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Abstract
Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein

would be a very useful technique to generate multiple chemical handles for bioconjugation

and multivalent binding sites for the enhanced interaction. Previously combination of a

mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA con-

taining the AAA anticodon was used to incorporate a noncanonical amino acid into multiple

UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selec-

tive codon recognition of the AAA anticodon, there was significant misincorporation of a

noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity,

we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Com-

bined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the

yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine,

into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to

other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine,

these results successfully demonstrated that the concept of forced ambiguity of the genetic

code can be achieved for the Leu codons, available for multiple-site-specific incorporation.

Introduction
Site-specific incorporation of a noncanonical amino acid into a protein has been widely used to
provide unique physical, chemical, or biological properties to a protein [1–10]. In most cases, a
noncanonical amino acid was introduced into a single site of a target protein. An amber codon
was most commonly used as an incorporation site, though other stop codons and four-base
codons were also used [3, 11–14]. In order to expand the utility of site-specific incorporation of
a noncanonical amino acid, researchers attempted to achieve site-specific incorporation at
multiple sites [15–17]. A pre-requisite to achieve noncanonical amino acid incorporation at
multiple sites is to develop a new codon that can be reassigned to a noncanonical amino acid
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(s). Combinations of stop codons and four-base codons have been successfully used to encode
two different noncanonical amino acids, resulting in a protein with two different noncanonical
amino acids at two programmed sites [15, 18]. In this suppression strategy, incorporation of
each noncanonical amino acid requires the expression of a corresponding heterologous orthog-
onal pair in host cells. Due to the limited number of orthogonal pairs available, it is challenging
to incorporate noncanonical amino acids into more than two sites with the suppression
strategy.

In order to circumvent this limitation, several groups achieved site-specific incorporation of
a single noncanonical amino acid into multiple sites [19, 20]. We can easily imagine many situ-
ations where site-specific incorporation of a single amino acid into multiple sites is required.
For instance, conjugation of multiple poly(ethylene glycol) molecules to reactive noncanonical
amino acids of a therapeutic protein is expected to be more effective in enhancing the serum
half-life than single poly(ethylene glycol) molecule conjugation. Recently, incorporation of p-
azidophenylalanine into several sites was achieved using engineered E. coli cells of which all
amber codons in genomic DNA were mutated into other stop codons and the release factor 1
gene was removed from genomic DNA to enhance amber suppression efficiency [19]. In vivo
evolution of aaRS in the E. coli genome further enhanced the incorporation efficiency of Phe
analogs into multiple sites of a target protein [21]. Alternatively, the degeneracy of the genetic
code was explored for multiple-site-specific noncanonical amino acid incorporation [20]. In
nature, several canonical amino acids, such as valine, leucine, isoleucine, methionine, phenylal-
anine, tyrosine, and tryptophan, are expected to be late addition to the genetic code [22]. Evo-
lutionary analyses revealed that inclusion of methionine and tryptophan required the complete
breaking of the codon wobble degeneracy [23]. Very recently it was reported that all trypto-
phan codons from E. coli genome are efficiently reassigned to a noncanonical amino acid, L-β-
(thieno[3,2-b]pyrrolyl)alanine [24]. These are all very good indications that the exploitation of
the degeneracy in the genetic code could represent a promising route for the expansion of
amino acids available for protein biosynthesis [25]. By breaking the degeneracy of the Phe
codons, a phenylalanine analog, 2-naphthylalanine (2Nal), was incorporated into multiple
UUU phenylalanine (Phe) codons [20]. In order to reassign a UUU codon to 2Nal, the antico-
don of yeast phenylalanyl-tRNA was mutated from CUA to AAA to generate ytRNAPhe

AAA. A
mutant yeast phenylalanyl-tRNA synthetase (ytRNA_T415G) was co-expressed with ytRNA-
Phe

AAA in E. coli cells to incorporate 2Nal into a target protein. Since this latter method uses a
sense codon, the number of incorporation sites is not restricted [20]. Since UUU codons were
not completely occupied by 2Nal, strictly speaking, the degeneracy of the Phe codons was not
completely broken, but forced ambiguity of the Phe codons was achieved. Later, a yPheRS vari-
ant with a higher specificity toward 2Nal (yPheRS_naph) was selected from high-throughput
screening of yPheRS libraries [26]. However, application of this technique has been limited,
partly because 2Nal was misincorporated at the unwanted sites (UUC Phe codons) due to the
less selective codon recognition of the AAA anticodon of ytRNAPhe

AAA [20]. Misincorporation
of a noncanonical amino acid at unwanted sites might cause severe perturbation or loss of
native properties of a target protein [27, 28].

