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Abstract

Here, we review the clinical and translational implications of the caveolin gene family for 

understanding the pathogenesis of human diseases, including breast and prostate cancers, 

pulmonary hypertension, cardiomyopathy, diabetes, and muscular dystrophy. Detailed phenotypic 

analysis of caveolin knock-out mice has served to highlight the crucial role of a caveolin-

deficiency in the pathogenesis of many human disease processes. Mutations in the human caveolin 

genes are associated with a number of established genetic disorders (such as breast cancer, 

lipodystrophy, muscular dystrophy, and cardiomyopathy), making the caveolins important and 

novel targets for drug development. The implementation of new strategies for caveolin-

replacement therapy—including caveolin-mimetic peptides—is ongoing.
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Overview

Caveolins are the signature proteins of specialized invaginations of the plasma membrane, 

named caveolae, that function to regulate signal transduction within the cell. Three members 

of the caveolin family protein have been identified, caveolin-1, -2 and -3. Caveolin-1 and -2 

are co-expressed in a wide range of tissues, whereas caveolin-3 is muscle specific. The 
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generation of caveolin null mice has demonstrated clear roles for the caveolin proteins in 

mammalian physiology. Caveolin-1 null mice present several pathological phenotypes, 

suggesting that caveolin-1 has pleiotropic functions in various organs. Caveolin-1 null mice 

show increased susceptibility towards the development of epidermal and mammary tumors, 

but exhibit decreased tumor formation in the prostate, demonstrating that caveolin-1 behaves 

as a tumor suppressor or a tumor promoter depending on the cellular context. Moreover, 

several other phenotypes of caveolin-1 null mice indicate that caveolin-1 plays an important 

role in the regulation of insulin signaling, and in pulmonary and cardiac function.

Caveolin-2 null mice reveal unique functions of caveolin-2 in the lung and in the skeletal 

muscle. Indeed, caveolin-2 null mice display lung defects with increased alveolar septa and 

fibrosis, and exhibit a peculiar skeletal muscle phenotype, with tubular aggregates formation 

and mitochondrial proliferation. Caveolin-3 null mice exhibit pathological changes in the 

skeletal muscle and the heart, and show an unexpected metabolic phenotype, with increased 

adiposity and insulin resistance.

Importantly, data from human samples confirm that caveolins are involved in human 

pathology. Mutations in the caveolin-1 gene are found in breast cancer as well as in oral 

squamous cell carcinomas. Caveolin-1 mutations are associated exclusively with estrogen 

receptor positive breast tumors, suggesting that caveolin-1 normally regulates estrogen 

receptor expression and signaling. Mutations in the caveolin-3 gene are detected in a wide 

spectrum of skeletal muscle disorders, including limb girdle muscular dystrophy, distal 

myopathy, idiopathic hyperCKemia, rippling muscle disease, as well as in cardiac 

pathologies such as familial hypertrophic cardiomyopathy, Long-QT Congenital Syndrome, 

and sudden infant death syndrome.

Thus, modulation of caveolin expression may represent a novel therapeutic approach for the 

cure of a number of pathological conditions. Preliminary studies have shown that a 

caveolin-1 mimetic peptide may be successfully used for the treatment of cancer and of 

pulmonary hypertension. More studies will be required to evaluate the possibility of using 

caveolin-1 mimetic peptides in other pathological contexts.

Caveolae and the Caveolin Gene Family

Caveolae are 50-100-nm omega-shaped invaginations of the plasma membrane. Due to their 

high content of cholesterol, glycosphingolipids and sphingomyelin, caveolae are considered 

a specialized subset of detergent-insoluble plasma membrane microdomains, named lipid 

rafts (1). The signature proteins of caveolae are a family of proteins called caveolins (2). 

