
REVIEW
published: 11 June 2020

doi: 10.3389/fonc.2020.00941

Frontiers in Oncology | www.frontiersin.org 1 June 2020 | Volume 10 | Article 941

Edited by:

Ondrej Slaby,

Central European Institute of

Technology (CEITEC), Czechia

Reviewed by:

Pawel Buczkowicz,

Independent researcher, Toronto,

Canada

Ranran Zhang,

Aspirus Riverview Hospital,

United States

*Correspondence:

Weiqin Chang

weiqinchang@126.com

Specialty section:

This article was submitted to

Cancer Genetics,

a section of the journal

Frontiers in Oncology

Received: 29 August 2019

Accepted: 13 May 2020

Published: 11 June 2020

Citation:

Peng X, Zhang K, Ma L, Xu J and

Chang W (2020) The Role of Long

Non-Coding RNAs in Thyroid Cancer.

Front. Oncol. 10:941.

doi: 10.3389/fonc.2020.00941

The Role of Long Non-Coding RNAs
in Thyroid Cancer
Xuejiao Peng 1, Kun Zhang 2, Li Ma 1, Junfeng Xu 1 and Weiqin Chang 1*

1Department of Thyroid Surgery, Second Affiliated Hospital of Jilin University, Changchun, China, 2Medical Research Center,

Second Affiliated Hospital of Jilin University, Changchun, China

Thyroid cancer, the most common endocrine malignancy, has become the most

commonly diagnosedmalignant solid tumor. Moreover, some cases have poor prognosis,

and the survival period is only 3–5 months. Long noncoding RNAs (lncRNAs) are a

group of functional RNA molecules more than 200 nucleotides in length that lack the

ability to encode protein but participate in all aspects of gene regulation. Functionally,

many lncRNAs play essential roles in epigenetic regulation at transcriptional and

post-transcriptional levels via various molecular mechanisms. Recent studies have

discovered important roles for lncRNAs during the complex process of carcinogenesis in

thyroid cancer. In this review, we focus on lncRNAs dysregulated in thyroid cancer and

summarize recently reported associations between lncRNAs and thyroid cancer in order

to demonstrate the significant value of lncRNAs in diagnosis and treatment.
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INTRODUCTION

Thyroid cancer is the most common endocrine tumor. Its incidence is reportedly seventh highest
among female malignancies in developed countries and ninth highest among female malignancies
in developing countries (1). In recent years, the incidence of thyroid cancer worldwide has
increased significantly, which may be attributed to earlier screening. Age-standardized statistics
show that the global incidence of thyroid cancer in 2016 was 2.2/100,000 men per year and
4.4/100,000 women per year, and the incidence increased by 50% from 2006 to 2016, the fastest
increase for any malignant solid tumor (2). As a female-prone tumor, thyroid cancer ranks
first among malignant tumors affecting the female population in various countries and regions.
Research shows that by 2019, thyroid cancer will rank third among such tumors (3). Althoughmost
thyroid cancers can be effectively controlled by surgery, endocrine inhibition therapy, and iodine
radiation, mortality associated with advanced thyroid cancer and iodine-refractory thyroid cancer
has not decreased. Understanding the pathogenesis of thyroid cancer, and finding biomarkers for
its early diagnosis and effective treatment are current focal points of research.

Studies have shown that only 2% of the genes of many mammals are involved in the protein
translation process, while the remaining 98% of RNAs are only involved at the transcriptional
level and are called “non-coding RNAs” (ncRNAs). Based on their molecular sizes, ncRNAs are
classified as short ncRNAs or long ncRNAs (lncRNAs). Short ncRNAs include miRNAs, tRNAs,
interfering small RNAs (siRNAs), RNAs that interact with Piwi proteins (PiRNAs), and certain
ribosomal RNAs. lncRNAs have broader research prospects and are a current research focus.
lncRNAs, as ncRNAs longer than 200 nt, are not translated to proteins due to their lack of open
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reading frames. Although lncRNAs are not involved in protein
transcription, they can regulate gene expression at multiple
levels and are related to tumorigenesis. In recent years, with
the emergence of next-generation sequencing, third-generation
sequencing, RNA-Seq, RIP-Seq, and RNA arrays, more and more
lncRNAs have been discovered. Recent reports and ongoing
studies have found that many lncRNAs are closely related to
thyroid cancer. This article discusses the recent research progress
on lncRNAs and papillary thyroid cancer (PTC) by reviewing the
latest research reports.

FUNCTIONAL LNCRNAS INVOLVED IN
THYROID CANCER

An increasing number of studies have confirmed that differential
expression of lncRNAs is closely related to the biological behavior
of thyroid cancer. Yang et al. (4) compared the expression
of lncRNAs in three groups of thyroid cancer tissues and
paracancerous tissues by microarray analysis and found that
there were 675 differentially expressed lncRNAs in PTC, of which
312 were upregulated and 363 downregulated. In addition, some
studies have used certain lncRNAs to establish biomarker systems
for detecting recurrence and prognosis in patients with PTC (5).
However, the value of lncRNAs in the diagnosis, treatment, and
prognosis of thyroid cancer warrants further research.