Due to the poor discrimination of UUU codon from UUC codon by the AAA anticodon of
ytRNAPhe

AAA, we explored degenerate leucine (Leu) codons for noncanonical amino acid
incorporation in this study. Several considerations recommend degenerate Leu codons. First,
Leu is encoded as six codons: UUA, UUG, CUA, CUG, CUU, and CUC. Discrimination of
UUG from CUN (N = A/U/G/C) codons should be highly efficient due to discrimination at the
first position in the codon [29]. Second, our existing yeast orthogonal pair should be readily
adapted to the incorporation of Phe analogs in response to UUG codons. In practical terms,
generalization of the concept of forced ambiguity of the genetic code is limited by the
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availability of orthogonal pairs. Third, the modified CAA anticodon would more efficiently dis-
criminate UUG from UUA. According to the wobble rules, C in the first position of the antico-
don recognizes only G in the third position of the codon [29]. In this study, we first
quantitatively evaluated the misincorporation level of 2Nal at unwanted sites (UUC codons)
when the UUU Phe codon was reassigned to 2Nal. Then, we showed that an engineered ytR-
NAPhe

CAA containing a modified CAA anticodon could completely discriminate UUG from
the remaining five Leu codons and achieve incorporation of 2Nal at multiple programmed
sites in recombinant proteins.

Results and Discussion

Misincorporation of 2Nal at unwanted UUC Phe codons
In order to evaluate the misincorporation level of 2Nal at UUC codons, we used a green fluo-
rescent protein variant with Phe codons encoded by only the UUC codon (GFP6) by mutating
all UUU Phe codons to UUC codons [26]. It was previously reported that 2Nal incorporation
into multiple sites of GFP led to a significant loss of fluorescence due to the structural perturba-
tion of GFP [26]. Since GFP6 does not have any 2Nal incorporation sites (UUU codon), little
or no change in fluorescence intensity was expected, assuming 2Nal is not incorporated into
UUC codons. However, in the presence of 3 mM 2Nal and 5 μM Phe, the mean fluorescence
intensity of cells expressing GFP6 as well as ytRNAPhe

AAA/yPheRS_naph decreased almost
10-fold compared to that of cells in the absence of 2Nal (Fig 1A and 1B). In the presence of 3
mM 2Nal and either 2.5 or 5.0 μM Phe, the occupancy of UUU and UUC codons by 2Nal was
evaluated using liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis of
tryptic digests of a mDHFR variant expressed in E. coli cells co-expressing ytRNAPhe

AAA/
yPheRS_naph (Fig 1C and 1D). At 5 μM Phe and 3 mM 2Nal, about 50% of the UUU codon
was occupied by 2Nal, but 6% of the UUC codon was also occupied by 2Nal. Therefore, the
reduction in cellular fluorescence of GFP6 expressed in the presence of 3 mM 2Nal (Fig 1B)
could be attributed to misincorporation of 2Nal at multiple UUC codon sites.

We reasoned that misincorporation of 2Nal at the UUC codon resulted from the recogni-
tion of UUC codons by the AAA anticodon of ytRNAPhe

AAA. According to Crick’s wobble rule
proposed in 1966 [29], the base A in the first position of the anticodon can recognize only the
base U in the third position of the codon. Therefore, the UUC codon should not be recognized
by the AAA anticodon. The discrepancy between the experimental results and Crick’s wobble
rule may be explained by the expanded wobble rule proposed by Lim and Curran in 2001 [30].
The expanded wobble rule is based on new experimental findings [30–37] and stereochemical
modeling [38–41] of codon-anticodon interactions. According to the expanded wobble rule
(Fig 2A), A in the first position of the anticodon can recognize all four bases in the third posi-
tion in the codon. The base A in the first position of the anticodon favors bases in the order
U> C> G> A (Fig 2B), consistent with the codon-biased incorporation of 2Nal observed in
this work.