Structurally, the formation of caveolae requires the capability of caveolin to bind cholesterol 

and to oligomerize (Figure 1) (3-5). Three members of the caveolin family have been 

discovered so far. Caveolin-1 (Cav-1) is widely expressed and is most abundant in 

adipocytes, fibroblasts, endothelial cells as well as epithelial cells such as mammary 

epithelial cells and type I pneumocytes (6). Cav-1 is essential for caveolae formation, and 

Cav-1 expression levels correlate with caveolae numbers (7, 8). Caveolin-2 (Cav-2) is 

expressed in the same cell types as Cav-1 (9, 10). Caveolin-3 (Cav-3) is the muscle specific 

family member and is mainly found in heart, skeletal muscle, as well as smooth muscle cells 
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(11). Caveolins are more than just caveolae-associated proteins. They help the formation of 

a microenvironment to compartmentalize several signaling molecules, thereby facilitating 

the cross-talk between different signaling pathways (12). The caveolin-scaffolding domain 

(CSD) serves as a docking site for the binding and tonic inhibition of several classes of 

molecules belonging to pro-proliferative and pro-survival pathways. Thus, deregulation of 

caveolin expression and function is involved in many pathological conditions. The 

physiological implications of caveolins became evident with the generation of null (−/−) 

mice for each caveolin.

Cav-1 in Tumor Biology: Is Cav-1 a Tumor Suppressor, an Oncongene or 

Both?

Several lines of evidences indicate that Cav-1 may act as a tumor suppressor or a tumor 

promoter depending on the organ. Cav-1 expression is downregulated in NIH-3T3 cells 

transformed with various oncogenes such as H-Ras (G12V), Bcr-Abl and v-Abl (13). In soft 

agar, the anchorage-independent growth of transformed cells can be reversed by Cav-1 re-

expression (14, 15). In NIH-3T3 cells, antisense-mediated down-regulation of endogenous 

Cav-1 induces anchorage-independent growth, promotes tumor formation in nude mice with 

hyperactivation of the MAP kinase pathway (16). Importantly, loss of Cav-1 in mice was 

shown to promote cellular growth in several contexts, including the mammary gland and the 

skin. For example, although the ablation of Cav-1 is not sufficient to induce spontaneous 

tumor formation, Cav-1 null mammary glands display cellular hyperplasia, and accelerated 

mammary gland development during pregnancy (17, 18). In the MMTV-PyMT (mouse 

mammary tumor virus-polyoma middle T antigen) mouse model background, loss of Cav-1 

accelerates dysplastic lesion formation, promotes premature development of mammary 

tumors, and increases metastatic potential (19, 20). Additionally, the combined loss of 

INK4a, a tumor suppressor, and Cav-1 lead to severe mammary hyperplasia with increased 

side branching and fibrosis (21). In the skin, Cav-1 (−/−) mice demonstrate hypersensitivity 

to carcinogen-induced epidermal tumors. Following 16 weeks of treatment with the 

carcinogen DMBA, Cav-1 (−/−) null mice show very significant increases in tumor 

incidence, tumor area and tumor number per mouse when compared to wild type 

counterparts (22). Mechanistically, in the mammary gland and in the skin, Cav-1 is thought 

to inhibit proliferation and cellular growth. Indeed, in the context of Cav-1 genetic ablation, 

carcinogen-induced epidermal tumors and oncogene-induced mammary tumors display 

hyperactivation of the mitogenic p42/44 MAP kinase pathway, with increased levels of 

Cyclin D1 (20, 22).

However, Cav-1 does not behave as a tumor suppressor in all cellular contexts. A growing 

body of evidence derived from cellular, mouse, and human studies clearly indicates that 

Cav-1 acts as a tumor promoter in other organs, such as the prostate. In the TRAMP 

(TRansgenic Adenocarcinoma of Mouse Prostate) mouse model of prostate cancer, Cav-1 

expression is increased when compared to the normal prostate epithelium (23). Genetic 

ablation of Cav-1 in TRAMP mice decreases incidence of prostate tumors at 28 weeks of 

age and reduces metastasis to regional lymph node and to distant organs, such as the lungs 

(23). In patients with prostate cancer, Cav-1 expression is increased in 13% of well-

Mercier et al. Page 3

Lab Invest. Author manuscript; available in PMC 2009 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differentiated tumors, 24% of moderately differentiated tumors and 39% of poorly 

differentiated tumors (24). These results suggest that Cav-1 over-expression in prostate 

cancer cells correlates with tumor progression (24). Other studies have shown that high 

levels of Cav-1 are associated with high Gleason's score, reduced survival and poor 

prognosis in prostate cancer (25, 26). Finally, a higher incidence of Cav-1 positivity is 

observed in metastatic lesions and metastasis-derived cell lines, as compared to primary 

tumors and primary tumor-derived cell lines, respectively (27).

