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Abstract

The modelling of many real-world problems relies on computationally heavy simulations of

randomly interacting individuals or agents. However, the values of the parameters that

underlie the interactions between agents are typically poorly known, and hence they need to

be inferred from macroscopic observations of the system. Since statistical inference rests

on repeated simulations to sample the parameter space, the high computational expense of

these simulations can become a stumbling block. In this paper, we compare two ways to mit-

igate this issue in a Bayesian setting through the use of machine learning methods: One

approach is to construct lightweight surrogate models to substitute the simulations used in

inference. Alternatively, one might altogether circumvent the need for Bayesian sampling

schemes and directly estimate the posterior distribution. We focus on stochastic simulations

that track autonomous agents and present two case studies: tumour growths and the spread

of infectious diseases. We demonstrate that good accuracy in inference can be achieved

with a relatively small number of simulations, making our machine learning approaches

orders of magnitude faster than classical simulation-based methods that rely on sampling

the parameter space. However, we find that while some methods generally produce more

robust results than others, no algorithm offers a one-size-fits-all solution when attempting to

infer model parameters from observations. Instead, one must choose the inference tech-

nique with the specific real-world application in mind. The stochastic nature of the consid-

ered real-world phenomena poses an additional challenge that can become insurmountable

for some approaches. Overall, we find machine learning approaches that create direct infer-

ence machines to be promising for real-world applications. We present our findings as gen-

eral guidelines for modelling practitioners.

Author summary

Computer simulations play a vital role in modern science as they are commonly used to

compare theory with observations. One can infer the properties of a system by comparing

the data to the predicted behaviour in different scenarios. Each scenario corresponds to a
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simulation with slightly different settings. However, since real-world problems are highly

complex, the simulations often require extensive computational resources, making direct

comparisons with data challenging, if not insurmountable. It is, therefore, necessary to

resort to inference methods that mitigate this issue, but it is not clear-cut what path to

choose for any specific research problem. In this paper, we provide general guidelines for

how to make this choice. We do so by studying examples from oncology and epidemiol-

ogy and by taking advantage of machine learning. More specifically, we focus on simula-

tions that track the behaviour of autonomous agents, such as single cells or individuals.

We show that the best way forward is problem-dependent and highlight the methods that

yield the most robust results across the different case studies. Rather than relying on a sin-

gle inference technique, we recommend employing several methods and selecting the

most reliable based on predetermined criteria.

This is a PLOS Computational BiologyMethods paper.

Introduction

Mathematical and computational modelling opens up and sheds light on various research

questions in fields, ranging from hydrodynamics to oncology [1–4]. They have thus become

crucial to advances in nearly all research areas and for addressing a variety of real-world prob-

lems. However, in many cases, detailed mechanistic mathematical models of nature are notori-

ously complex and computationally cumbersome. Direct statistical analyses can become

insurmountable due to the associated computational cost when faced with such models. In this

paper, we address ways to mitigate this drawback.

We focus on a specific subset of heavy computational simulations, known as agent-based

models (ABMs) [5]. Such models keep track of autonomous agents (individuals, cells, or parti-

cles) that follow a set of rules prescribing their behaviour relevant to the particular phenome-

non being modelled. Importantly, these rules are often stochastic and involve interactions

among the agents and between the agents and their environment. If a simulation is repeated,

its output changes in complex ways. Before one might compare the predictions of such ABMs

to observations, one must gauge this stochasticity, which might consume considerable compu-

tational resources. Even without this additional complication, proper (Bayesian) inference

requires a large number of simulations to ensure a robust exploration of the model’s parameter

space, which could be large [6]. However, ABMs for real-world applications often require

many agents or complex interactions, making simulations computationally demanding. Due

to the high computational cost, a direct route for simulation-based inference, such as Approxi-

mate Bayesian computation (ABC) methods [7, 8], might thus be impractical.

There are different problem-dependent ways to deal with the computational challenges that

complex inference problems pose. For example, some models lend themselves to statistical

techniques that greatly reduce the number of required simulations [9]. In other cases, one

might resort to interpolation in an existing archive of models or to parameterizations of emer-

gent properties [10, 11]. In recent years, it has become increasingly popular to train machine

learning (ML) methods to tackle the issue [12, 13]. We follow this latter approach here. In gen-

eral, ML methods aim to capture the behaviour of the simulations across the parameter space

to bypass the need for further simulations when performing the inference task.
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ML schemes can be employed in two different ways. First, one can create a computationally

efficient surrogate model, called an emulator, that mimics relevant aspects of the ABM, much

like the aforementioned parameterizations [14, 15]. The emulator might then enter into a

Bayesian framework, such as ABC, in the same way that the original simulations would. Sec-

ondly, one might directly use ML approaches for inference [13]. We will refer to this latter

method as a direct inference machine. Whether one considers using emulators or direct infer-

ence machines, one is left with the choice of the specific ML algorithm. However, it is not

clear-cut what the optimal choice is for any particular research question. Recent literature

takes advantage of advances in density estimation by neural networks and focuses on methods

that estimate the likelihood or posterior density (or ratio) [12, 13]. In this paper, we take a less

explored approach based on an approximation to Bayesian neural networks [16, 17]. We com-

pare the performance of this approach with methods based on Gaussian processes [18, 19] and

a mixture density network [20, 21].

For this purpose, we consider two examples of real-world applications of ABMs: tumour

development and the spread of infectious diseases. ABMs are used extensively in both fields

[22–27]. The employed ABMs are complex enough to capture essential aspects of and resemble

real-world problems going beyond toy models, although they are not as sophisticated as many

of those models used to analyze real-world data [28, 29]. Their high level of complexity is an

important feature of our models. In the literature, it is commonplace to use much simpler

models when benchmarking Bayesian frameworks or machine learning methods. Benchmark

models might thus include linear combinations of Gaussian posteriors or deterministic mod-

els, such as the Lotka-Volterra equations, to which noise is subsequently added [13]. Other

canonical test cases include simple chemical reaction systems [30] (cf. the section The Schlögl
Model in S1 Appendix). It is among such benchmarking efforts and Bayesian inference tasks

that our work is placed.

For both our ABMs, we create synthetic data (also called mock observations) using the

ABMs and infer the underlying model parameters using a broad range of inference algorithms.

The synthetic data in our examples are considered experimentally accessible. This is a deliber-

ate choice since real-world applications must always consider data availability. In this paper,

we aim to infer the values of the underlying model parameters when faced with the synthetic

data. By using synthetic data, we can compare the inferred parameter values with the ground

truth, i.e. the parameter values used to create the synthetic data. We thus perform a self-consis-

tent test that allows us to evaluate and validate the performance of the different inference

techniques.

We present several implementations of emulation-based inference and direct inference

machines. We apply these inference methods to the aforementioned ABMs and critically assess

the results from each method. While we focus on these two examples, cancer and infectious

diseases, we aim to provide general guidance for choosing which algorithm to use when deal-

ing with computationally heavy simulations. We hereby aim to contribute to the ongoing dis-

cussion on how to effectively combine simulator-based models and stochastic biological

systems with existing Bayesian approaches [31, 32].

Methods and models

The flowchart in Fig 1 presents a stylised summary of the steps involved in our analysis. Below,

we give a detailed overview of these steps and the employed models.

This paper presents a Bayesian analysis. We thus seek to infer the posterior probability

(density), p(Θ|x), i.e. the probability distribution of the model parameter values (Θ) given the

observations (x, cf. the section Synthetic data) and any prior information. In this paper, we do
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Fig 1. Flowchart summarizing the different steps of our analysis. We sample the parameter space by creating quasi-random grids of

simulations using the agent-based models (ABM). We then employ the sampled parameter sets (Θsim) and the simulation output (xsim) to train

different machine learning (ML) methods: Neural networks (NN), mixture density networks (MDN) and Gaussian processes (GP). These ML

methods can either be used as emulators or direct inference machines. Emulators mimic the simulations at low computational cost. They can be

employed in Bayesian sampling schemes, such as MCMC and Likelihood Free Inference (LFI), to infer model parameters based on the

observations. Direct inference machines can be seen as black boxes that produce samples from the posterior distribution of model parameters

when given the observations. We use synthetic data obtained from the ABM which allows us to compare the obtained posterior distributions for

the model parameters with the ground truth. For both the emulators and direct inference machines, we thus perform a classical inference task,

amounting to a self-consistent test. Moreover, we quantify how well the emulators capture the behaviour of the ABMs in separate comparisons.

https://doi.org/10.1371/journal.pcbi.1009508.g001
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not impose any prior information beyond the fact that we constrain our analysis to a limited

region of the respective parameter space (cf. the sectionModel grid), i.e. we impose uniform

priors. Using the ABC method or the direct inference machines discussed below, we map the

posterior distribution directly without consulting the likelihood, p(x|Θ), i.e. the probability of

the observations given the model parameter values and the prior information. When using the

MCMC, on the other hand, we sample from the posterior by introducing a surrogate likeli-

hood and drawing on Bayes’ theorem:

pðΘjxÞ / pðxjΘÞpðΘÞ; ð1Þ

where p(Θ) denotes the prior probability distribution, i.e. the imposed constraints on the

parameters in the form of the explored region of interest.