Incorporation of 2Nal into UUG Leu codons
According to the expanded wobble rules, the base C in the first position of the anticodon will
recognize only the base G in the third position of the codon (Fig 2A). Therefore, we hypothe-
sized that ytRNAPhe

CAA (containing the modified CAA anticodon) would selectively recognize
UUG codons (Figs 2C and 3). Endogenous E. coli leucyl-tRNAs recognize all six Leu codons.
One E. coli leucyl-tRNA containing the UAA anticodon (E. coli tRNALeu

UAA) recognizes UUA
codons via Watson-Crick base pairing, but not UUG codons (Fig 3). In order to test this
hypothesis of forced ambiguity of the Leu codons, we mutated the AAA anticodon of
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ytRNAPhe
AAA [20] into CAA anticodon by PCR mutagenesis using pREP4_ytRNAPhe

AAA as a
template. Then, mDHFR was expressed in MP [pQE16_mDHFR2_lacI_yPheRS_naph/pRE-
P4_ytRNAPhe

CAA] cells. mDHFR contains twenty Leu codons, of which six are UUG, two are
UUA and twelve are CUN (N = A/T/G/C). The expression level of mDHFR was 2.9 mg/L.

Occupancy of each Leu codon by various amino acids was determined by LC-MS analysis of
tryptic digests of mDHFR expressed with and without 2Nal. We focused on four peptides. Pep-
tide 1 (residues 165–180; LCUULCUCPEYPGVLCUCSEVQEEK) contains three Leu residues,
encoded as CUU and CUC codons. Peptide 2 (residues 54–61; QNLCUGVIMGR) contains a
Leu residue, encoded as a CUG codon. Peptide 3 (residues 62–70; LCUUIEQPELUUGASK)

Fig 1. Fluorescence intensities of cells expressing GFP6 variant (A and B).GFP6 was expressed in DHF expression hosts outfitted with yPheRS_naph
and ytRNAPhe

AAA in minimal medium supplemented with 18 amino acids, 5.0 μMPhe, 50 μM Trp, and no 2Nal (A); 3 mM 2Nal (B). UUC and UUU codon
occupancy by Phe and 2Nal (C and D). Both GFP6 (2UUC) and GFP6 (2UUU) were expressed in DHF expression hosts outfitted with yPheRS_naph and
ytRNAPhe

AAA in minimal medium supplemented with 18 amino acids (25 μg/mL), 50 μM Trp, 3 mM 2Nal, and either 2.5 μM or 5.0 μMPhe. The UUC (C) and
UUU (D) codon occupancy by Phe and 2Nal were determined by N-terminal sequencing.

doi:10.1371/journal.pone.0152826.g001
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contains two Leu residues, encoded as CUU and UUG codons. Peptide 4 (residues 99–105;
SLUUGDDALUUAR) contains two Leu residues, encoded as UUG and UUA codons. 2Nal was
not detected at any CUN codon in Peptide 1 and 2 (Fig 4A–4D). However, 50% of the UUG
codons in Peptide 3 and 4 were occupied by 2Nal (Fig 4E–4H). In order to determine UUA
codon occupancy by 2Nal, Peptide 4UUA was tested. Peptide 4UUA is the same as Peptide 4
except both Leu residues are encoded as UUA codons. Since the Peptide 4UUA variant contain-
ing 2Nal was not detected, we concluded that 2Nal incorporation is highly specific to the UUG
codon.

However, this strategy achieved only moderate UUG codon occupancy (~50%) by 2Nal (Fig
4E–4H), because UUG codon was partly occupied by Leu. Since E. coli leucyl-tRNA containing
CAA anticodon (E. coli tRNALeu

CAA) can also recognize UUG codons (Fig 3), 2Nal-charged
ytRNAPhe

CAA should competes against Leu-charged E. coli tNRALeu
CAA. Considering that the

efficiency of amber codon suppression has been greatly improved in the past decade since its
development, the occupancy of UUG codon by 2Nal is expected to increase in the future. For
instance, an E. colimutant deficient of E. coli tRNALeu

CAA was previously reported [42]. If this
mutant is further developed as an expression host for 2Nal incorporation, UUG codon occu-
pancy by Leu would be eliminated, resulting in high fidelity incorporation of 2Nal at UUG
codons. Furthermore, even partial incorporation of a noncanonical amino acid into pro-
grammed multiple sites would be useful for many applications, in particular, engineering pro-
tein-based biomaterials.