In the mammary gland and skin, Cav-1 negatively regulates proliferation. However, the anti-

apoptotic properties of Cav-1 seem to contribute to the development of prostate cancer. 

Prostate tumors derived from TRAMP/Cav-1 null mice exhibit increased apoptosis as 

assessed by TUNEL staining, with increased levels of prostate apoptosis response factor-4 

and PTEN (23). However, the role of Cav-1 in apoptosis in different cell types still remains 

largely unexplored and highly controversial. In prostate cancer cells, it is believed that 

Cav-1 can shift from its conventional membrane-bound position to a secreted form outside 

the cell. Indeed, Cav-1 has been detected in the serum of patients with prostate cancer (28). 

It was also found that the Cav-1 secreted form is bioactive since it could promote cell 

survival (28). The phosphorylation of Cav-1 on serine 80 seems to be involved in the 

conversion of Cav-1 from an intracellular protein to a secreted form (29).

Table 1 summarizes the main phenotypes of Cav-1 (−/−) mice and the implications for 

different human pathologies.

Cav-1 and Adult Stem Cells

Studies have shown that Cav-1 may normally regulate the proper differentiation of stem/

progenitor cell populations in organs, such as the skin, the mammary gland, and the 

intestine, that are physiologically subjected to constant self-renewal (Figure 2). For example, 

Cav-1 deficiency leads to an amplification of an adult mammary stem cell population, both 

in vivo and in vitro. The expression of stem cell markers, such as Sca-1 and Keratin 6, is 

greatly increased in the hyperplastic mammary ducts of Cav-1 deficient mice, as well as in 

3D cultures of Cav-1 (−/−) primary mammary epithelial cells. Such an amplification of 

progenitor cells is functionally associated with the abnormal presence of myoepithelial cells 

in the hyperplastic lesions of Cav-1 deficient mammary glands (30).

In addition, genetic ablation of Cav-1 induces an abnormal amplification of small intestine 

crypt stem cells, resulting in increased susceptibility to gamma-radiation. Cav-1 null small 

intestine crypt stem cells display higher proliferation rates, as compared to wild-type 

controls. Because of its fast renewing nature, the small intestine constitutes one of the main 

targets of radiation. After gamma-radiation exposure, Cav-1 deficient mice display a 

decreased survival rate, as compared to wild-type mice (31). Mechanistically, Wnt/beta-

catenin signaling, which normally controls stem cell self-renewal, is up-regulated in Cav-1 

null mammary and crypt stem cells. The longevity and slow-dividing properties of stem 

cells facilitates the accumulation of genetic alterations, and renders progenitor cells the 

likely precursors of malignant derivatives. As such, loss of Cav-1 may induce the 
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accumulation of stem cells, and that this event may be an initiating factor during 

tumorigenesis.

Cav-1: Insulin Signaling, Pulmonary and Cardiac Function, & Ischemia

The analysis of Cav-1 (−/−) mice has highlighted how loss of Cav-1 function may lead to a 

number of important pathological conditions. In addition to its involvement in breast, skin 

and prostate cancer, Cav-1 also plays important roles in diabetes, lung and heart disease, and 

ischemia (Table 1).

Cav-1, Insulin Signaling and Diabetes

Cav-1 (−/−) mice show resistance to diet-induced obesity, and display adipose tissue atrophy 

(32). Metabolically, plasma levels of insulin and glucose are normal in Cav-1 null mice (32). 

However, an insulin tolerance test revealed abnormally low glucose uptake in young Cav-1 

(−/−) mice, suggestive of impaired insulin signaling (33). This defect in glucose uptake is 

due to a severe deficiency of insulin receptor protein expression in Cav-1 (−/−) adipose 

tissue (33). In direct support of these findings, Cav-1 null adipose tissue displays decreased 

insulin signaling, as assessed by phosphorylation of insulin receptor and its downstream 

targets (33). Although loss of Cav-1 is not sufficient to induce diabetes, it may function as a 

predisposing factor for the development of insulin resistance in humans.