Thus far, many lncRNAs have been found to be closely
associated with the occurrence and progression of thyroid
cancer. Additionally, the studied mechanisms of action of
lncRNAs in thyroid cancer include the following: lncRNA-
miRNA-protein, lncRNA(-miRNA)-target genes, epigenetics,
and signaling pathways. Representative lncRNAs include
NEAT1, HOTAIR, PTCSC2, lncRNA TNRC6C-AS1, GAS8-AS1,
PTCSC3,MEG3, BANCR, PVT1, SPRY4-IT1,GAS5,H19, CASC2,
andMALAT1.

lncRNA-miRNA-Protein
This is currently the most common mechanism of action
associated with lncRNAs, which are regarded as among the
most important competing endogenous RNAs (ceRNAs) and
participate in the regulation of gene networks by acting on
target genes or proteins. lncRNAs promote proliferation of
thyroid cancer cells by competitively inhibiting miRNAs through
regulation of downstream proteins highly expressed in thyroid
cancer tissues.

Abbreviations: ATAD2, ATPase family AAA domain-containing 2; CCND2,

cyclin D2; ceRNA, competing endogenous RNA; EMT, epithelial to mesenchymal

transition; EZH2, zeste homolog 2; FN1, fibronectin 1; FNA, fine-needle

aspiration; FOXE1, forkhead box E1; GEO, Gene Expression Omnibus database;

IGF1R, growth factor 1 receptor; IRS1, insulin receptor substrate 1; lncRNA,

long non-coding RNA; LNM, lymph node metastasis; MYH9, myosin-9;

PI3k/AKT, phosphatidylinositol 3-kinase/AKT; PTC, papillary thyroid cancer;;

Rac1, rho GTPase1; SNP, single nucleotide polymorphism; TAM, tumor-associated

macrophages; TCGA, The Cancer Genome Atlas; TGF, transforming growth

factor; TSH, thyroid-stimulating hormone; TSHR, thyroid-stimulating hormone

receptor; UNC5B, UNC-5 netrin Receptor B; VEGF, vascular endothelial

growth factor.

Neat1
lncRNA-rich nuclear-rich transcript 1 (NEAT1), located on
chromosome 11q13.1, was discovered by Hutchinson et al. (6).
NEAT1 reportedly acts as a ceRNA in tumorigenesis (7–12).
There is increasing evidence that lncRNAs act as molecular
sponges in many malignancies (13). NEAT1 is overexpressed in
thyroid cancer tissues and cells compared to levels in normal
thyroid tissues and cells. Highly expressed NEAT1 reportedly
promotes β-catenin expression by interacting with miR-214. β-
catenin is a direct target of miR-214 and participates in the
malignant behavior of NEAT1-induced thyroid cancer (14).
Zhang et al. (15) confirmed that NEAT1 is upregulated in thyroid
carcinoma, and that its upregulation can inhibit the action of
miRNA-129-5p and upregulate kallikrein-related peptidase 7
(KLK7) expression. As the seventh member of the serine protease
family, KLK is increasingly found to be overexpressed in human
cancers and facilitates cancer metastasis through degradation
of cell junction proteins (15). Its dysregulation is related to
tumorigenesis in ovarian, breast and cervical cancers, and
melanoma. Overexpression of KLK7 is also closely related to poor
prognosis in thyroid cancer. NEAT1 has two isoforms: NEAT1_1
(3.7 kb) and NEAT1_2 (23 kb). As an oncogene, NEAT1_2 is
upregulated in thyroid cancer and is linked to tumor size and
TNM stage. Sun et al. (16) reported that NEAT1_2 can regulate
the expression of ATPase family AAA domain-containing 2
(ATAD2) by downregulating miR-106b-5p in papillary thyroid
cancer. The study found that ATAD2 is abnormally expressed in
hepatocellular carcinoma, prostate cancer, lung cancer, ovarian
cancer, and cervical cancer, and its expression level is associated
with tumor stage, histological grade, and lymph node metastasis
(17). NEAT-2-targeted therapy may become a treatment option
for thyroid cancer in the future.

Typically, postoperative radioactive iodine (RAI, 131I)
treatment improves prognosis in some patients with thyroid
cancer. However, Liu et al. (18) reported that NEAT1 suppressed
the expression of miR-101-3p to upregulate fibronectin 1
(FN1), and ultimately invalidated the effect of RAI treatment.
Additionally, overexpression of FN1 promotes activation of the
PI3K/AKT signaling pathway, leading to RAI resistance in PTC.