Agent-based models

In this paper, we use two agent-based models (ABMs) describing two distinct real-world prob-

lems: Our first model deals with a malignant type of brain cancer called glioblastoma multi-

forme. The second model describes the spread of infectious diseases in a population. The

sections Brain Tumour, CA model and Epidemic, SIRDS model in S1 Appendix provide detailed

accounts of both ABMs. Since these models are to be understood as examples that we have

used to benchmark different inference methods, we limit ourselves to remark on a few critical

aspects of the models here. In both models, the agents live in a two-dimensional plane, and the

dynamics of the system are governed by a set of stochastic rules that dictate the behaviour of

the individual agents.

We note that the stochastic processes intrinsic to the ABMs become one of the main selec-

tion criteria for choosing suitable ML methods. We illustrate this by applying the same infer-

ence tools discussed below to address a non-spatial stochastic model in the section The Schlögl
Model in S1 Appendix.

Brain tumour, CA model. Our agent-based brain cancer model is a cellular automata

(CA) model, in which each agent represents a tumour cell. This ABM has four input parame-

ters. Our first two parameters, Pdiv and Pcd, are probabilities associated with the rules for cell

division and spontaneous cell death. The third parameter, λC, determines the nutrient con-

sumption of the cells and entails the possibility of cell death due to nutrient deprivation. This

parameter is a rate given in units of the nutrient consumption per cell per time step.

To explain the fourth parameter, we need to mention that brain tumours are composed of

three main different cell types [33]. In the following, we refer to these as glioblastoma stem-

like cells (GSC), glioblastoma cells in the propagating progeny (GPP), and glioblastoma cells in

the differentiating subpopulation (GDS), respectively. The fourth parameter, �, thus denotes a

probability that is associated with the differentiation of stem-like cells during cell division. All

four parameters are varied on a linear scale from 0.01 to 0.50 (see S1 Appendix for further

details).

In this paper, we perform inference based on synthetic data, i.e. mock observations. To do

so, we need to consider what data would be available in a real-world scenario. For example, in

brain cancer research, data often comprise detailed snapshots of tumour growth. To reflect

this circumstance, we assume that we know the time frame during which the tumour has

evolved. For the purpose of inference, we hence collect data from all simulations at a fixed

snapshot (t = 100). To compare the model predictions to the synthetic observations, we focus

on the emergent macroscopic properties of the ABM. As our summary statistics, we use five

numbers describing the system as a whole: the number of GSCs, GPPs, GDSs, and dead

PLOS COMPUTATIONAL BIOLOGY Efficient Bayesian inference for stochastic agent-based models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009508 October 5, 2022 5 / 28

https://doi.org/10.1371/journal.pcbi.1009508


tumour cells, as well as the total number of alive cells in the proliferating rim (cf. Brain tumour,
CA model in S1 Appendix).

Epidemic, SIRDS model. In our model for the spread of infectious diseases, the agents

are people. These individuals fall into four different groups as signified in the acronym of the

model: SIRDS. The first group comprises people who are susceptible (S) to the disease. The

second group includes people who are infected (I). In the third group, we find those people

who are immune after recovering (R) from the disease. The last group includes those who have

died (D) from the disease. As the infection spreads through the population, individuals move

between groups.

Our SIRDS model has five input variables. The first parameter, Pi, denotes the probability

of contracting the disease upon contact with an infected individual. The second parameter, Pd,

denotes the probability of dying from the disease. The agents have fixed social relations (at

home, at school, or at work). In addition, they have Nre random encounters. The logarithm of

Nre constitutes our third parameter. As our fourth parameter, we choose the number of days

(ti) that an infected individual is contagious. Finally, our fifth parameter is the logarithm of the

length of time, log tp, during which a recovered individual is protected from getting the dis-

ease. After this time span, the previously recovered individual becomes susceptible (S) again.

Note that the parameters of our SIRDS model are different from one another in terms of

the explored parameter range, i.e. the priors. This property stands in stark contrast to the

parameters of the cancer CA model, which all share the same uniform prior, as discussed

above. Also, the models are quite distinct in terms of mechanistic details (see the sections

Brain Tumour, CA model and Epidemic, SIRDS model in S1 Appendix). Thus, by construction,

the cancer CA and SIRDS models complement each other.

Regarding the summary statistics, we again resort to the system’s emergent properties.

Rather than relying on a single detailed snapshot, epidemiologists often have comprehensive

knowledge of D(t), I(t), and R(t). Here, we boil these time series down to five numbers: the

total duration of the epidemic, the total death toll, the highest number of infected individuals

during the outbreak, the time at which the peak in infections occurs, and the highest number

of recovered agents during the outbreak (cf. the section Parameters and summary statistics in

S1 Appendix).

We stress that both our cancer CA and our epidemiological SIRDS simulations are rather

simplistic. However, they are sufficiently realistic to capture the main aspects of the real-world

applications, including the stochastic nature of the modelled events. This feature is the most

essential for our purposes. Rather than providing detailed models for specific biological sys-

tems, we investigate how to infer properties from observations based on such simulations. By

keeping the models simple, we lower the computational cost making the analysis more practi-

cal and allowing us to readily explore different aspects.

Model grid. To perform inference, we construct a set of grids in the input parameter

spaces with a limited number of simulations. We then use these to train the machine learning

(ML) techniques discussed in the sections Emulators and Direct inference below.

We impose uniform priors on all parameters. Thus, our parameter spaces are four and five-

dimensional hypercubes for the cancer CA and epidemiological SIRDS model, respectively.

We could cover the parameter spaces by sampling points in regular intervals. However, this

approach is rather inefficient. Alternatively, we could generate points randomly, but this

approach leads to unintended clustering. We, therefore, follow the suggestion by Bellinger

et al. [34] and generate points based on a Sobol sequence [35]. In doing so, we sample the

hyperspace uniformly while minimizing redundant information as discussed by Bellinger et al.

[34].
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Table 1 lists the lower and upper boundaries of our priors, i.e. the boundaries of the sam-

pled parameter space.

For both ABMs, we construct four grids with different resolutions. These four grids contain

102, 103, 104, and 105 simulations, respectively. Each simulation has a unique parameter set, i.e.

the grids do not contain repetitions. Rather, the ML algorithms must infer the stochasticity of

the simulations based on the variation between neighbouring simulations across the grid.

Since we cover a relatively broad region of each parameter space, we run into scenarios

where all tumour cells die before t = 100 or where the disease is not passed on. As further dis-

cussed in the section Synthetic data, these scenarios are of no biological interest since they

would not yield conclusive real-world data and hence not be studied. They are, at least for our

purpose, effectively noise for the ML algorithms. By excluding them from the training sets, we

boost the performance of the various inference techniques. More specifically, in connection

with the cancer CA model of brain tumours, we remove all simulations for which the number

of GSCs or GPPs is zero. As regards our epidemiological SIRDS model, we remove all cases in

which the disease did not spread beyond the originally infected individuals, or the disease was

not eradicated after 1825 days (5 years). The latter exclusion criterion stems from the simula-

tion set-up (cf. S1 Appendix). For both ABMs, these criteria reduce the original grid sizes by

roughly 10 per cent.

Synthetic data. We construct a synthetic dataset to discuss the performance of the differ-

ent inference techniques. For each ABM, we generate 250 new input parameter sets and repeat

each simulation 250 times to sample the resulting distributions of the output variables. These

distributions can be compared to the predictions of the emulators discussed in the section

Emulators while the original input parameters (Θo) of the simulations can be compared to the

posterior distributions obtained by inference. We present the metrics for these comparisons in

the sectionMetrics below.