Cav-1 and Pulmonary Function

Cav-1 is highly expressed in the lung, and is found in several pulmonary cell types, 

including endothelial cells and pneumocytes. Histological analysis of Cav-1 null mice 

reveals a deeply modified lung morphology with reduced alveolar spaces, increased wall 

thickening, fibrosis, and hypercellularity (34, 35). In addition, Cav-1 null mice develop 

pulmonary hypertension (36, 37). Reduced Cav-1 levels in the lung have been documented 

in several animal models of pulmonary hypertension and in patients with severe pulmonary 

hypertension. These findings may have important implications for understanding human 

respiratory pathologies, such as pulmonary hypertension, fibrosis, as well as acute 

respiratory syndrome.

Cav-1 and Cardiovascular Function

Cav-1 is implicated in several cardiovascular pathologies, including cardiac hypertrophy, 

neointima formation and atherosclerosis. Cardiac hypertrophy is a critical pathology leading 

to heart failure. Cav-1 (−/−) mice show progressive concentric left ventricular hypertrophy, 

as well as right ventricular dilation (36, 38). Cav-1 expression is restricted to the supporting 

cells of the heart, such as fibroblasts and endothelial cells. Excessive activation of the Ras-

p42/44 MAP kinase cascade in Cav-1 (−/−) cardiac fibroblasts is considered one of the 

upstream key factors promoting hypertrophy and fibrosis in the adjacent myocytes (39). 

Notably, Cav-1 (−/−) cardiac fibroblasts exhibit p42/44 MAP kinase hyperactivation when 

compared to wild type fibroblasts (38), suggesting that the hypertrophy of Cav-1 null hearts 

occurs via a paracrine mechanism.
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Neointimal hyperplasia is the principal cause for clinical failures in angioplasty and is a 

critical component of re-stenosis. During the development of neointimal hyperplasia, the 

arterial wall thickens and the lumen narrows as a consequence of smooth muscle cells 

(SMC) accumulation and proliferation in the intima (40, 41). Genetic ablation of Cav-1 in 

mice facilitates SMC proliferation and neointima formation. Four weeks after ligation, 

Cav-1 (−/−) carotid arteries showed significantly more neointimal hyperplasia with subtotal 

luminal occlusion, as compared to wild-type mice. Mechanistically, the development of 

neointimal hyperplasia in Cav-1 (−/−) mice is mediated by elevated levels of phospho-

p42/44 MAP kinase and cyclin D1 (42).

Atherosclerosis is characterized by the accumulation of modified lipoproteins in the 

subendothelial space followed by the recruitment and proliferation of monocytes/

macrophages and SMC. Genetic ablation of Cav-1 in mice confers protection against 

atherosclerosis. In the apolipoprotein E-deficient (ApoE−/−) atherogenic mouse model 

background, loss of Cav-1 prevents the development of aortic atheromas, with a ~70% 

reduction in atherosclerotic lesion area. Mechanistically, loss of Cav-1 is associated with the 

down-regulation of proatherogenic molecules, namely CD36 and vascular cell adhesion 

molecule-1 (VCAM-1) (43).

Thus, Cav-1 (−/−) mice are more sensitive to the development of neointimal hyperplasia 

(luminal narrowing), but are strongly resistant to the development of atheromas, clearly 

demonstrating the different patho-physiology of sub-endothelial versus mural narrowing of 

the arterial lumina.

Cav-1 and Ischemia

Recent studies have directly addressed the functional role of Cav-1 in ischemic injury. First, 

Cav-1 ablation in mice was shown to promote ischemic injury in a model of hindlimb 

ischemia (44). Similarly, in a model of cerebral artery occlusion, Cav-1 null mice display a 

significant increase in the volume of cerebral infarcts, as compared with wild-type mice. 

Mechanistically, Cav-1 null ischemic brains exhibited decreased proliferation of endothelial 

cells and an elevated apoptotic index, as compared with wild-type counterparts (45). 

Ischemic pre-conditioning has previously been shown to increase the cardiac 

phosphorylation of Cav-1 and SRC in mice subjected to myocardial ischemia-reperfusion. 