Eliminated misincorporation of 2Nal into unwanted Leu codons
Next, we evaluated misincorporation of 2Nal at unwanted Leu codons using a GFP variant. We
already showed that misincorporation of 2Nal at unwanted UUC Phe codons in GFP6 led to a

Fig 2. Extended wobble rules (A).Mutant ytRNAPhe
AAA recognizing UUU and UUC Phe codons byWatson-Crick (W/C) base pairing and wobble base

pairing, respectively (B). Mutant ytRNAPhe
CAA recognizing UUG Leu codon byW/C base pairing but none of other Leu codons (C).

doi:10.1371/journal.pone.0152826.g002
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10-fold reduction in fluorescence of cells, even though there are no UUU codons in GFP6 (Fig
1A and 1B). Similar to GFP6, we used GFP3 containing twenty-three Leu codons, of which there
were no UUG, four UUA, and nineteen CUN (N = A/T/G/C) codons. In order to investigate the
effect of misincorporation of 2Nal at unwanted sites (Leu codons other than UUG), GFP3 was
expressed in the E. coli strain MP [pQE9_GFP3_lacI_yPheRS_naph/pREP4_ytRNAPhe

CAA]. The
fluorescence intensities of cells expressing GFP3 without 2Nal or with 2Nal were compared (Fig
5A and 5B). There was no detectable difference in the fluorescence of cells prepared under these
two conditions, implying the absence of significant misincorporation of 2Nal at Leu codons
other than UUG.

Codon occupancy depending on the anticodon of ytRNAPhe

As the first base in the anticodon of ytRNAPhe changed from A to C, 2Nal assignment was
accordingly changed from UUU to UUG. As an extension, we compared the UUU or UAG
codon occupancy according to the anticodon of ytRNAPhe. First, UUU codon occupancy by
tRNAPhe containing AAA (ytRNAPhe

AAA) was obtained by N-terminal sequencing of purified
GFP6 variant containing a UUU Phe codon at position 2 (GFP6 (2UUU)). DHF [pQE9_GF-
P6_lacI_yPheRS_naph/pREP4_ytRNAPhe

AAA] cells were induced to express GFP6 (2UUU) in
MM18_FWmedium supplemented with 50 μMTrp and 3 mM 2Nal, 80% and 20% of the

Fig 3. Scheme of 2Nal incorporation into multiple UUG Leu codons based on forced ambiguity of the Leu codons. E. coli leucyl-tRNA synthetase
(LeuRS) charges Leu into its cognate tRNALeu

s containing UAA anticodon (E. coli tRNALeu
UAA) and CAA anticodon (E. coli tRNALeu

CAA). Leu charged into E.
coli tRNALeu

UAA is incorporated into multiple UUA Leu codon sites of a target protein. The yPheRS_naph charges 2Nal into ytRNAPhe containing CAA
anticodon (ytRNAPhe

CAA). Then, 2Nal is incorporated into multiple UUG Leu codons. According to the (extended) wobble rules, ytRNAPhe
CAA and E. coli

tRNALeu
UAA do not recognize UUA and UUG, respectively. UUG Leu codons can also be recognized by Leu-charged E. coli tRNALeu

CAA resulting in partial
occupancy of UUG codons by Leu.