We pick the model parameter values for our synthetic data using tighter priors than those

presented in Table 1. The benefits of this approach are twofold. First, we avoid drawing simu-

lations at the edges of the regions covered by the grids. Secondly, by choosing different priors,

we select points that differ from those that enter the training data, although we use a Sobol

sequence to sample the parameter space.

In the section Results, we infer the properties of our synthetic data using various techniques

and compare the results with the ground truth. This comparison amounts to a self-consistent

test allowing us to assess the performance of the different inference algorithms. However, due

to the distance measure and likelihoods associated with the employed Bayesian inference tech-

niques, i.e. ABC and MCMC, not all the synthetic data might be equally suitable for our pur-

poses (cf. the sections Rejection ABC andMCMC). Especially when one or more of the output

Table 1. Upper and lower boundaries for the model parameters (Θ) in the constructed grids.

Parameter Lower limit Upper limit

Pdiv 0.01 0.50

Pcd 0.01 0.50

λC 0.01 0.50

� 0.01 0.50

Pd 0.00 1.00

Pi 0.00 1.00

log10(Nre) -2.0 2.0

ti [days] 1.0 30.0

log10(tp) [days] -2.0 4.0

https://doi.org/10.1371/journal.pcbi.1009508.t001
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variables consistently take on a fixed value, the defined distance measure and likelihood func-

tions run into trouble since we end up dividing by zero. One such scenario would be the case

where the parameter values ensure that all tumour cells consistently die off before t = 100.

Another example is the case where the disease is never passed on. To mitigate this problem,

one might discard all synthetic data that produce delta functions as the marginals for one or

more output variables of the ABMs—in the real world, these scenarios would not be studied,

anyway. While these scenarios are certainly of mathematical interest, they are not of biological

interest, at least for dealing with our synthetic data. Here, we apply a more conservative crite-

rion, discarding all synthetic data, for which the width of the 68 per cent confidence interval is

zero. With this selection criterion, we are left with 219 and 227 points in the parameter space

for the cancer CA and epidemiological SIRDS models, respectively.

Emulators

The purpose of an emulator is to mimic the output of the ABM at a low computational cost

when given a set of ABM input parameters, often called features. Like the original ABM, the

emulator is thus a function f(Θ) that maps from the model parameter space (Θ) to the output

space of the ABM. The emulator can then be used as a surrogate model to sample the posterior

probability distributions of the model parameters using likelihood-free inference (LFI) or

other Bayesian inference techniques (cf. the sections Rejection ABC andMCMC).

Since the ABMs in this paper are driven by stochastic events, several simulations with the

same input parameters will produce a distribution for each output variable of the ABM rather

than a unique deterministic result. The emulator must capture this behaviour. Based on this

notion, we follow three different approaches: We emulate the simulation output using a deep

neural network (NN), a mixture density network (MDN), and Gaussian processes (GP).

We train and validate the emulators based on precomputed grids of models (cf. the section

Model grid). When the ML methods rely on neural networks (NN and MDN), 60 per cent of

the simulations are used for training, while the remaining 40 per cent are used to validate and

test the methods before they encounter the synthetic data (cf. the sections Synthetic data and

Results). For the Gaussian processes, 20 per cent are set aside for a testing phase, while the

remaining 80 per cent of the simulations are used for training—when dealing with neural net-

works, the validation set is also needed for invoking early stopping during training. We also

note that the different ML approaches do not see the raw synthetic data. Since we are working

with outputs on different scales, the synthetic data are standardized before handing them over

to the ML schemes.

Neural networks. As our first approach, we construct a broad, deep neural network (NN)

with three hidden layers that contain 100 neurons each. To avoid overfitting, we include early

stopping and dropout during the training phase [36]. The latter property implies that we ran-

domly select 20 per cent of the neurons in each layer and temporarily mask these neurons dur-

ing each pass through the NN [36]. To recover the stochastic nature of the ABMs, we maintain

dropout during the inference phase and use the loss function proposed by Gal & Ghahramani

[16, 37, 38]. These temporal changes in the NN’s architecture mean that the predictions of the

NN become samples from a distribution rather than being deterministic. The resulting distri-

bution encodes both epistemic and aleatoric uncertainties, i.e. the errors stemming from the

limited knowledge of the NN and those stemming from the stochastic processes intrinsic to

the ABMs. NNs that employ dropout have been shown to approximate Gaussian processes

[16] and can be seen as an approximation of Bayesian neural networks [17]. Our implementa-

tion builds on TensorFlow [39].
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Mixture density networks. As our second approach, we employ a mixture density net-

work (MDN) that fits a mixture of multivariate normal distributions to the output of the

ABMs [20, 21]. By sampling from the constructed mixture model during the inference process,

it is possible to mimic the stochasticity of the underlying ABM.

The fit is accomplished by training a neural network to predict the means and full covari-

ance matrices for each normal distribution. We use three components for each mixture model.

For a five-dimensional space of output variables from the ABM, the neural network is thus

optimized to predict 63 variables: 15 means, 15 diagonal and 30 unique off-diagonal elements

of the covariance matrix, and 3 component weights. To ensure that the covariance matrices

are positive semi-definite, we use exponential and linear activation functions for the diagonal

and off-diagonal elements, respectively [40]. To guarantee that the component weights are

positive and sum to unity, they are meanwhile passed through a softmax activation function.

Regarding the loss function, we maximize the log-likelihood that the mixture model attributes

to the training data from the grid discussed in the sectionModel grid. We employ early stop-

ping and dropout like in the section Neural networks. Our implementation builds on Tensor-

Flow [39].

Gaussian processes. Finally, as our third approach, we describe the output of the ABM as

a Gaussian process (GP) [18, 41]. For a comprehensive overview of GPs, we refer the reader to

work by Rasmussen et al. [19].

We use a linear combination of a radial basis function (RBF) kernel and a white noise ker-

nel to specify the covariance of the prior function. We do so to account for the spread in the

underlying output from the ABM [42]. Just as in the case of the MDN, the stochasticity of the

ABM can be emulated during inference by sampling from the obtained GP.

Here, we set the mean squared error in the prediction to be the loss function, which

amounts to the simplifying assumption that the output variables of the ABM are uncorrelated.

We use the python implementation of Gaussian process regression from scikit-learn [43].

We note that the employed implementation produces a uni-modal distribution for a unique

set of input parameter values. The same holds for the NN. In contrast, the MDN can produce

multi-modal outputs when given a single input vector.

Rejection ABC. Having constructed an emulator, we can resort to standard sampling

techniques to map the posterior probability distributions of the model parameters (Θ) of the

ABM given a set of observations (x). In our case, these observations constitute the synthetic

data created by the ABM as discussed in the section Synthetic data.

One option is to draw on the class of Approximate Bayesian Computation (ABC) methods

[44–46]. The simplest among these algorithms is rejection ABC. Rejection ABC randomly

draws samples from the prior probability distributions of the model parameters. The algorithm

then compares the simulation output, i.e. the predictions of the emulator, with the observa-

tions using a suitable distance measure. Samples within a distance δ are kept, while the rest are

discarded. In practice, δ is chosen in such a way as to keep a certain fraction of the samples.

The distribution of these samples is then taken as a proxy for the true posterior.

In this paper, we use the implementation by Lintusaari et al. [47] (ELFI). As regards the

prior, we use uniform priors corresponding to the region covered by the grids discussed in the

sectionModel grid. As regards δ, we keep the best 104 of 107 samples for each combination of

parameters for our synthetic data.

The distance measure is the last thing we need to specify for the ABC. To motivate our

choice, we need to consider the nature of the real-world applications that our ABMs strive to

model. At best, a targeted laboratory study of glioblastoma or disease transmission may involve

a handful of animals, such as mice or ferrets [48, 49]. Due to the limited number of specimens

in the experiment, it can be notoriously complicated to assess the stochasticity that underlies
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the data. The same holds true when dealing with patient-specific data or data from the out-

break of an epidemic [50].