These interesting observations suggest that phosphorylation of Cav-1 and SRC might play a 

cardio-protective role in ischemic injuries. Hence, genetic ablation of the Cav-1 gene in 

mice was shown to attenuate the protective effect of myocardial ischemic pre-conditioning 

(46).

Caveolin-2: Pulmonary and Skeletal Muscle Functions

Cav-2 requires the presence of Cav-1 for stabilization and membrane targeting, such that in 

the absence of Cav-1, Cav-2 is retained in the endoplasmic reticulum/Golgi complex and 

undergoes degradation through a proteaosomal pathway (47, 48). As a consequence, Cav-2 

expression is nearly abrogated in Cav-1 null mice (34, 35). Thus, Cav-2 was considered an 

“accessory” protein that just functions in conjunction with Cav-1. However, the generation 

and analysis of Cav-2 null mice revealed unique roles for Cav-2 in the physiology of the 
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lung and of the skeletal muscle. Cav-2 null mice show normal caveolae formation and nearly 

normal levels of Cav-1 expression (49). Cav-2 null lungs show thickened alveolar septa with 

increased number of endothelial cells. Consequently, Cav-2 null mice show exercise 

intolerance, suggestive of an impaired gas exchange that is often associated with human 

pulmonary diseases (49). Interestingly, the Cav-2 null lung phenotypes are identical to the 

ones observed in Cav-1 null mice (34, 35). Because Cav-2 expression is severely reduced in 

Cav-1 null mice, a Cav-2 deficiency is considered to be the root cause of this lung disorder.

Cav-2 null mice also exhibit an unexpected skeletal muscle phenotype. Cav-2 null skeletal 

muscles show peculiar abnormalities, such as tubular aggregate formation, and 

mitochondrial proliferation/aggregation. In addition, Cav-2 deficiency induces increased 

numbers of satellite cells, which are skeletal muscle specific stem/precursor cells (50). For a 

summary of Cav-2 null mice phenotypes and their implications in human pathologies, please 

refer to Table 2.

Caveolin-3: Skeletal Muscle Disorders, Heart Disease and Diabetes

Caveolin-3 is the muscle specific family member, and is necessary for caveolae formation in 

muscle tissues. Indeed, electron microscopy revealed a lack of caveolae in all striated and 

cardiac muscle cells of Cav-3 null mice (51, 52). Cav-3 null skeletal muscle shows signs of 

mild myopathic changes, such as mononuclear cell infiltration, variable fibers size, and 

presence of necrosis. These phenotypes are similar to the ones found in a human disease, 

termed limb-girdle muscular dystrophy (LGMD-1C), which is due to mutations in the Cav-3 

gene.

A Cav-3 deficiency also affects cardiac function, with the development of cardiac 

hypertrophy, dilatation, and reduced fractional shortening at 4 months of age (53). Cav-3 

null cardiac myocytes show hypertrophy, with cellular infiltrates and progressive interstitial 

and perivascular fibrosis. Hyperactivation of the Ras-p42/44-MAP kinase pathway is 

associated with these cardiac phenotypes (53).

Interestingly, transgenic over-expression of either wild-type or dominant-negative mutant 

Cav-3 was shown to induce cardiomyopathy, with cardiac tissue degeneration, and 

reductions in cardiac functions (54, 55). These results suggest that maintenance of normal 

Cav-3 expression levels is essential for proper cardiac function.

Surprisingly, Cav-3 null mice also show an interesting metabolic phenotype. Cav-3 null 

mice demonstrate increased adiposity and develop insulin resistance, as shown by decreased 

glucose uptake and reduced glucose metabolic flux in their skeletal muscles. During fasting, 

Cav-3 null skeletal muscles exhibit normal insulin receptor protein levels. However, insulin 

stimulation induces a severe reduction in insulin receptor levels in Cav-3 null mice, 

suggesting that Cav-3 may function to stabilize insulin receptor. These results show that 

Cav-3 contributes to the regulation of whole body glucose metabolism in vivo and indicates 

that Cav-3 may play a role in the development of insulin resistance (56, 57).