FN1, a basic component of the extracellular matrix, is
a biomarker of the epithelial-mesenchymal transition (EMT),
which is positively correlated with PTC lymph node metastasis
(LNM) (19). Xia et al. (19) indicated that FN1 overexpression was
associated with larger PTC tumor size, PTC LNM, and advanced
pTNM stage, causing recurrence and affecting prognosis.

Hotair
HOX antisense intergenic RNA (HOTAIR) is a 2.2 kb
RNA molecule expressed from the Hoxc cluster located in
chromosome 12q13.3 and is among the best-studied lncRNAs
in cancer. Overexpression of HOTAIR has been linked to poor
prognosis and increased invasiveness in cancer (20), and to the
invasion and migration of hepatocellular carcinoma and glioma
(21, 22). Thus far, there have been relatively few studies on the
relationship between HOTAIR and thyroid cancer. HOTAIR has
been found to be significantly upregulated in thyroid carcinoma
cells as well as thyroid cancer tissue samples and plasma.
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Moreover, higher expression levels of plasma HOTAIR were
positively correlated with worse 5-year survival rates in patients
with thyroid cancer (23). Additionally, in vitro experiments
indicated that knocking down HOTAIR can significantly inhibit
the growth and invasion of thyroid cancer cells. In a study by
Di et al. (24), HOTAIR overexpression in thyroid cancer cells
and tissue inhibited miRNA and cyclin D2 (CCND2) protein
activation. Silencing HOTAIR expression inhibits thyroid
cancer cell growth in vivo and in vitro. HOTAIR negatively
regulates miR-1 by direct competitive binding to the miR-1
locus and participates in the regulation of thyroid cancer cell
carcinogenesis. CCND2 belongs to the conserved cyclin family,
which controls the cell cycle, and has been shown to be highly
expressed in ovarian and testicular tumors. The HOTAIR/miR-
1-CCND2 axis may be a new direction for lncRNA and thyroid
cancer research. There are also other hypotheses about the
relationship betweenHOTAIR and thyroid cancer. Zhu et al. (25)
reported that the HOTAIR rs920778T allele, a PTC risk allele,
is associated with significantly increased HOTAIR expression.
Some studies have explored the relationship between lncRNA
and thyroid cancer using bioinformatics, constructing ceRNA
regulatory networks using the Gene Expression Omnibus (GEO)
database and the Cancer Genome Atlas (TCGA). Chen et al. (26)
hypothesized that HOTAIR may be involved in the development
of PTC by interrupting neuronal growth. A study based on the
TCGA and GEO databases showed that HOTAIR overexpression
in PTC is linked to tumor size, lymph node metastasis, and
poor prognosis, and may play an oncogenic role through the
Wnt pathway (27). The mechanism linking PTC and HOTAIR
warrants further study, as the expression of HOTAIR in plasma
is being considered a novel diagnostic biomarker in PTC.

lncRNA TNRC6C-AS1
lncRNA TNRC6C-AS1 acts as a ceRNA onmiR-129-5p in thyroid
cancer. Hou et al. (28) reported that TNRC6C-AS1 sponges
miR-129-5p and regulates UNC-5 netrin receptor B (UNC5B)
in thyroid cancer, influencing cell proliferation, migration,
and invasion. UNC5B is a netrin-1-dependent receptor that
participates in axonal migration and angiogenesis by binding to
netrin-1, which exerts its function in tumor suppression. The
role of UNC5B in other tumors has been confirmed (29), but
its role in thyroid cancer has rarely been studied. Studies have
also found that TNRC6C-AS1 is upregulated in PTC tissues and
increases proliferation, migration, and invasion of TPC1 cells.
The expression of TNRC6C-AS1 was negatively correlated with
mRNA levels of its coding partner, TNRC6C in PTC tissues.
The study also found that knockdown of TNRC6C-AS1 or
overexpression of TNRC6C upregulated the expression of iodine
metabolism genes, including NIS, TPO, TSHR, and pendrin (30).
The TNRC6C-AS1-TNRC6C axis plays an important role in
tumorigenesis, invasion, and iodine accumulation in PTC.

PTCSC2
Papillary thyroid cancer susceptibility candidate 2 (PTCSC2)
is a 60-nucleotide lncRNA located on chromosome 9q22 (31)
and is divided into two subtypes: folded and unfolded. A study
involving 65 thyroid cancer tissues found that both folded and

unfolded PTCSC2 were expressed at lower levels than in normal
thyroid tissues. The locus on chromosome 9q22 contains an
SNP closely related to PTC risk (rs965513). The locus also
includes the forkhead box E1 (FOXE1) gene associated with
thyroid development and PTCSC2 (32). PTCSC2 may work
synergistically with rs965513 to cause thyroid cancer. Another
recent report found that myosin-9 (MYH9) acts as an lncRNA-
binding protein that targets the FOXE1 promoter region through
interaction with PTCSC2 and exerts its regulatory function
in thyroid cancer via downstream pathways; this may be the
molecular mechanism by which the gene and rs965513 act (33).
At present, there have been few studies on the role of PTCSC2
in thyroid cancer, and more research is needed to determine
their relationship.

lncRNA(-miRNA)-Target Genes
Some lncRNAs act directly on target genes, while others act
indirectly through miRNAs. Some lncRNAs act on target genes
through both direct and indirect pathways.