For instance, consider an experiment in which we implant human tumour cells in a single

mouse to study tumour growth. Based on this time series alone, we cannot hope to rigorously

constrain predictions for the outcome when repeating this experiment. Even given a handful

of such experiments, we might be hard-pressed to go beyond simplifying assumptions, such as

the notion that the observations will be normally distributed. Indeed, one might often not have

enough information to go beyond measures, such as the median, the mean, the standard devia-

tion, the standard deviation of the mean, the mean absolute error and/or the median absolute

error. With this in mind, we settle for a distance measure (d) in the form

d ¼
X

i

½f ðΘÞi � xsim;i�
2

s2
sim;i

; ð2Þ

where the sum runs over all five observed output variables of the ABM, xsim,i is the median of

the marginal distribution for the ith summary statistics in the synthetic data, and σsim,i denotes

the standard deviation of the synthetic data. The distance is computed for each prediction

made by the emulator denoted by f(Θ).

We note that xsim,i and σsim,i do not fully capture the distribution of the synthetic data. In

other words, by employing Eq (2), we assert the notion that real-world data do not reveal the

same level of detail regarding the stochasticity of the studied events as our synthetic data do.

This being said, we also note that the marginal distributions obtained from the synthetic data

are mostly uni-modal and relatively symmetric distributions. The simplifying assumptions

that enter Eq (2) thus still give a reasonable depiction of the underlying synthetic data.

MCMC. Likelihood-free inference (LFI) algorithms, such as rejection ABC, lend them-

selves to our analysis because the likelihood that describes the system is intractable. By intro-

ducing a distance measure based on suitable summary statistics, rejection ABC thus altogether

avoids the necessity of consulting the likelihood when inferring the posterior distribution.

Alternatively, one might introduce a surrogate likelihood. This approach is, indeed, com-

monly used across different fields of research [51, 52].

Following similar arguments to those that lead to the distance measure in Eq (2), we arrive

at a surrogate likelihood, i.e. p(x|Θ), in the form

log pðxjΘÞ ¼
X

i

½f ðΘÞi � xsim;i�
2

s2
sim;i

; ð3Þ

where xsim,i and σsim,i again denote the median and standard deviation of the marginal of the

ith output variable in the synthetic data, respectively.

However, the use of Eq (3) leads to convergence problems due to the stochastic nature of

the ABMs. Alternatively, one might directly compare the predicted median (M) with that of

the observations. To account for the stochastic behaviour of the ABMs, we include the stan-

dard deviation (σpred) of the prediction in the denominator:

log pðxjΘÞ ¼
X

i

½Mðf ðΘÞiÞ � xsim;i�
2

s2
sim;i þ s

2
pred;i

: ð4Þ

We refer to the surrogate likelihoods in Eqs (3) and (4) as case a and b, respectively.

Having defined a surrogate likelihood, we can employ standard sampling techniques, such

as Markov chain Monte Carlo (MCMC) [6, 53]. The advantage of this approach over rejection

ABC is that we can sample more efficiently from the prior. However, as discussed in the
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section Results and mentioned above, the stochasticity of the emulator, partly reflecting the

stochasticity of the ABM, might compromise convergence.

This paper uses the ensemble sampler published by Foreman-Mackey et al. [54] based on

the procedure suggested by Goodman & Weare [55]. We thus evolve an ensemble of N walkers

in parallel, where N is twice the number of dimensions of the mapped input parameter space

of the ABM. For each combination of parameters in our synthetic data, we exclude a burn-in

phase containing 5000 samples per walker. We then collect 20,000 additional samples per

walker. We note that this approach does not imply that we obtain 20,000 truly independent

draws from the distribution. The number of samples necessary for the walker to become obliv-

ious to its initial conditions is called the integrated autocorrelation length. To assess the

robustness of the MCMC, we thus estimate this quantity. For further details, we refer the inter-

ested reader to the paper by Foreman-Mackey et al. [54].

Direct inference

As discussed above, emulators mimic the ABMs by producing samples from the same output

variable space (x) when given a set of parameter values (Θ). To infer the parameter values that

correspond to a set of observations using emulators, we sample the parameter space using

Bayesian sampling schemes and compare the output of the emulators to the observations (cf.

the flowchart in Fig 1). When using emulators in inference, we thus go from the input space of

the ABMs to their output space and back. Alternatively, we can construct an ML algorithm

that directly predicts the parameter values (Θ) given points from the output variable space (x)

of the ABMs. In the following, we will refer to such an algorithm as a direct inference machine.

Since direct inference machines take us directly from the observations to the parameter val-

ues, they do not rely on Bayesian sampling schemes, such as ABC or MCMC [12, 13]. Once

direct inference machines are trained, they are thus much faster to employ than emulators. In

the results section, we quantify this statement. However, this advantage comes at the cost of

lower flexibility and reduced transparency.

While it is thus straightforward to determine the performance of an emulator by assessing

its ability to mimic the output of the simulations, direct inference machines do not lend them-

selves to this type of assessment since they produce predictions of the underlying parameter

values without any such intermediate steps. We must fully rely on performance measures that

assess the final predictions for Θ (cf. the sectionMetrics). In this sense, direct inference

machines are less transparent than emulators.

Having established an emulator, it is also straightforward to tweak the priors or alter the

likelihood function or distance measure during the inference stage, i.e. using the ABC or

MCMC. It is only necessary to re-train the emulator if we extend or change the parameter

space we explore. On the other hand, each such change would require the ML algorithm to be

re-trained when using direct inference machines. In this sense, direct inference machines are

less flexible than emulators. Of course, this property only becomes an obstacle for direct infer-

ence machines if the training phase is a computational bottleneck, which is not the case for our

examples.

Both emulators and direct inference machines thus have their advantages and shortcom-

ings. Rather than resorting to a one-size-fits-all approach, one must choose between different

algorithms based on the inference problem one faces. Indeed, both emulators and direct infer-

ence machines are very popular in different research fields [13, 21, 34].

In this paper, we compare the results obtained using the emulators with those obtained

using two direct inference machines. We employ a broad, deep neural network as our first

direct inference technique. Apart from the fact that the input and output spaces are swapped,
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the architecture of this neural network matches that described in the section Neural networks.
As our second approach, we train a Gaussian process based on the settings summarized in the

section Gaussian processes. Like the emulators, the direct inference machines account for the

stochastic processes intrinsic to the system through our choice of machine learning methods

and through the training of these algorithms.

Before commencing, we still need to address one question: How do we establish credibility

intervals for the direct inference machine? Consider the case where we repeatedly generate

samples using one of our direct inference machines based on the same set of singular values

for each of the input variables. The chosen direct inference machine would then yield a distri-

bution that reflects the intrinsic stochastic properties of the training data, i.e. the ABMs, and

the limitations of the information captured by the training data. However, we also need to

include the uncertainty of the observations. Our synthetic data are thus distributions rather

than singular values, and we should not run the direct inference machine repeatedly using the

same set of input variables. Rather, to include the observational errors, we would need to gen-

erate samples from a distribution of input parameters that corresponds to the distribution of

the observations [34]. As discussed in the section Rejection ABC, we assume that independent

Gaussian distributions approximate the marginal distributions of the observed quantities.

Following the outline by Bellinger et al. [34], we thus sample 10,000 combinations of input

parameters for the direct inference machines using a multivariate Gaussian distribution with

a diagonal covariance matrix matching the observational constraints. The means of this multi-

variate distribution are set to the medians of the observations, while the variance reflects the

standard deviations of the marginals.

Metrics

Due to the stochastic nature of the ABMs, we arrive at distributions for their output variables

when repeating runs with the same input parameters. We call on four measures to quantify

how well our emulators recover these distributions. For each measure, we compare properties

of the marginal distributions predicted by the emulators to those obtained from the simula-

tions, i.e. from the ground truth of the synthetic data:

• As our first measure, we compute the error in the predicted means of the marginal distribu-

tions, i.e. μpred − μsim. Here, the subscripts ‘pred’ and ‘sim’ refer to the predictions by the

emulators and the results obtained from simulations, respectively. Any deviations by the

mean of this measure from zero would reveal a bias. Since we cover a broad region of the

parameter space for each ABM, we cite this measure in units of the standard deviation of the

marginal obtained from the simulations (σsim).

• As our second measure, we include the relative absolute error in the predicted median, i.e. |

Mpred −Msim|/Msim. Like the first measure, this measure quantifies the accuracy of the

emulator.