For a summary of Cav-3 null mouse phenotypes and their implications in human 

pathologies, refer to Table 2.
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Caveolin Mutations in Human Disease

Over the last few years, mutations in the caveolin genes have been detected in several types 

of human diseases, clearly indicating the importance of these proteins for normal human 

physiology, and demonstrating that dys-regulation of caveolin function is a critical factor for 

the development of human disease.

Cav-3 mutations

The first mutations in a caveolin gene were identified a decade ago, when mutations in the 

Cav-3 gene were found in patients with limb-girdle muscular dystrophy (LGMD-1C) (58). 

Since then, several other mutations have been found in patients with skeletal muscle 

disorders. The spectrum of disease phenotypes associated with Cav-3 mutations is quite 

variable, ranging from LGMD-1C, to idiopathic hyperckemia, rippling muscle disease, and 

distal myopathy. For a comprehensive review of Cav-3 and muscle disorders, please consult 

the GeneReview database available at http://www.genetests.org (search CAV3). Most of the 

Cav-3 mutations are heterozygous and cause a dramatic decrease in Cav-3 expression in 

skeletal muscle, thus acting in a dominant-negative fashion (59). Finally, mutations in the 

Cav-3 gene have been found in familial hypertrophic cardiomyopathy (60), in the 

arrhythmogenic syndrome Long-QT Congenital Syndrome (LQTS) (61), as well as in 

sudden infant death syndrome (SIDS) (62).

Cav-1 mutations

Somatic mutations in the Cav-1 gene are involved in human cancer. We and others have 

shown that a proline to leucine substitution at position 132 (P132L) in the Cav-1 gene is 

found in 16-20% of breast cancers (63, 64). This heterozygous mutation acts in a dominant-

negative fashion and induces the intracellular retention of the normal Cav-1 protein at the 

level of the ER/Golgi complex (17). Other mutations were also found in human breast 

cancer samples, such as W128stop, Y118H, S136R, I141T, Y148H and Y148S (64). Most 

interestingly, Cav-1 mutations only correlate with estrogen receptor alpha (ER-alpha) 

positive breast tumors, and are found in up to 35% ER-alpha positive tumors (64). These 

results suggest that Cav-1 may regulate ER-alpha expression. In fact, we have shown that 

ER-alpha is dramatically upregulated in the luminal mammary epithelial cells of Cav-1 

knockout mice, as compared to their wild type counterparts (64). Because ER-alpha 

expression increases as mammary cell transformation progresses, these results suggest that 

Cav-1 mutations may be an initiating event in the development of human breast cancers. 

Thus, screening of patients biopsies for Cav-1 mutations could become a routine analysis as 

a preventive measure to detect estrogen-dependent breast cancer at an early stage. These 

findings provide new insights into the regulation of ER-alpha in breast cancer. Finally, 

mutations and abnormal expression of Cav-1 have been also found in human oral squamous 

cell carcinomas (65).

Recently, a homozygous mutation in the Cav-1 gene has been detected in Berardinelli-Seip 

Congenital Lipodystrophy, a rare genetic disorder characterized by near absence of adipose 

tissue, severe dyslipidemia, and insulin resistance. This mutation induces a complete loss of 

Cav-1 expression in skin fibroblasts (66). These findings provide human genetic evidence to 
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directly support a critical role for Cav-1 in regulation of adipocyte function and insulin 

signaling. Additional heterozygous Cav-1 mutations have now been observed in patients 

with atypical partial lipodystrophy and hypertriglyceridemia (67). See Garg et al, 2008, for a 

recent review on this subject (68).

Caveolin Mimetic Peptides: A Novel Therapeutic Strategy for Human 

Pathologies

Cav-1 functions as a powerful tumor suppressor in certain types of cancer and its re-

expression in tumor cells could potentially become a new therapeutic avenue for the 

treatment of human cancers. Tumor progression in mice can be blocked by the 

administration of a cell-permeable peptide, containing the homeodomain of the antennapedia 

(penetratrin) coupled to the Cav-1 scaffolding domain (CSD) (69). After subcutaneous 

implantation of Lewis lung carcinoma cells (LLC), the injection of the CSD peptide reduced 

tumor size and tumor vascular permeability, and increased tumor necrosis, suggesting that 

Cav-1 prevents tumorigenesis by affecting tumor blood supply (69). Similar experiments in 

WT and Cav-1 (−/−) mice further demonstrated the role of Cav-1 in vascular permeability 

and tumor development. In Cav-1 KO mice, LLC-derived tumors showed significantly 

higher growth rates, with increased angiogenesis and decreased apoptosis than tumors 

implanted in WT hosts. Most interestingly, administration of CSD peptide was able to 

reverse tumor hyperpermeability as well as to attenuate the increased tumor growth (70).