GAS8-AS1
GAS8 antisense RNA 1 (GAS8-AS1) is located in the second
intron of GAS8 and transcribes a 994 nt ncRNA in the opposite
orientation of GAS8, which is reported to be a novel tumor
suppressor that affects tumor cell proliferation in PTC. GAS8-
AS1 was first reported in PTC by Pan et al. (34), but its regulatory
mechanism is still unclear. Using whole exome sequencing, Pan
et al. reported that GAS8-AS1 is the most frequently altered
gene other than BRAF. Recently, lncRNA GAS8-AS1 was further
studied by Zhang et al. (35), who reported that its expression
was dramatically lower in the plasma compared with levels
observed in benign nodule controls and normal goiter. This
study also associated downregulation of GAS8-AS1 with LNM;
thus GAS8-AS1 can be used as a biomarker for LNM prediction.
In addition, Qin et al. (36) found that the relative expression
of GAS8-AS1 was significantly reduced in four PTC cell lines
compared to levels in normal thyroid cell lines; they also found
that the role of GAS8-AS1 in thyroid cancer may be related
to autophagic activity. ATG5 is a key autophagy-related gene
(ATG) associated with malignancy. Overexpression of GAS8-AS1
upregulates ATG5 at mRNA and protein levels. Yuan et al. found
that GAS8-AS1 affects autophagy and proliferation by regulating
the expression of ATG5. Plasma levels of lncRNA GAS8-AS1
may be a promising biomarker for the diagnosis, prognosis, and
treatment of thyroid cancer.

PTCSC3
PTCSC3 is an lncRNA on locus 14q13.3 and is highly thyroid-
specific (37). Jendrzejewski et al. (37) performed an experimental
study including 46 cases of PTC and paracancerous tissues
and found that the expression of PTCSC3 in PTC tissues
was significantly lower than that in adjacent normal thyroid
tissues. Another study found that rs944289 was significantly
correlated with benign andmalignant thyroid tumors in Japanese
patients (38). Additionally, the size of the thyroid tumor and
the extrathyroidal invasion of the tumor were significantly
correlated with the expression level of rs965513. S100A4 belongs
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to a large family of EF-hand domain calcium-binding proteins
and has become a recognized marker of cancer metastasis in
S100 transcripts. Overexpression of the S100A4 gene was first
associated with the occurrence, development, and prognosis
of breast cancer, gastric cancer, rectal cancer, lung cancer,
melanoma, and other cancers (39–43). The same gene was
later confirmed to be closely related to thyroid cancers other
than medullary cancer. Jendrzejewski et al. (44) found that
decreased expression of PTCSC3 in PTC tissue can promote
the overexpression of the S100A4 gene and the proliferation,
invasion, and metastasis of thyroid cancer cells. Donato (45)
found that the expression levels of vascular endothelial growth
factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were
also abnormal in cells with abnormal expression of S100A4. They
found that the levels of VEGF and MMP-9 in BCPAP thyroid
cancer cells expressing PTCSC3were significantly downregulated
to inhibit invasion and metastasis. This mechanism of action
may be that PTCSC3 inhibits the secretion of VEGF and MMP-9
by inhibiting S100A4 expression, thereby inhibiting the invasion
and metastasis of thyroid cancer cells.

MEG3
Maternal expressed gene 3 (MEG3) located on human
chromosome 14q32 is usually expressed in many normal
tissues. However, downregulation of MEG3 expression is closely
related to tumorigenesis. A decrease in MEG3 expression has
been found in many human tumors, including in the stomach,
tongue, prostate, lung, and bladder, and it exerts its function
in tumor cell proliferation, migration, and invasion (46–51).
Wang et al. (52) reported that expression of MEG3 is lower in
metastatic tissues of PTC than that in non-metastatic thyroid
cancer tissues. In human thyroid cancer cell lines, high levels of
MEG3 can inhibit invasion and metastasis of thyroid cancer cells.
This study showed that the Rac1 gene is negatively regulated by
MEG3 at the posttranscriptional level in thyroid cancer. MEG3
inhibits migration and invasion of thyroid cancer cells by acting
on Rac1 and is linked with lymph node metastasis. Rac1 is one of
the most studied Rho GTPases. It exerts its regulatory function
in cell proliferation, participates in the signaling pathway
promoting cell survival, and plays a central role in the control of
cell adhesion and migration. Additionally, Liu et al. (53) reported
that MEG3 inhibits proliferation of 131 I-resistant TC cells by
negative regulation of miR-182, induces apoptosis, and enhances
DNA damage. These results indicate that MEG3 functions as a
tumor suppressor, resulting in the inhibition of tumor growth in
thyroid cancer.