doi:10.1371/journal.pone.0152826.g003
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Fig 4. LC-MS chromatogram of tryptic digests of mDHFR. Peptide 1 (residues 165–180; LCUULCUCPEYPGVLCUCSEVQEEK) contains three Leu residues
encoded as CUU and CUC codons. Peptide 2 (residues 54–61; QNLCUGVIMGR) contains a Leu residue encoded as CUG codon. Peptide 3 (residues 62–70;
LCUUIEQPELUUGASK) contains two Leu residues encoded as CUU and UUG codons. Peptide 4 (residues 99–105; SLUUGDDALUUAR) contains two Leu
residues encoded as UUG and UUA codons. Peptide 4UUA is the same as Peptide 4 except both Leu residues are encoded as UUA codon. Peptide 1; 2; 3; 4;
4UUA variants containing Leu and 2Nal were designated 1L and 1Z; 2L and 2Z; 3L and 3Z; 4L and 4Z; 4UUAL and 4UUAZ, respectively. These peptides were
separated by LC and detected by MS. Unmodified mDHFR was synthesized in the absence of 2Nal in a Phe/Leu auxotrophic expression host (A, C, E, and
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UUU codon at the 2nd position of GFP6 (UUU) were decoded as 2Nal and Phe, respectively,
but Trp was not detected at this position (Table 1).

With an appropriate tRNA, the selective yPheRS_naph variant can be used for residue- and
single-site-specific incorporation of 2Nal into proteins. In order to realize residue-specific
incorporation of 2Nal, DHF [pQE9_GFP6 (2UUU)_lacI_yPheRS_naph/pREP4_ytRNAPhe-

GAA] expression hosts were induced to express GFP6 (2UUU) in minimal medium supple-
mented with 25 mg/mL 18 amino acids without Phe and Trp, 50 μM Phe, 50 μMTrp, and 3
mM 2Nal. N-terminal sequencing of the purified GFP6 (2UUU) showed that 92% of position 2
was occupied by 2Nal (Table 1), slightly higher than the 80% occupancy achieved by multiple-
site-specific incorporation. The enhanced 2Nal incorporation may be a consequence of the
known 12-fold higher aminoacylation rate for ytRNAPhe

GAA by yPheRS as compared to ytR-
NAPhe

AAA [43]. Site-specific incorporation of 2Nal into mDHFR_38Am, the mDHFR variant
containing an amber codon at the 38th position, was achieved by AFWK [pQE16_mDH-
FR_38Am_yPheRS_naph/pREP4_ytRNAPhe

CUA_UG] in minimal medium supplemented with
25 μg/mL 17 amino acids (MM17_FWK), 50 μM Phe, 50 μMTrp, 50 μM Lys, and 3 mM 2Nal.
The pQE16_mDHFR_38Am_yPheRS_naph plasmid was generated by replacing a yPheR-
S_T415A gene in pQE16_mDHFR_38Am_yPheRS_T415A plasmid [44] with a yPheRS_naph

G) in 2xYT media. Modified mDHFRs were synthesized in a Phe/Leu auxotrophic expression host outfitted with ytRNAPhe
CAA and yPheRS_naph (B, D, F, H,

and I). The expression minimal media were supplemented with 17 amino acids (25 μg/mL), 1.25 μM Leu, 50 μMPhe, 50 μM Trp, and 3 mM 2Nal. No 1Z, 2Z,
or 4UUAZ was detected by LC-MS analysis.

doi:10.1371/journal.pone.0152826.g004

Fig 5. Fluorescence intensities of cells expressing GFP3.GFP3 was expressed in MPC390 expression
hosts outfitted with yPheRS_naph and ytRNAPhe

CAA in minimal medium supplemented with 17 amino acids,
1.25 μM Leu, 5.0 μMPhe, 50 μM Trp, and no 2Nal (A); 3 mM 2Nal (B).

doi:10.1371/journal.pone.0152826.g005
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gene using standard molecular cloning techniques. Matrix-assisted laser desorption ionization-
time of flight (MALDI-TOF) MS analysis of tryptic digests of mDHFR_38Am revealed that
2Nal was dominant at the amber site (Fig 6 and Table 1). Neither Trp nor Phe was detected,
confirming the high selectivity of yPheRS_naph toward 2Nal.