Therapeutic administration of the Cav-1 scaffolding domain peptide has been employed in 

other experimental models. Indeed, administration of CSD peptide has been successfully 

used to prevent the development of pulmonary hypertension (PH), right ventricular 

hypertrophy, and pulmonary artery medial hypertrophy in a monocrotaline-induced PH rat 

model (71). Administration of CSD peptide to monocrotaline-treated rats significantly 

prevented PH and normalized pulmonary artery medial hypertrophy and right ventricular 

hypertrophy (71). Finally, in an experimental mouse model of inflammation, the 

administration of the CSD peptide has also been shown to decrease inflammation, reduce 

edema formation and vascular permeability (72). Thus, the administration of Cav-1 peptide 

mimetics might become a novel alternative treatment for cancer as well as pulmonary 

hypertension patients.

Future Directions: Role of Caveolins in the Cancer Stroma

Normal epithelial cells are often surrounded by fibroblasts which serve mainly as support to 

protect the tissue from damage. Fibroblasts can proliferate and secrete extracellular matrix 

proteins as a response to injury. Once the wound healing process is complete, they undergo 

apoptosis and the ECM production lessens. Several lines of evidence now suggest that 

stromal fibroblasts become “activated” and play a very dynamic role in tumor initiation and 

progression. These cancer-associated fibroblasts (CAFs) express smooth muscle actin, have 

contractile functions and secrete ECM proteins. Unlike normal fibroblasts involved in 

wound repair, these CAFs do not undergo spontaneous apoptosis, rather they remain 

activated and hyper-proliferate. Studies suggest the recruitment of CAFs is not only a 

secondary event to tumor initiation, but is very dynamic as CAFs can increase the growth of 
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adjacent epithelial cells through paracrine mechanisms. For a complete review on stromal 

fibroblasts and cancer please see Kalluri et al (73). However, very little is known about the 

mechanism(s) controlling the proliferation of CAFs and their clinical implications in cancer 

progression and outcome. Recently, it was shown that Cav-1 protein expresssion is 

decreased in primary cultures of CAFs isolated from patients with invasive breast cancer and 

that loss of Cav-1 function might play a role in their hyper-proliferation (74). Accordingly, 

treatment of these cells with a cell-permeable Cav-1 mimetic peptide decreased the 

phosphorylation of RB (retinoblastoma protein) as well as PCNA (Proliferating Cell Nuclear 

Antigen) and MCM7 (MiniChromosome Maintenance) proteins levels, two pRB target 

proteins. Therefore, caveolin proteins might play an important role in cancer through their 

novel “tumor suppressor” role in the neoplastic stroma (Figure 3).

In accordance with this idea, we have recently shown that loss of stromal Cav-1 is a novel 

breast cancer biomarker that predicts early disease recurrence, metastasis, survival, and 

tamoxifen-resistance (75). For example, lymph-node-positive breast cancer patients showed 

an ~11.5-fold reduction in 5-year progression-free survival in the absence of stromal Cav-1 

(80% versus 7% survival) (75). Mechanistically, this appears to be related to the idea that 

the loss of Cav-1 expression in mammary fibroblasts leads to pRB-inactivation, increased 

growth factor secretion, and stromal angiogenesis (76, 77) (Figure 3). As such, breast cancer 

patients lacking stromal Cav-1 might greatly benefit from anti-angiogenic therapy, in 

addition to standard treatment regimens.