Epigenetic Modification
lncRNAs have been reported to directly bind target proteins and
conduct post-transcriptional modification in many cancers (54–
57). Histone modifications are a type of epigenetic modifications.
A variety of lncRNAs are reportedly involved in the biological
activities of thyroid cancer through histone modification.

BANCR
BRAF-activated ncRNA (BANCR), a 693 bp-long transcript on
chromosome 9q21.12, was first discovered in 2012 by Flockhart

et al., and is considered a potential regulator of melanoma cell
metastasis (58). BANCR is strongly linked to BRAF V600E, the
most prevalent mutation in thyroid cancer genes. Studies have
shown that BANCR produced by the BRAF V600E mutation
is also associated with the occurrence of thyroid tumors (59).
BANCR has both carcinogenic and tumor suppressing effects, and
can play different roles in different tumors. It has been reported
that BANCR has a tumor suppressing effect in liver and bladder
cancers (60, 61), while it acts as an oncogene in gastric, colorectal,
and lung cancers (62–64).

Enhancer of zeste homolog 2 (EZH2), an oncogenic
histone methyltransferase, is a well-known histone modifier.
Overexpression of EZH2 has been strongly associated with
several types of cancer (65, 66). Zheng et al. (67) found that
the expression of BANCR in PTC tissues was significantly
higher than that in adjacent tissues. The study showed that
BANCR can be recruited by EZH2 to increase the expression
level of thyroid-stimulating hormone receptor (TSHR) and
promote the proliferation of IHH-4 thyroid cancer cells. TSH
exerts its effects on thyroid cell proliferation by binding to its
receptor, TSHR. By silencing BANCR, chromatin recruitment of
EZH2 and expression of TSHR can be reduced. Zheng et al.
(68) also reported that BANCR may promote the development
of malignant thyroid nodules via the modulation of TSHR
expression and its downstream effector, cyclin D1. However,
Wang et al. found that BANCR promotes EMT in PTC cell lines
by activating the Raf/MEK/ERK signaling pathway (69). Liu et al.
(70) reported that BANCR affects the proliferation, invasion,
and apoptosis of thyroid cancer cells through modulation of
autophagy behavior. The expression of BANCR was positively
related to the pathological stage of thyroid carcinoma and lymph
node metastasis. In their study, Zhang et al. (71) showed that
downregulation of BANCR promotes aggressiveness in PTC via
the MAPK and PI3K pathways. These studies indicated that
BANCR could function as both an oncogene and a tumor-
suppressor gene; thus, whether BANCR is bifunctional in PTC
warrants further clarifying investigation.

PVT1
lncRNA PVT1, located at chromosome 8q24.21, is highly
expressed in many tumors. In a previous study, PVT1 was
reported to promote the proliferation of thyroid carcinoma
cells by recruiting EZH2 and mediating TSHR expression (72).
Recently, Feng et al. (73) found that PVT1 is highly expressed
in thyroid cancer tissues and cells, and its expression level
is associated with TNM stage and lymph node metastasis
in thyroid cancer. The expression level of PVT1 in patients
with lymph node metastasis and tumor infiltration presented
with significantly higher expression level of PVT1 than their
counterparts without these aggressive disease features. lncRNA
PVT1, as a ceRNA of microRNA-30a, was proven to enhance the
invasion and metastasis of PTC cells by mediating expression of
insulin-like growth factor 1 receptor (IGF1R). IGF1R exerts its
function in maintaining homeostasis as well as normal thyroid
morphogenesis, and papillary thyroid hyperplasia is promoted
when certain IGF1R signals are lost. MiR-30a inhibits cell
invasion, migration potential, EMT, and metastatic potential by
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binding and negatively regulating expression of its target gene,
lysyl oxidase (LOX), which is associated with higher mortality
in undifferentiated thyroid carcinoma. The association between
PVT1 and thyroid cancer remains to be studied further.

Signaling Pathways
TGF-β Signaling Pathway

LncRNA SPRY4-IT1

SPRY4-IT1, a 708 bp lncRNA discovered by Khaitan et al. in
2011, is derived from an intron of the SPRY4 gene residing on
chromosome 5q31.3. Studies have confirmed that dysregulation
of SPRY4-IT1 is related tomany cancers, including osteosarcoma,
breast cancer, lung cancer, hepatocellular carcinoma, colorectal
cancer, pancreatic cancer, and others (74–79). Zhou et al. (80)
found that SPRY4-IT1 was upregulated in thyroid cancer tissues
and cell lines, and its high levels were strongly correlated
with lymph node metastasis, clinical stage, and poor prognosis
of patients with thyroid cancer (80). Additionally, SPRY4-IT1
participates in the progress of thyroid cancer by regulating
the TGF-β/Smad signaling pathway, which may provide a new
perspective for studies on thyroid cancer and SPRY4-IT1.