Conclusions
In this study, we developed a strategy to incorporate a noncanonical amino acid into multiple
sites in a site-specific manner based on forced ambiguity of the Leu codons. Misincorporation
of 2Nal at unwanted sites resulting from the less selective codon recognition of the AAA anti-
codon of ytRNAPhe was overcome by use of the more codon-selective ytRNAPhe

CAA. The CAA
anticodon of ytRNAPhe

CAA completely discriminates UUG codon from the other five Leu
codons. When both yPheRS_naph and ytRNAPhe

CAA were overexpressed in E. coli expression
hosts, 50% of UUG codon sites were occupied by 2Nal, but no other Leu codon sites were occu-
pied by 2Nal. Combined use of yPheRS_naph and the codon-selective ytRNAPhe

CAA realized
multiple-site-specific incorporation of 2Nal into proteins. Furthermore, for the first time, these
results successfully demonstrated that the concept of forced ambiguity of the genetic code is
not limited to degenerate Phe codons, but can be generalized to other degenerate codons.
Although the incorporation level of 2Nal at UUG codons was moderate (about 50%) due to
UUG codon recognition by endogenous E. coli tRNALeu

CAA, we are working to improve the

Table 1. Occupancy of UUU and UAG codons by various amino acids.

Codon ytRNA Occupancy of codon (%)b

2Nal Phe Lys

UUUa ytRNAPhe
AAA 80 20 NDc

UUU ytRNAPhe
GAA 92 8 ND

UAGd ytRNAPhe
CUA_UG 98 ND 2

aThe second position in the amino acid sequence of GFP6.
bUUU and UAG codon occupancy was determined by N-terminal protein sequencing and MALDI-TOF MS analysis, respectively.
cNot detected.
dThe 38th position in the amino acid sequence of mDHFR_38Am.

doi:10.1371/journal.pone.0152826.t001

Fig 6. MALDI-TOF spectrum of tryptic digests of mDHFR_38Am. Peptide Z38 (residues 26–39; NGDLPWPPLRNEZK; Z indicates 2Nal) contains an
amber codon at the 38th position. Peptide K38 (residues 26–39; NGDLPWPPLRNEKK; K indicates Lys) contains Lys at the 38th position. Another tryptic
digest (residues 85–98; ELKEPPRGAHFLAK) contains Phe.

doi:10.1371/journal.pone.0152826.g006
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level of incorporation of 2Nal at programmed UUG sites using an E. colimutant deficient of E.
coli tRNALeu

CAA. Since the technique and strategy described here are very general, they would
be applicable to incorporation of another noncanonical amino acid into a target protein when
an appropriate orthogonal pair of the noncanonical amino acid is available.

Materials and Methods

Materials
Restriction enzymes were purchased from New England Biolabs (Beverly, MA, USA). Quik-
change mutagenesis kits were purchased from Stratagene (La Jolla, CA, USA). Plasmid pREP4
and nickel-nitrilotriacetic acid affinity columns and were purchased from Qiagen (Valencia,
CA, USA). 2Nal was obtained from Chem-Impex (Wood Dale, IL, USA). DNA primers were
obtained from Operon Technologies (Huntsville, AL, USA) and Integrated DNA Technologies
(Coralville, IA, USA). The reagents were purchased from commercial suppliers and used with-
out further purification unless otherwise indicated.

Preparation of E. coli expression hosts
A Phe/Trp double auxotrophic strain (AFW) and Phe/Trp/Lys triple auxotrophic strain
(AFWK) were previously reported [44]. The Phe/Leu double auxotrophic strain, MPC390
(leuB6(Am), PheA18::Tn10), was supplied from the E. coli Genetic Stock Center (CGSC) at
Yale University. A Phe auxotrophic derivative of DH10B (Stratagene) E. coli strain was gener-
ated by chemical mutagenesis [45] and replica plating. DH10B E. colimutants were subjected
to replica plating on minimal medium agar plates containing either all twenty amino acids or
nineteen amino acids without Phe. An E. colimutant that could not grow on minimal medium
agar plates without Phe was selected as a Phe auxotrophic derivative of DH10B, designated
DHF.