• Thirdly, we compute the ratio between the predicted standard deviation of the marginal dis-

tribution and the standard deviation obtained from simulations (σpred/σsim). This measure

should be close to one. Otherwise, the emulator over- or underestimates the uncertainties of

the predictions.

• Finally, we compute the Wasserstein distance that quantifies the discrepancy between proba-

bility distributions [56]. The lower this measure is, the more similar the predicted distribu-

tion by the emulator is to the ground truth.
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We note that the metrics chosen for the output of the emulators reflect our assumptions

about the nature of the data that we would obtain in a real-world scenario. As elaborated upon

in the section Rejection ABC, we thus assume the observations to be approximated by a multi-

variate Gaussian distribution with a diagonal covariance matrix. Although we deem the listed

measures to be the most suitable, it is still worth stressing that generalisations of the above

measures and alternative measures exist [13].

Meanwhile, the assumption that the observations are normally distributed does not affect

the metrics with which we assess the inference results, i.e. the obtained posterior distribution

for the model parameters. The marginal posterior distributions might very well be skewed or

multi-modal, and the metrics should be able to handle this. We turn to these metrics below.

As regards the ABC runs, the MCMC runs, and the direct inference machines, we can com-

pare the obtained distributions to the original input parameter values (Θo) of the synthetic

data. To assess the performance of the algorithms, we thus compute both the residuals and rel-

ative difference between the mean of the predicted marginal distributions and the correspond-

ing elements (θo) of Θo. In addition, we compute

• the negative logarithm of the probability density, q(θo), that is attributed to the true value by

the algorithm. The average, � E½log qðyojxoÞ�, of this measure across input and output vari-

ables (Θo, xo) is widely used in the literature [13, 57]. The lower the value of −log q(θo) is, the

better the algorithm is at recovering the ground truth. Note that this metric does not build

on any assumptions regarding the shape of the marginal posterior distributions.

These measures quantify the accuracy and precision of the considered inference techniques.

By comparing the measures across the different algorithms, we can put the performance of the

individual algorithms into perspective.

As an additional comparison, one might propose to infer the model parameters using the

actual simulations in tandem with the ABC or MCMC algorithms. We could then use the

obtained distributions as benchmarks. However, since we are dealing with complex ABMs,

any analysis involving the actual simulations becomes insurmountable in terms of computa-

tional resources. After all, this stumbling block was the reason for turning to emulators and

direct inference machines in the first place.

Results

As discussed in detail in the method section above, we use two main approaches to simula-

tion-based inference: emulation-based approaches and direct inference machines. We employ

three different emulators: a deep neural network (NN), a mixture density network (MDN),

and Gaussian processes (GP). These methods were chosen because they can mimic the sto-

chastic nature of the ABMs. The predictions of the emulators are directly compared to the syn-

thetic data, i.e. the synthetic data (cf. the section Synthetic data). We then infer the underlying

model parameters (Θ) using rejection ABC and Markov Chain Monte Carlo (MCMC). Finally,

we compare these ML predictions with the ground truth (Θo). For the ABC, we employ a sin-

gle distance measure that compares individual predictions to the synthetic data, while we take

two distinct approaches for the MCMC: The likelihood either relies on individual predictions

(case a) or global properties of the predicted distributions (case b).

Regarding the direct inference machines, we again employ a NN and GP and compare the

predictions to the ground truth. For each method, we vary the size of the training set to evalu-

ate its impact on the results. Further details are given in S1 Appendix. For a concise overview

of the different steps, we refer the reader to the flowchart in Fig 1.
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Comparing emulators

When comparing the predictions of the emulators to our synthetic data, we consider the abso-

lute error in the mean, the relative error in the median, the ratio between the predicted and

true width of the distribution in terms of the standard deviation, and the Wasserstein distance

between predicted and true distribution (see methods section for details).

Figs 2 and 3 (as well as S7 and S8 Figs) summarize the comparisons between the emulation-

based predictions and the distributions obtained from simulations for the ABMs describing

tumour growth and disease spread, respectively. Our ABM describing brain cancer is a cellular

automata (CA) model (cf. methods section). Our epidemiological model is a SIRDS model (cf.

the methods section). In the following, we refer to the ABMs using this terminology.

As regards the cancer CA model for tumour growth, the NN outperforms the other ML

techniques across nearly all measures, sizes of the training set, and variables. The NN closely

recovers the correct mean, median, and width of the marginal distributions obtained from

simulations and generally yields the lowest Wasserstein distance. In contrast, the MDN is gen-

erally biased, overestimating the true mean, while the GP results in much too broad

distributions.

For our epidemiological SIRDS model, on the other hand, the MDN outperforms the NN

for sufficiently large training sets. The GP still yields the worst performance across all

measures.

As can be seen from Figs 2 and 3 (as well as S7 and S8 Figs), the accuracy and precision of

the different ML approaches generally improve with increasing size of the training set. How-

ever, the GP cannot cope with the kernel matrix for the largest training set. This is not to say

that this is a general flaw of Gaussian processes [58] but rather goes to show that the suitability

of any ML implementation or approach is problem-dependent.

Comparing inference techniques

When comparing the inference results to the ground truth, we include four metrics: We com-

pare the mean of the distribution to the true parameters and compute both the relative and

absolute error. Moreover, we consider the standard deviation of the posterior and the proba-

bility density (q) attributed to the true value (see further details on metrics used in the method

section).

As mentioned above, the NN and GP result in the best and worst performance among the

explored emulators for the cancer CA model, respectively. To see what impact this perfor-

mance gap has on the inference, we sampled the parameter space using both emulators in tan-

dem with both ABC and MCMC. Due to the associated computational cost, we do not repeat

this analysis for different sizes of the training set. Instead, we settle for a resolution of 104 simu-

lations in the training set, as the NN performs well at this resolution. Any additional gain in

performance at 105 simulations does not outweigh the substantially increased computational

expense. For our epidemiological SIRDS model, we limit ourselves to the NN as regards the

emulation-based inference.

For the cancer CA model, the higher accuracy and precision of the NN emulator are

reflected in the performance metrics for the inference results. We illustrate this result in Fig 4

(as well as S9 Fig). Whether we use the ABC or MCMC algorithm for inference, the NN leads

to a narrower distribution, whose mean more closely recovers the ground truth than the GP.

To put the results in Fig 4 (and S9 Fig) into perspective, consider the case where we use the

mean of the posterior distribution as our parameter estimate. This approach would result in

unbiased residuals for the mean with 25th and 75th percentiles at -0.1 and 0.1, respectively. All

methods thus perform better than a random assignment of parameter estimates.
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Irrespective of the ML approach, the MCMC (cases a and b) and ABC lead to similar values

of the four measures, including −log q(θo). However, due to the stochastic nature of the emula-

tor, we note that the median autocorrelation lengths across all four input parameters are 383–

412 and 1889–1953 samples for NN and GP MCMC runs, respectively, when individual

Fig 2. Comparison of the performance of the emulators as a function of the size of the training set (resolution) for the agent-based cellular

automata (CA) model of brain tumours. The plot shows the results for three emulators: A neural network (NN), a mixture density network (MDN),

and a Gaussian process (GP). The subscripts ‘pred’ and ‘sim’ refer to the predictions by the emulators and the ground truth obtained from

simulations, i.e. the synthetic data, respectively. The four panels contain our four performance metrics for emulators: the error in the predicted mean

(μpred), the relative absolute error in the predicted median (Mpred), the ratio between the predicted width of the marginals in terms of the standard

deviation (σpred) and true width, and the Wasserstein distance (cf. the sectionMetrics). The figure summarizes these quantities for one of the output

variables of the CA model, the number of glioblastoma stem-like cells (GSC). For the other outputs, we refer the reader to S7 Fig.

https://doi.org/10.1371/journal.pcbi.1009508.g002
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predictions by the emulator are used in the likelihood (case a). We summarize these numbers

in Table 2. The GP emulator thus results in a lower number of effective samples. Indeed, for

the GP, the resulting contour plots are very noisy, often consisting of disconnected peaks. This

notion calls the robustness of the MCMC results based on the GP into question. We attribute

this to the fact that the GP emulator overestimates the standard deviation for the output

parameters of the ABM. This increased stochasticity hinders convergence.