PI3K/AKT Signaling Pathway

GAS5

The gene coding for lncRNA growth arrest-specific 5 (GAS5)
is ∼630 nt long and is located on chromosome 1q25. GAS5 is
associated with a range of malignancies, including rectal cancer,
cervical cancer, glioma, and oral squamous cell carcinoma (81–
84). It was first reported by Abudoureyimu et al. (85) in thyroid
cancer, in which GAS expression reportedly decreases. Recently,
Guo et al. (86) reported that GAS5 expression was lower in
thyroid cancer tissues than in benign tumor tissues. Low GAS5
expression is related to TNM staging, lymph node metastasis,
multiple cancer foci, and poor prognosis in patients with thyroid
cancer. Zhang et al. (87) found that GAS5 is downregulated in
thyroid cancer tissues and thyroid cancer cell lines. This study
showed that GAS5, as a ceRNA, acts on miR-222-3p in thyroid
cancer, leading to activation of the PTEN/AKT pathway and
exerting an anti-cancer effect. PTEN is a key inhibitory gene for
tumor cell growth that inhibits AKT phosphorylation, and its
downregulation is related to tumorigenesis. Therefore,GAS5may
be a potential prognostic marker and therapeutic target in PTC.

H19

lncRNA- H19 is located on human chromosome 11p15.5 and
is involved in a great many cancers, including lung cancer,
breast cancer, and gastric cancer, among others. One study found
that H19 plays a more complex role in tumorigenesis, both
carcinogenic and tumor suppressive. Thus far, few studies have
examined the relationship between H19 and thyroid cancer. Lan
et al. (88) found that decreased expression of H19 in PTC is
closely related to lymph node metastasis. In the future, H19 may
be used to optimize management in patients with uncertain fine-
needle aspiration specimens. In addition, it could be used as a
potential tool to distinguish patients with and without lymph
node metastasis. Liu et al. (31) and Jiao et al. (89) reported
that increased H19 expression levels are associated with tumor

diameter, TNM stage, lymph nodemetastasis, and poor prognosis
in TC patients. Wang et al. (90) reported that H19 can inhibit
cell proliferation by downregulating IRS-1 in thyroid cancer
cells. IRS1 regulates the activation of the PI3K/AKT and nuclear
factor κ-β signaling pathways. The PI3K/AKT pathway exerts
its function in tumorigenesis. It has been shown to promote
malignant transformation of tumors by enhancing cancer cell
survival, proliferation, and metabolism (91). Li et al. (92) also
found thatH19 plays an oncogenic role in thyroid cancer through
the PI3K/AKT pathway. However, Liu et al. (93) found that H19
acts as an oncogene in thyroid cancer.H19 can promote invasion
and metastasis of thyroid cancer cells in vivo and in vitro. As
a ceRNA, lncRNA antagonizes the function of H19/miR-17-5p
and upregulates the expression of their target YES1, inducing
cell cycle progression. Knocking down H19 can inhibit cell
proliferation in vivo and in vitro. YES1 belongs to the protein
tyrosine kinase family and is upregulated in many cancers. In
addition, the study linked H19 overexpression to poor prognosis
in patients with thyroid cancer (93).

EMT Pathway

CASC2

lncRNA cancer susceptibility candidate 2 (CASC2), located
on chromosome 10q26, has been associated with a variety
of malignancies. However, studies on the association between
CASC2 and thyroid cancer are rare. Xiong et al. (94) reported
that CASC2 is downregulated in thyroid cancer tissues, and its
overexpression in vitro can inhibit the proliferation of thyroid
cancer cells by interfering with the cell cycle. Downregulation of
CASC2 expression was significantly associated with multifocality
and TNM staging of tumors, but not with other clinical
pathological parameters. CASC2 downregulation indicates poor
prognosis in thyroid cancer. Recently, CASC2 has been reported
to be significantly downregulated in tissue and plasma samples
from patients with PTC compared to levels in patients with
nodular goiter, and its expression level is significantly related
to LNM (95). In addition, this study demonstrated that CASC2
affects thyroid cancer cell invasion and metastasis by regulating
the EMT pathway, and may be a predictor of LNM in patients
with thyroid cancer. Compared with that in normal tissues,
the expression of CASC2 was significantly decreased in PTC
tumors, and the downregulation of CASC2 was significantly
associated with tumor size, presence of multifocal lesions, and
advanced pathological stage. Overexpression of CASC2 leads to
inactivation of AKT and ERK1/2, which can significantly inhibit
the proliferation of thyroid cancer cells (96).