Construction of Plasmids and Expression Hosts for Incorporation of 2Nal
at Phe Codons
Construction of several GFP variants used in this study was previously reported [26]. An EGFP
variant (GFP3) [46] has excitation maximum at 488 nm suitable for FACS analysis. A GFP vari-
ant (GFP6) was constructed by replacing all UUC Phe codons and one CUG Leu codon (at posi-
tion 64) with UUU codons. A GFP variant (GFP3_WC) contains 12 Phe residues encoded as
only UUC codons. In order to determine Phe codon occupancy by various amino acids, the
AGA (Arg) codon in the second position of GFP6 was replaced by UUU or UUC Phe codon by
PCRmutagenesis to generate GFP6(2UUU) or GFP6(2UUC), respectively [26]. Then, various E.
coli host cells expressing either mDHFR or GFP variant were prepared using plasmids commer-
cially available (Qiagen) or constructed previously [26]. Both pQE16_mDHFR_yPheRS (T415G)
and pQE16_mDHFR_yPheRS naph were co-transformed with pREP4_ytRNAPhe

AAA into AFW
competent cells to generate AFW [pQE16_mDHFR_yPheRS (T415G)/pREP4_ytRNAPhe

AAA]
and AFW [pQE16_mDHFR_yPheRS_naph/pREP4_ytRNAPhe

AAA], respectively. In order to
express intact mDHFR, pQE16 (Qiagen) and pREP4 plasmids were co-transformed into AFW
competent cells to generate AFW [pQE16/pREP4]. Both pQE9_GFP6_lacI_yPheRS_naph and
pQE9_GFP3_WC_lacI_yPheRS_naph were transformed into DHF_AAA electrocompetent cells
to construct DHF [pQE9_GFP6_lacI_yPheRS_naph/pREP4_ytRNAPhe

AAA] and DHF
[pQE9_GFP3_WC_lacI_yPheRS_naph/pREP4_ytRNAPhe_AAA], respectively. Both
pQE9_GFP6 (2UUU)_lacI_SD_yPheRS_naph and pQE9_GFP6 (2UUC)_lacI_SD_yPheRS_-
naph were transformed into DHF_AAA electrocompetent cells to construct DHF [pQE9_GFP6
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(2UUU)_lacI_SD_yPheRS_naph/pREP4_ytRNAPhe
AAA] and DHF [pQE9_GFP6 (2UUC)_lacI_

SD_yPheRS_naph/pREP4_ytRNAPhe
AAA].

Construction of Plasmids and Expression Hosts for Incorporation of 2Nal
at Leu Codons
The AAA anticodon of ytRNAPhe

AAA was mutated to CAA by PCRmutagenesis using pRE-
P4_ytRNAPhe_AAA as a template to yield pREP4_ytRNAPhe

CAA. The expression cassette of
mDHFR was excised from pQE16 (Qiagen) by digestion with AatII andNheI and inserted into
pQE9_GFP6_lacI_yPheRS_naph [26] between the AatII andNheI sites to generate pQE16_
mDHFR_lacI_yPheRS_naph. In order to increase the number of Leu residues encoded as UUG,
UUC and UUU Phe codons in position 38 and 95 of mDHFR were changed to UUG by PCR
mutagenesis reactions using pQE16_mDHFR_lacI_yPheRS_naph as a template to generate
pQE16_mDHFR2_lacI_yPheRS_naph. PCRmutagenesis reaction was performed to mutate UUG
to UUA at position 100 of mDHFR2 to yield pQE16_mDHFR2 (100UUA)_lacI_yPheRS_naph.
Either pQE16_mDHFR2_lacI_yPheRS_naph or pQE16_mDHFR2 (100UUA)_lacI_yPheRS_naph
was co-transformed with ytRNAPhe

CAA intoMPC390 competent cells to yield MP [pQE16_
mDHFR2_lacI_yPheRS_naph/pREP4_ytRNAPhe

CAA] or [pQE16_mDHFR2 (100UUA)_lacI_
yPheRS_naph/pREP4_ytRNAPhe

CAA], respectively. In order to express intact mDHFR, pQE16
(Qiagen) and pREP4 were co-transformed into MPC390 competent cells to generate MP [pQE16/
pREP4]. pQE9_GFP6_lacI_yPheRS_naph was co-transformed with ytRNAPhe

CAA into MPC390
competent cells to yield MP [pQE9_ GFP6_lacI_yPheRS_naph /pREP4_ytRNAPhe

CAA].