Fig 3. Counterpart to Fig 2 for our epidemiological SIRDS model. The plot shows different metrics of the performance of emulators for one of the

output variables of the SIRDS model, the total duration of the epidemic. For the other outputs, we refer the reader to S8 Fig.

https://doi.org/10.1371/journal.pcbi.1009508.g003
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As regards the epidemiological SIRDS ABM, the case a of the MCMC algorithm suffers

from the same issue, even when dealing with emulators that closely recover the marginal distri-

butions obtained from simulations. For the NN MCMC runs, the mean and median estimated

autocorrelation lengths across the different parameters lie between 2084 and 2179, and the

associated contour plots are extremely noisy when individual predictions by the emulator are

used in the likelihood (case a). Due to this behaviour, we have omitted case a of the MCMC

results in Fig 5 (and S10 Fig) that summarizes the performance of the different inference tech-

niques for the epidemiological SIRDS ABM.

Rejection ABC, on the other hand, does not suffer from the same problem for either of the

two ABMs. Even though rejection ABC leads to high values of −log q(θo) in some cases, this

Fig 4. Performance across different inference schemes for our cancer CA model in terms of the residuals between the mean of the marginal

distribution and the true parameter values (θo). For other metrics, we refer the reader to S9 Fig. The plot includes the results from the emulation-

based approaches (emu.) and our direct inference machines (inf.). We include two machine learning approaches: a neural network (NN) and

Gaussian processes (GP). In connection with the emulators, we distinguish between results obtained using rejection ABC and MCMC. For each

approach, the label specifies the size of the training set: For the emulators, we consistently used 104 simulations.

https://doi.org/10.1371/journal.pcbi.1009508.g004

Table 2. Median and mean autocorrelation length for different MCMC setups. For each of the two ABMs (our can-

cer CA and epidemiological SIRDS model), we use two ML emulation algorithms (NN and GP). We distinguish

between two different likelihoods (case a and b, cf. the methods section). The first column specifies the different setups

by first naming the ABM, followed by the emulator and the likelihood.

MCMC Mean Median

CA-NN (a) 565–599 383–412

CA-NN (b) 377–402 163–174

CA-GP (a) 1835–1875 1889–1953

CA-GP (b) 423–456 311–346

SIRDS-NN (a) 2084–2120 2118–2179

SIRDS-NN (b) 325–393 194–266

https://doi.org/10.1371/journal.pcbi.1009508.t002
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technique can reliably reconstruct the mean and median. Moreover, in contrast to the MCMC

(case a) that leads to spurious contour plots, rejection ABC does not yield equally noisy poste-

riors even though the distance measure draws on individual predictions by the emulator. To

improve the contour plots of the MCMC, we have to resort to using global parameters of the

predicted distributions rather than individual samples in the likelihood (case b). When doing

so, the median autocorrelation length lies in the intervals 163–174 and 194–266 for the cancer

CA and epidemiological SIRDS models, respectively (cf. Table 2).

Figs 4 and 5 (as well as S9 and S10 Figs) also include the predictions by the NN and GP

direct inference machines based on different sizes of the training set. Two features stand out:

First, the direct inference machines perform as well or better than the emulation-based

approaches, even with a low number of simulations in the training set. Indeed, some measures

do not visibly improve even when the model is confronted with significantly more training

data. Secondly, the dissonance in −log q(θo) between the NN and GP is more prominent for

the epidemiological SIRDS ABM than in the case of the cancer CA model.

As regards both ABMs, it bears mentioning that the values obtained for the four metrics are

partly correlated. However, the correlations are method- and measure-dependent. They might

thus be erased when comparing samples across different methods and measures, e.g. reflecting

differences in the performance and the normalization factors.

All inference techniques struggle with the same model parameters (e.g. log Nre for the

SIRDS model), while they are all reasonably good at establishing certain other model parame-

ters (e.g. Pd for the SIRDS model). This behaviour is hardly surprising. It merely reflects the

non-identifiability of certain parameters given the available information through the summary

statistics. While one might overcome this issue by choosing different summary statistics, we

Fig 5. Counterpart to Fig 4 for our epidemiological SIRDS model. Here, we show the performance across different inference schemes for our

SIRDS model in terms of the residuals between the mean of the marginal distribution and the true parameter values (θo) in units of the width of the

observed parameter range (Δθ). In contrast to Fig 4, we scale the residuals based Δθ because the different parameters cover very different ranges. For

other metrics, we refer the reader to S10 Fig.

https://doi.org/10.1371/journal.pcbi.1009508.g005
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note that this might not be straightforward in real-world applications—e.g. due to limitations

imposed by the data.

Performance analysis

To quantify the motivation for using the different inference techniques, we summarise the

CPU time requirements for each method in Fig 6. Since computation time is greatly model-

dependent, our intention is thus merely to underline a few key features.

As shown in the figure, the computation of the simulations consumes the most resources:

The total time in every case is almost equal to the simulation time. Training the direct infer-

ence machines or emulators takes orders of magnitude less time, and new simulations are only

required during the training phase.

To further substantiate the reduction in computational cost associated with our approach,

consider an MCMC run based on the likelihood in Eq (3). Since we use the ensemble sampler

by Foreman-Mackey et al. [54], each run involves twice as many walkers as the dimensions of

the output parameter space, i.e. 8–10 walkers. Each walker leads to a Markov chain containing

25,000 samples, including the burn-in. For eight walkers, each MCMC run thus requires

200,000 individual samples. If we were to use actual simulations rather than the emulators, we

Fig 6. Required CPU time across different methods for our cancer CA model (upper panel) and the epidemiological SIRDS model (lower

panel). The light magenta bars show the total time required for each inference technique. The remaining three bars specify the time required for the

simulations involved (red), the time required for training and validation (yellow), and the time that is needed to infer the parameters for a single set

of observations (blue). The number of required simulations is specified in the labels. We include the NN direct inference machine based on three

different sizes of the training set. Moreover, we include the NN emulator in tandem with the rejection ABC and MCMC algorithms. The ABC

accepts the best 104 among 107 randomly drawn samples. The ensemble MCMC uses 8 walkers, drawing 20,000 samples for each walker. For the

MCMC, we average over the CPU times for cases a and b. For comparison, we include the estimated time required for running the ABC with 107

simulations. Note that the ordinate is logarithmic. Note also that the time needed to run any given simulation depends on the number of agents and

the model parameters.

https://doi.org/10.1371/journal.pcbi.1009508.g006
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would thus need 200,000 simulations for each MCMC run. To fit the 219 synthetic synthetic

brain cancer data sets discussed in this paper, we would need 43.8 million simulations for the

MCMC runs based on Eq (3) alone. To fit the 227 synthetic epidemiological data sets, we need

45.4 million simulations. Even more samples are required to perform the analysis based on Eq

(4) or the ABC algorithm. In contrast, we demonstrate that only 10,000 simulations are suffi-

cient to train all our emulators and direct inference machines for both the CA and SIRDS

models. Our machine learning methods can thus reduce the number of simulations needed by

several orders of magnitude.

For our models, the training of the emulators and direct inference machines take the same

time, which does not always have to be the case. However, the direct inference machines are

more effective in obtaining estimates for the underlying model parameters. Moreover, since

the simulations take the most time, investing in training more complex ML emulators or direct

inference machines will not be more computationally expensive and may pay off in the accu-

racy of the results.

Discussion

This paper investigates how to efficiently perform inference when relying on computationally

expensive stochastic agent-based models (ABMs). For this purpose, we compute synthetic data

and infer the underlying model parameters in self-consistent tests using various techniques.

These methods fall into two main categories: emulators and direct inference machines. We

find that the performance of the emulators and direct inference machines are not consistent

across the two ABMs but rather depend on the real-world application in question and the size

of the training set. They thus depend on the available computational resources. This leads us to

our first guideline:

• There is no one-size-fits-all solution for simulation-based inference among the presented

ML methods. The performances of the tested algorithms are problem-dependent. Since

there are a priori no clear-cut preferences, we recommend confronting data with several

techniques and selecting the best method based on suitable metrics rather than relying on

a pre-selected ML algorithm or other surrogate models.

We do not present an absolute ranking of the methods per se but rather raise caution about

solely relying on a specific method when facing a new research problem. We do, however, note

that the GP performed worse than the NN and MDN methods. So, one may need to be careful

when relying on Gaussian processes for emulation [59–61]. These results are worth highlight-

ing, as Gaussian processes are often the go-to approach. This being said, other implementa-

tions of Gaussian processes might be able to address the shortcomings of the implementation

used here [62, 63].