MALAT1

Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is a lncRNA of more than 8.0 kb in length, and
its gene is located at 11q13.1. MALAT1 is associated with
many cancers (97–99). Studies have found that MALAT1 can
promote the proliferation and metastasis of thyroid cancer cells
(100, 101). In a previous study, Huang et al. (102) examined
10 cases of follicular thyroid carcinoma tissue and 10 cases of
normal thyroid tissue and found that MALAT1 was upregulated
in thyroid cancer tissues. MALAT1 promotes the formation of
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blood vessels in thyroid cancer by regulating the secretion of
the FGF2 protein in tumor-associated macrophages (TAMs),
thereby promoting biological behaviors such as proliferation and
metastasis in thyroid cancer cells. Chu et al. (101) reported that
the expression level of MALAT1 was significantly upregulated
in medullary thyroid carcinoma compared with that in normal
thyroid tissue. Furthermore, in vitro experiments have shown
that inhibition of MALAT1 exerts an anti-tumor effect and
inhibits cell proliferation and invasion. Zhang et al. (103)
found that MALAT1 expression was upregulated in PTC
TPC1 cells induced by transforming growth factor (TGF)-β
to the EMT, which provided a new perspective for lncRNA
research. This study also found that MALAT1 expression levels
in poorly differentiated thyroid carcinomas and anaplastic
thyroid carcinomas are significantly lower than those in normal
thyroid tissues, with expression in anaplastic thyroid carcinomas
(ATCs) showing the lowest levels. This was the first report
of MALAT1 being downregulated in any malignancy, and it
indicates that MALAT1 may be a potential tool in classification
of thyroid carcinoma. Recently, Liu et al. (104) found that
MALAT1 expression was upregulated in PTC tissues, and the
upregulated MALAT1 expression was correlated with tumor
size, lymph node metastases, and disease stage. Wen et al. (105)
explored the potential correlation between MALAT1 genetic
variations (single nucleotide polymorphism; SNP) and the risk
of PTC. They found that MALAT1 SNP rs619586 could directly
reduce MALAT1 expression, becoming a potential protective
factor that reduces the risk of PTC. MALAT1 may play different
roles in different thyroid tumors, and its effect is determined
by the type of thyroid cancer. Gene polymorphisms may be a
potential focal point in study of the relationship between lncRNA
and PTC.

Wnt/β-catenin Signaling Pathway
Certain lncRNAs function in a variety of ways. PTCSC3 can act
directly on its target gene S100A4 or through a signaling pathway.
Xia et al. (106) found that PTCSC3 reduces the proliferation
and invasion of glioma cells by inhibiting the action of the
Wnt/β-catenin signaling pathway. Additionally,Wang et al. (107)
reported that PTCSC3/miR574-5p promotes proliferation and
migration of papillary thyroid carcinoma cells via the Wnt/β-
catenin signaling pathway.

The lncRNAs discussed above and listed in Table 1 are likely
to function in thyroid cancer.

THE PROMISING FUTURE OF LNCRNAS IN
CANCER DIAGNOSIS AND PROGNOSIS

Many studies have found that certain lncRNAs are stably
present in human serum/plasma (108, 109), which may be
helpful in the study of the role of serum/plasma lncRNAs in
diagnosis and prognosis. Circulating markers have been widely
used for disease prediction. Shi et al. (109) reported that
the expression of lncRNAs in body fluids and serum/plasma
have significant value in the diagnosis of many cancers. Zhou
et al. (110) reported that the expression of H19 in plasma

has high specificity and sensitivity for diagnosis of gastric
cancer and was more effective than conventional biomarkers,
such as carcinoembryonic antigen (CEA) and carbohydrate
antigen 199 (CA199). Tang et al. (111) found that expression
of lncRNAs in saliva is associated with the prognosis of oral
squamous cell carcinoma and can provide clinics with a non-
invasive and convenient screening tool. To date, many circulating
lncRNAs have been shown to have diagnostic significance
in thyroid cancer, including HOTAIR, H19, MALAT1, GAS5,
GAS8-AS1, DLG1-AS1, ENST00000462717, ENST00000415582,
TCONS_00024700, and NR_028494 (34, 80, 102, 112). The
latter four are considered linked to prognosis of patients with
PTC and lung metastases (113). Zhang et al. (35) identified
plasma GAS8-AS1 overexpression in the serum of patients with
thyroid cancer. He et al. (112) found that plasma DLG1-AS1
was upregulated in patients with PTC but not in patients with
benign thyroid nodules or healthy controls. Plasma testing
for biomarkers not only enables early diagnosis, avoiding
poor prognoses, but also prevents unnecessary treatments.
Circulating lncRNAs may be potential tumor markers for
PTC diagnosis.

