluster with four scaffolds origi-
nating from different natural miRNA clus-
ters. The authors optimized the order of
the scaffolds as well as the linkers and restric-
tion sites between the scaffolds to enable the
incorporation of various shRNA sequences
into a fourplex expression system in a plug-
and-play fashion. The authors went on to
show how target mRNA levels can be titrated
depending on the efficacy of the correspond-
ing shRNA guide sequence. Biologically rele-
vant examples are also presented in the
article and include the functional knockout
This is an open access a
of CD3z or CD95 (to inhibit TCR activation
or CD95L-mediated apoptosis, respectively)
and a 70% knockdown of b2M in order to
prevent natural killer (NK) cell activation
but to enable the use of allogeneic CAR-T
cells.

Although the utility of multiplexing two
shRNAs in viral vectors carrying a CAR has
been demonstrated before,6,7 Rossi et al.5

report the first fourplex shRNA expression
system. Rossi et al.5 are also the first to mech-
anistically analyze and use natural miRNA
cluster scaffolds to power shRNA multiplex-
ing. Furthermore, the possibility to fine-tune
the silencing potency of each scaffold in the
fourplex separately is a biologically meaning-
ful and attractive way tomodulate CAR-T cell
phenotype and distinguishes the shRNA
approach from a gene editing approach the
most: target gene expression cannot be pre-
cisely titrated using current gene editing tech-
nologies. Successful and precise setting of the
CAR-T cell phenotype pre-administration is
likely to require modulating multiple targets
at the same time.

One limitation of the study is the need to
screen a large number of shRNA sequences
in order to identify sequences active in a
miRNA scaffold environment. Better under-
standing of miRNA scaffold biology would
enable better sequence prediction algorithms.

The use of the CAR-encoding viral vector to
shuttle CAR-T cell modifiers has general ad-
vantages and drawbacks. First, modifiers
will only be expressed in CAR-T cells and
not in untransduced T cells in the product.
This may be advantageous when inhibiting
CAR-T cell exhaustion or enhancing CAR-
T cell penetration into a solid tumor but
may be problematic when modifying alloge-
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neic T cells as a CAR-T cell source, where
alloreactivity must be inhibited in every
single T cell transduced to a patient.
CAR transduction efficiency in currently
approved products is heterogeneous and not
routinely monitored during CAR-T cell
manufacturing.8 Current CAR-T cell prod-
ucts also show a variability of copy number
per cell and a heterogeneity of genomic inte-
gration sites9 influencing expression levels of
the CAR construct. These phenomena affect
the expression of CAR-T cell modifiers en-
coded in the CAR-shuttling viral vector, and
therefore, the precise setting of shRNA
silencing levels in individual CAR-T cells
would probably be challenging in the clinical
setting. Importantly, the therapeutic window
of CAR-T cells is not only defined by the
initial CAR-T cell dose but also by CAR-T
cell proliferation rates in vivo. Therefore, the
timing of a CAR-T cell modulation strategy
is important and ideally should take the pro-
liferation rate into account.10 Temporary
RNA inhibitors, such as chemically synthe-
sized siRNAs, may offer a CAR-T cell modi-
fying strategy11 sensitive to CAR-T cell prolif-
erations rates. Whereas, RNA inhibitors
expressed from a genomic locus such as the
fourplex shRNA cluster reported by Rossi
et al.5 are expected to exert permanent effects
within the CAR-T cell life cycle.

The article by Rossi et al.5 represents an
important addition to the tool library to be
used when choosing a CAR-T cell modifica-
tion strategy. Multiplexing four shRNAs en-
ables the combination of several modifica-
tion goals, such as exhaustion prevention,
toxicity control, enrichment for memory
phenotype, and potency enhancement.
Especially, solid tumor indications would
benefit from more potent and better pene-
trating CAR-T cells. The multiplex shRNA
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expression system may also facilitate the
development of allogeneic, off-the-shelf
CAR-T cell products and contribute to opti-
mize other cell therapy modalities, such as
TCR-engineered T cells, donor lymphocyte
infusions, and NK cell therapies. It will be
interesting to see how the technology re-
ported by Rossi et al.5 will perform in clinical
settings. Another important question is
whether a chimeric miRNA cluster can be
further expanded to include even more
shRNA sequences.
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