The notion that different methods may work better for different problems is consistent

with the findings by Lueckmann et al. [13], who study a range of benchmark problems to pro-

vide guidelines for sequential inference techniques. They do likewise not find a clear-cut pref-

erence among their sequential algorithms. In a nutshell, sequential techniques explore the

parameter space iteratively. Rather than relying on a static grid for training, they hand-pick

those points in the parameter space that closely match the specific observation whose proper-

ties we aim to infer. Sequential techniques can, as a result of this, greatly reduce the number of

required simulations by orders of magnitude. Implementations for both emulation and direct

inference exist [64, 65]. The catch is that new simulations are required for every new set of

observations. With 250 test cases for each ABM in our analysis, we can thus not reap the bene-

fits of these algorithms as a substitute for our inference machines. However, sequential
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techniques have proven very powerful in fields such as cosmology [40]. After all, there is only

one universe.

When comparing our results to those by Lueckmann et al., it is also worth noting that we

use an alternative application of neural networks for emulation and direct inference in this

paper: Rather than estimating the likelihood or posterior densities, we use a neural network

with dropout that provides an approximate Bayesian formulation and mimics a Gaussian pro-

cess [16, 17, 37, 38]. Like the methods discussed by Lueckmann et al., we find this alternative

approach very effective in producing good emulators and direct inference machines with a rel-

atively small number of simulations sampled from the parameter space in our examples.

Yet another distinct aspect of our study is that we keep the limitations of the ABM applica-

tions in mind: When dealing with real-world data, one must often resort to simplifying

assumptions regarding the true distribution of the data due to the nature of the experiments.

Not only does this dictate the type of data we can gather, but it also imposes constraints on the

summary statistics and the metrics we can draw on (cf. the methods section). Our paper out-

lines how to select different methods and performance measures based on the research prob-

lem using ABMs as a case study.

We do not claim that our list of emulators and direct inference machines is exhaustive.

Other viable approaches exist with scope for future developments. For example, recent work

on generating differential equations from stochastic ABMs [66] might be extended to stochas-

tic settings to generate new emulators. However, it is beyond the scope of the present paper to

explore all possible paths. Rather, we intend to present an illustrative selection. We also note

that not all ML methods can readily address the stochastic nature of the data. At least not in

their standard form. Acquiring error bars might require elaborate extensions (cf. the paper by

Meinshausen et al. [67] for a discussion on regression random forests [68]). Moreover, as men-

tioned in the introduction, one might draw on other surrogate models, such as mathematical

parameterizations or mechanistic models, from outside the realm of machine learning

algorithms.

For our ABMs, we find that the direct inference machines provide accurate and precise

results even with minimal training. Since computation time is one of the most prominent

obstacles when dealing with ABMs for real-world applications, this feature favours direct infer-

ence algorithms. Thus,

• we generally recommend to look for techniques that minimize the number of simulations

required such as direct inference machines.

This is not to say that direct inference machines will be the optimal choice for all ABMs.

The present success of the direct inference machines might reflect aspects such as the complex-

ity of the true posterior distributions or the adequacy of the distance measure and likelihood

used by the statistical inference technique, i.e. rejection ABC and MCMC. However, we note

that the presented direct inference machines (and the emulation-based ABC or MCMC) can

produce multi-modal posteriors.

As regards the statistical inference techniques, we find that the MCMC does not always

yield robust results. We attribute this to the stochastic nature of the ABMs. While the rejection

ABC consistently yields worse results than the direct inference machines in terms of the

employed metrics, it does not suffer from this shortcoming.

• Due to the stochastic nature of the agent-based models, some statistical inference tech-

niques do not yield robust constraints for emulation-based approaches.

The statistical algorithms explored in this paper, i.e. rejection ABC and MCMC, are not

exhaustive. Other viable alternatives exist, such as sequential Monte Carlo (SMC) [69]. The
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aforementioned sequential techniques discussed by Lueckmann et al. offer another alternative

when combined with the emulators. However, we also note that the stochastic nature and

intractable likelihood of the explored systems render some approaches impractical. For

instance, while Hamiltonian Monte Carlo (HMC) [70] is generally a demonstrably powerful

technique [71], it is not suited for our purposes as we cannot reliably compute derivatives in

the explored parameter space.

In connection to this, it is also worth pointing out that grid-based approaches, such as the

ones used here, do not scale very well to high-dimensional parameter spaces unless the relevant

summary statistics show limited variation across the space. Otherwise, a vast number of simu-

lations is required. However, grid-based approaches are commonly employed in the literature

because they are transparent and less convoluted than other methods. When dealing with

higher-dimensional spaces, we also note that one might consider introducing effective means

of dimension reduction [72], i.e. reducing the number of relevant parameters, or informing

the ML methods about rules that govern the system [73].

By addressing and comparing multiple widely-used algorithms, we hope that the present

paper assists researchers in selecting appropriate inference techniques for real-world applica-

tions. While we have focused on ABMs as one class of real-world models, we believe our results

to be relevant to other stochastic complex systems. State-of-the-art numerical models are often

computationally heavy, and we hope our guidelines and recommendations help modellers

overcome this stumbling block. We have made our code available on https://github.com/

ASoelvsten/ABM to facilitate this goal.

Supporting information

S1 Appendix. Supplementary methodology. The appendix includes a detailed discussion of

our brain tumour CA model and our epidemic SIRDS model as well as an application of our

ML methods to the Schlögl model.

(PDF)

S1 Fig. Snapshots of tumours created using the brain cancer CA model. The left panel

shows a tumour with Pdiv = 0.25, Pcd = 0.05, λC = 0.02 units of nutrients consumed per cell per

time step, and � = 0.2 at t = 280. Single GSC, GPP, and GDS are shown using purple, red and

yellow markers, respectively. Dead tumour cells or clusters containing only dead cells are

marked with black dots. Clusters with quiescent cells are blue. At this point, the tumour is

spherical and its growth is well-described by a Gompertz curve. The right panel shows a

tumour that differs only in that λC = 0.1 and in that the snapshot is taken at t = 1170. Due to

starvation, higher mortality causes a more irregular growth pattern. In both panels, the cells

live on an adaptive irregular lattice with up to 1,000,000 cell sites—we note that the simulations

used throughout the paper are run in a smaller box (cf. S2 Fig). By comparing the left and right

panels, we note that our emulators and direct inference machines are thus faced with tumours

that show very different topology.

(EPS)

S2 Fig. Example summary of the output of the brain cancer CA model for a single model

run. The left panel summarises the tumour growths in terms of the size of the different cell

subpopulations. For this run, Pdiv = 0.25, Pcd = 0.05, λC = 0.1 units of nutrients consumed per

cell per time step, and � = 0.2. We include the number of GSC, GPP, GDS, and dead tumour

cells, as well as the total number of alive tumour cells and the number of alive tumour cells in

the proliferating rim. The right panel shows a snapshot of the tumour at t = 100. The reaction-

diffusion equation that describes the nutrient flow is solved on a Cartesian grid. This grid is
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highlighted in cyan outside the tumour. The cells live on an adaptive irregular grid that can, at

most, harbour 40,000 cells. This adaptive grid is highlighted in cyan inside the tumour. In the

proliferating rim, the irregular grid has a high resolution. In the bulk tumour, several cells

share one lattice site. Single GSC (purple), GPP (red), and GDS (yellow) are shown using

markers whose colours match those in the left panel. Dead tumour cells or clusters containing

only dead cells are marked with black dots. Clusters with quiescent cells are blue. The presence

of a nutrient source in the lower-left corner and the imposed cell death upon starvation intro-

duce an asymmetric growth pattern.

(EPS)

S3 Fig. Example summary of the output of the epidemiological SIRDS ABM for a single

model run. The left panel summarizes the time evolution of the different subpopulations (S, I,
R, and D) with 10,000 individuals randomly distributed over 12,100 lattice sites. In this sce-

nario, Pd = 0.1, Pi = 0.2, (Nre) = 5.1 random encounters per infected individual per day, ti = 7.1

days, and tp = 5000 days. For illustrative purposes, the right panel shows a snapshot at t = 6.0

days for a simulation with the same parameter values but only 1000 agents randomly distrib-

uted over 1225 lattice sites. The colour coding matches that in the left panel: cyan dots mark

susceptible individuals, red dots mark infected individuals, recovered individuals are green,

and black dots mark dead agents.