Expression of mDHFR Variants and GFP Variants In Vivo
AFW and AFWK expression strains were co-transformed with pQE plasmid variants and
pREP4 plasmid mutants. The strains were incubated in M9 minimal medium containing 0.4 wt
% glucose, 35 mg/L thiamin, 1 mMMgSO4, 1 mM CaCl2, 20 amino acids (at 25 mg/L), 35 mg/
L kanamycin, and 200 mg/L ampicillin. The expression strains were cultured for overnight,
and were diluted 20-fold in fresh M9 minimal medium and incubate at 37°C. The cells were
harvested when grown were reached OD600 = 0.8–1.0, and washed twice with cold 0.9% NaCl.
The cells were resuspended in fresh M9 minimal medium supplemented with 18 amino acids
(25 μg/mL), and the indicated concentrations of Phe, Trp, and 2Nal. The GFP expression was
induced by addition of 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG). After induced at
30°C for 4 hours, cells were harvested and either kept at -80°C or subjected to fluorescence
measurement according to the procedures described earlier [26]. Whole cell lysates were ana-
lyzed by SDS-PAGE. Due to slow growth of DHF and MPC390 expression hosts co-trans-
formed with pQE plasmid variants and pREP4 plasmid variants, transformants were grown in
2xYT medium to prepare glycerol stocks first. Then glycerol stocks were inoculated into mini-
mal medium supplemented with 20 amino acids (at 25 mg/L) and incubated overnight at 37°C.
The remaining steps were similar to those for AF and AFWK expression hosts.

Flow cytometric analysis
When OD600 of DHF or MP900 cells expressing a GFP variant reached 0.6, the cells were
washed twice with 0.9% NaCl solution. Then, the cells were resuspended with 20 mL of mini-
mal medium supplemented with an appropriate amount of amino acids. The expression of a
GFP variant was induced with 1 mM IPTG. After 3 hrs, 1 mL of the culture was collected, and
washed twice with 0.5 mL of PBS (pH 7.4). 100 μL of cells were diluted with 3 mL of distilled
water. Fluorescence intensities of the cells were analyzed by a MoFlo cell sorter. At least 20,000
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events were collected in each measurement. Data were analyzed with Summit software
(DakoCytomation).

Quantitative Analysis of Codon Occupancy
Quantitative analysis of codon occupancy was performed by either N-terminal protein
sequencing or LC-MS analysis of tryptic digests. The GFP6 (2UUU) and GFP6 (UUC) variants
were expressed in minimal medium and purified by Ni-NTA affinity chromatography accord-
ing to the manufacturer’s protocol (Qiagen) under denaturing conditions. The purified GFP
variants were subjected to N-terminal protein sequencing using a 492 cLC Procise1 protein
micro-sequencer (Applied Biosystems, Foster City, CA). Occupancy of Phe codons in mDHFR
and Leu codons in GFP was determined by LC-MS analysis. mDHFR expressed in minimal
medium were subjected to purification via Ni-NTA affinity chromatography according to the
manufacturer’s protocol (Qiagen) under denaturing conditions. After purification, expression
levels of GFP and mDHFR were determined by UV absorbance at 280 nm using a calculated
extinction coefficient of 20,010 cm-1 M-1 and 24,750 cm-1 M-1, respectively. The purified pro-
teins were concentrated by ultrafiltration (Millipore). 10 μL of the concentrate was diluted into
90 μL of 75 mM (NH4)2CO3 solution and then 1 μL of modified trypsin (Promega, 0.2 μg/μL)
was added. Reaction was carried out for 2–4 hrs at 37°C and quenched by addition of 13 μL of
5% trifluoroacetic acid (TFA) solution. The solution was then directly subjected to LC-MS
analysis conducted on a LCT Premier XE MICROMASS MS system (MS Technologies, Mont-
gomery Village, MD) with Acquity UPLCTM system (Waters, Milford, MA). Tryptic digests
were separated by Acquity BEH300 C18 column (1.7 μm, 300 Å, 2.1 x 50mm) using a gradient
of 5–95% of solvent B (90% of acetonitrile/10% of 0.1% formic acid solution) and solvent A
(2% of acetonitrile/98% of 0.1% formic acid solution) in 10 min. The column eluent was trans-
ferred to the electrospray source and mass spectra were recorded. MALDI-TOF MS analysis of
tryptic digests of mDHFR was performed as described previously [20].
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