Thus, future studies are warranted to explore this novel role for caveolins in the stromal 

pathogenesis of human cancers.
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Figure 1. Caveolin Domain Organization, Membrane Topology, Oligomerization, and Caveolar 
Assembly
This diagram summarizes the domain organization of a caveolin-1 monomer, its self-

oligomerization into caveolar assembly units, and the intergration of these assembly units 

into a caveolar membrane domain. The cytoplasmic surface of the caveolar coat provides an 

“integrated scaffold” onto which various classes of signaling molecules can assemble at the 

plasma membrane, such as G-proteins, Src-family tyrosine kinases, endothelial nitric oxide 

synthase (eNOS), and components of the Ras-p42/44 MAP kinase cascade. Caveolae 

organelles also function as docking sites for many different classes of cell surface receptors, 

including G-protein coupled receptors, cytokine receptors, and receptor-tyrosine kinases.
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Figure 2. Loss of Cav-1 Increases the Adult Epithelial Stem Cell Compartment
A) Skin. After DMBA-treatment, Cav-1 (−/−) mice show an expansion of the basal 

keratinocyte cell layer in the skin, as marked by immuno-staining with anti-keratin-14 IgG.

B) Mammary Gland. Cav-1 (−/−) mice show an increase in the size of terminal end buds 

(TEBs), the site of mammary stem/progenitor cells during adult mammary gland 

development. Ducts and TEBs are stained red with Carmine dye.

C) GI tract. The intesinal crypt stem cells from Cav-1 (−/−) mice show increases in both 

proliferation (BrdU incorporation) and expression of β-catenin, a stem cell marker.
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Reproduced with permission from Capozza et al, 2003; Williams et al, 2006; and Li et al, 

2005 (22, 31, 78).
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Figure 3. Loss of Stromal Cav-1 Expression Predicts Poor Clinical Outcome in Human Breast 
Cancer Patients
Mechanistically, loss of stromal Cav-1 expression in the tumor micro-environment leads to 

RB-inactivation, increased myofibroblast proliferation, and the secretion of angiogenic 

growth factors. This, in turn, greatly facilitates tumor recurrence and metastasis, leading to 

poor clinical outcome.
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Table 1

Phenotypes of Cav-1 null mice and their implications in human pathologies

Gene Expression Knockout mouse phenotypes Relevance to human 
pathologies

Cav-1

Epithelial cells
Fibroblasts
Endothelial cells
Adipocytes
Type I pneumocytes

Mammary epithelial cell hyperplasia and premature lactation during 
pregnancy

Breast Cancer

Enhanced tumor formation and increased metastasis in a mammary tumor 
model background (MMTV-PyMT)

Increased mammary epithelial hyperplasia with fibrosis in INK4a (−/−) 
background

Increased mammary stem cell population

Increased DMBA-induced epidermal tumors Skin Cancer

Decreased incidence of prostate tumors and metastasis in a prostate cancer 
model background (TRAMP)

Prostate Cancer

Reduced pulmonary alveolar space, increased wall thickening, 
hypercellularity, and fibrosis

Pulmonary Disease

Concentric left ventricular hypertrophy Right ventricular dilation Cardiovascular Diseases

Increased neointima formation

Decreased atheromatous lesions in Western type diet fed ApoE (−/−)/
Cav-1(−/−)

Resistance to diet-induced obesity Insulin Resistance & Diabetes

Adipose tissue atrophy

Impaired insulin signaling

Increased ischemic injury Cerebral Ischemia
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Table 2

Phenotypes of Cav-2 and Cav-3 knockout mice and their implications in human pathologies

Genes Expression Knockout mouse phenotypes Relevance to human pathologies

Cav-2

Same as Cav-1 Reduced pulmonary alveolar space and increased wall 
thickening with hypercellularity and fibrosis

Pulmonary Disease

Epithelial cells
Fibroblasts
Endothelial cells
Adipocytes
Type I pneumocytes

Tubular aggregate formation, mitochondrial proliferation, 
increased numbers of satellite cells

Tubular Aggregates

Cav-3 Cardiac and skeletal muscle

Skeletal muscle myopathic changes, mononuclear cell 
infiltration, variable fibers size and presence of necrosis

Limb-Girdle Muscular Dystrophy

Cardiac hypertrophy, dilatation, reduced fractional shortening Cardiomyopathy

Increased adiposity, Insulin resistance Diabetes
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