(EPS)

S4 Fig. Comparison of the performance of the emulators across the parameter space for

variables for the Schlögl reaction network (counterpart to S7 and S8 Figs). The plot shows

the results for two emulators: a neural network (NN) and a Gaussian process (GP). The sub-

scripts ‘pred’ and ‘sim’ refer to the predictions by the emulators and to the ground truth

obtained from simulations, i.e. the synthetic data, respectively. Note that the comparison is

conducted on a logarithmic scale, i.e. we deal with log10(X), log10(A), log10(B), and log10(T).

From left to right, the panels contain the absolute error in the predicted median, the ratio

between the predicted width of the marginals in terms of the standard deviation and true

width, and the Wasserstein distance. Here, we only include the 141 test cases, for which σsim 6¼

0 for all species (the exclusion of the remaining 79 models is mostly due to B). Including all

models does not change the picture as regards the median or the Wasserstein distance. How-

ever, the GP performs even worse for σpred/σsim in the excluded cases.

(EPS)

S5 Fig. Performance for two direct inference machines (inf.) for the Schlögl model. The

first row contains the residuals between the mean of the marginal distributions and the true

parameter values (Θo) for each method. The second row shows the corresponding relative

error in the prediction. The third row summarises the standard deviation of the marginals,

while the fourth row shows the negative logarithm of the probability density (q) attributed to

the true parameter value. Note that we compare k1-k4 with the ground truth on a logarithmic

scale. We use a neural network (NN) and Gaussian processes (GP). For each approach, the

label specifies the size of the training set.

(EPS)

S6 Fig. Contour plot showing the variation in X and T across the parameter space spanned

by k1, k2, k3 and k4 based on the training data. While both X and T exhibit clear contours in

the planes spanned by k1 and k2, a noisier picture emerges in the planes panned by k3 and k4.

(EPS)
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S7 Fig. Comparison of the performance of the emulators as a function of the size of the

training set (resolution) for the agent-based cellular automata (CA) model of brain

tumours. The plot shows the results for three emulators: A neural network (NN), a mixture

density network (MDN), and a Gaussian process (GP). The subscripts ‘pred’ and ‘sim’ refer to

the predictions by the emulators and the ground truth obtained from simulations, i.e. the syn-

thetic data, respectively. From left to right, the columns contain the error in the predicted

mean (μpred), the relative absolute error in the predicted median (Mpred), the ratio between the

predicted width of the marginals in terms of the standard deviation (σpred) and true width, and

the Wasserstein distance (cf. the SectionMetrics). Rows A-E contain the number of glioblas-

toma stem-like cells (GSC), the number of cells in the propagating progeny (GPP), the number

of cells in the differentiating subpopulation (GDS), the number of dead tumour cells, and the

number of cells in the proliferating rim, respectively.

(EPS)

S8 Fig. Counterpart to S7 Fig for our epidemiological SIRDS model. Rows A-E contain the

total duration of the epidemic, the total death toll, the highest number of infected individuals

during the outbreak, the time at which the peak in infections occurs, and the highest number

of recovered agents during the outbreak, respectively.

(EPS)

S9 Fig. Performance across different inference schemes for our cancer CA model. The first

row contains the residuals between the mean of the marginal distributions and the true param-

eter values (Θo) for each method. The second row shows the corresponding relative error in

the prediction. The third row summarises the standard deviation of the marginals, while the

fourth row shows the negative logarithm of the probability density (q) attributed to the true

parameter value. The plot includes the results from the emulation-based approaches (emu.)

and our direct inference machines (inf.). We include two machine learning approaches: A neu-

ral network (NN) and Gaussian processes (GP). In connection with the emulators, we distin-

guish between results obtained using rejection ABC and MCMC. For each approach, the label

specifies the size of the training set: For the emulators, we consistently used 104 simulations.

(EPS)

S10 Fig. Counterpart to S9 Fig for our epidemiological SIRDS model.

(EPS)
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63. Järvenpää M, Gutmann M, Vehtari A, Marttinen P. Gaussian process modeling in approximate Bayes-

ian computation to estimate horizontal gene transfer in bacteria. The Annals of Applied Statistics. 2018;

12.

64. Gutmann MU, Corander J. Bayesian Optimization for Likelihood-Free Inference of Simulator-Based

Statistical Models. arXiv e-prints. 2015; p. arXiv:1501.03291.

65. Papamakarios G, Sterratt D, Murray I. Sequential Neural Likelihood: Fast Likelihood-free Inference with

Autoregressive Flows. In: AISTATS; 2019.

66. Nardini JT, Baker RE, Simpson MJ, Flores KB. Learning differential equation models from stochastic

agent-based model simulations. Journal of The Royal Society Interface. 2021; 18(176). https://doi.org/

10.1098/rsif.2020.0987 PMID: 33726540

67. Meinshausen N. Quantile Regression Forests. J Mach Learn Res. 2006; 7:983–999.

PLOS COMPUTATIONAL BIOLOGY Efficient Bayesian inference for stochastic agent-based models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009508 October 5, 2022 27 / 28

https://doi.org/10.1371/journal.pcbi.1002803
https://doi.org/10.1371/journal.pcbi.1002803
http://www.ncbi.nlm.nih.gov/pubmed/23341757
https://doi.org/10.1038/s41467-021-21918-6
http://www.ncbi.nlm.nih.gov/pubmed/33712573
https://doi.org/10.1038/s41467-021-22225-w
https://doi.org/10.1038/s41467-021-22225-w
http://www.ncbi.nlm.nih.gov/pubmed/33846316
https://doi.org/10.1007/s11538-017-0271-8
https://doi.org/10.1007/s11538-017-0271-8
http://www.ncbi.nlm.nih.gov/pubmed/28493055
https://doi.org/10.1111/j.1365-2966.2012.21818.x
https://doi.org/10.1111/j.1365-2966.2012.21818.x
https://doi.org/10.1051/0004-6361/201015451
https://doi.org/10.1051/0004-6361/201015451
https://doi.org/10.1086/670067
https://doi.org/10.1137/1115049
https://doi.org/10.1093/bioinformatics/btaa078
http://www.ncbi.nlm.nih.gov/pubmed/32022854
https://doi.org/10.1371/journal.pone.0263150
http://www.ncbi.nlm.nih.gov/pubmed/35143521
https://doi.org/10.1098/rsif.2020.0987
https://doi.org/10.1098/rsif.2020.0987
http://www.ncbi.nlm.nih.gov/pubmed/33726540
https://doi.org/10.1371/journal.pcbi.1009508


68. Breiman L. Random Forests. Machine Learning. 2001; 45(1):5–32. https://doi.org/10.1023/

A:1010933404324

69. Liu J, Chen R. Sequential Monte Carlo Methods for Dynamic Systems. Journal of the American Statisti-

cal Association. 1998; 93. https://doi.org/10.1080/01621459.1998.10473765

70. Betancourt M. A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv e-prints. 2017; p.

arXiv:1701.02434.

71. Porqueres N, Heavens A, Mortlock D, Lavaux G. Bayesian forward modelling of cosmic shear data.

Monthly Notices of the Royal Astronomical Society. 2021; 502(2):3035–3044. https://doi.org/10.1093/

mnras/stab204

72. Turner BM, Van Zandt T. Hierarchical Approximate Bayesian Computation. Psychometrika. 2014; 79

(2):185–209. https://doi.org/10.1007/s11336-013-9381-x PMID: 24297436

73. Blechschmidt J, Ernst OG. Three Ways to Solve Partial Differential Equations with Neural Networks—A

Review. arXiv e-prints. 2021; p. arXiv:2102.11802.

PLOS COMPUTATIONAL BIOLOGY Efficient Bayesian inference for stochastic agent-based models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009508 October 5, 2022 28 / 28

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1080/01621459.1998.10473765
https://doi.org/10.1093/mnras/stab204
https://doi.org/10.1093/mnras/stab204
https://doi.org/10.1007/s11336-013-9381-x
http://www.ncbi.nlm.nih.gov/pubmed/24297436
https://doi.org/10.1371/journal.pcbi.1009508