Thus far, many lncRNAs have been associated with PTC.
Most patients with PTC have a favorable prognosis with the
current therapeutic regimen, which includes surgical resection,
thyroid hormone suppression, and radioactive iodine therapy.
However, a small proportion of PTC cases have poor prognoses
due to metastases. Therefore, it is critical to differentiate these
patients from lower risk cases at the early stage. Screening
for some lncRNAs could contribute to molecular stratification
of aggressive and indolent PTC and accumulating evidence
has implicated lncRNAs in PTC LNM. Studies carried out via
microarray, TCGA PTC cohorts, or ceRNA networks have found
that many previously uncharacterized lncRNAs are associated
with poor prognosis or LNM. Song et al. (114) found that
high ENS-653 expression is associated with more advanced
tumor stage and poorer disease-free survival. RP11-547D24.1
and UNC5B-AS1 could differentiate patients with different stages
of PTC, and some lncRNAs play vital roles in determining
histological cancer type (115). Additionally, some lncRNAs are
associated with LNM (116).

Although the expression of lncRNAs in serum is meaningful
for studying certain biological behaviors of thyroid cancer,
the measurement of lncRNAs in serum is affected by many
factors. Studies have found that lncRNAs contained in blood
cells may affect the measurement of lncRNAs in serum (117).
The release of lncRNAs from blood cells during coagulation
can cause the concentration of lncRNAs in serum to be higher
than that in plasma. Factors such as diet and environment of
the subjects also affect serum lncRNA concentrations. Food
is a key confounding factor, and it is difficult for lncRNAs
from food to be distinguished from endogenous lncRNAs
once the former enter the circulation (118, 119). There are
other factors that may affect circulating lncRNAs. The use of
lncRNAs as molecular markers for clinical diagnosis may present
significant challenges.

Thus far, several molecular markers, including RAS, RET-
PTC, and BRAF (V600E) gene mutations, have been linked to
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TABLE 1 | LncRNAs are related to thyroid cancer.

No Approved

symbol

lncRNA name Gene locus Expression

level in

patient

Molecules and pathways

interacting with lncRNA in

thyroid cancer

References

1 BANCR BRAF-activated non-coding

RNA

Chr. 9q21.12 Overexpression EZH2, EMT, the Raf/MEK/ERK

signaling pathway

(67, 69)

2 PTCSC2 Papillary thyroid carcinoma

susceptibility candidate 2

Chr.9q22 Underexpression MYH9 (33)

3 PVT1 PVT1 oncogene Chr.8q24.21 Overexpression Insulin like growth factor 1

receptor, EZH2, microRNA-30a

(72, 73)

4 NEAT1 Nuclear-enriched abundant

transcript 1

Chr.11q13.1 Overexpression miR-129-5p, miR-214 (14, 15)

5 HOTAIR Hox transcript antisense

intergenic RNA

Chr.12q13.3 Overexpression Wnt pathway, CCND2 (24, 25)

6 TNRC6C-AS1 TNRC6C antisense transcript

1

Overexpression UNC5B, TNRC6C (28)

7 MEG3 Maternally expressed gene 3 Chr.14q32.2 Underexpression miR-182, Rac1 (52, 53)

8 GAS8-AS1 Underexpression ATGs (36)

9 PTCSC3 Papillary thyroid carcinoma

susceptibility candidate 3

chr.14q13.3 Underexpression S100A4 protein, miR574-5p,

Wnt/β-Catenin Signaling

(44, 45)

10 SPRY4-IT1 SPRY4 intronic transcript 1 Chr.5q31.3 Overexpression The-receptor-transduced

mitogen-activated protein kinase

pathway

(80)

11 GAS5 Growth arrest specific 5 Chr.1q25.1 Underexpression miR-222-3p (86, 87)

12 H19 H19 Chr.15p.15.5 Overexpression miR-17-5p, TNFR2 (90, 93)

13 CASC2 Cancer susceptibility

candidate 2

Chr.10q26 Underexpression EMT (95, 96)

14 MALAT1 Metastasis-associated lung

adenocarcinoma transcript 1

Chr.11q13.1 Overexpression EMT, TAM (102, 103)

PTC. BRAF mutations are the most common. According to the
exome and RNA sequences, proteomic profiles, and epigenetic
changes, Agrawal et al. (120) subdivided PTCs into BRAF-like
and RAS-like groups. The RET (+) PTCs were much closer
to BRAF-like PTCs than to RAS-like ones. A study reported
that RAS mutations are more frequent in poorly differentiated

thyroid carcinomas and anaplastic ones, but are rare in PTCs
(121). BRAF (V600E) is a thyroid cancer-specific gene, and

many studies have showed a significant association between
the BRAFV600E mutation in PTC and factors characteristic
of poor prognosis. Studies found that there are relationships
between lncRNAs in PTC and the most common genetic
alterations in PTC. Heejei Yoon et al. (122) reported that NAMA
underexpression correlates with BRAF mutation. Wang et al.
(123) reported that BRAF mutation is associated with the over-
expression of many oncogenic molecules in PTC, including
CCND1, CDKN1A, PERP, THBS1, and ZMAT3. Further, patients
with BRAFV600E mutation had a higher expression of ENS-
653 (114). COMET, a new natural antisense lncRNA, maps
on chromosome 7q31.2 and is highly expressed in BRAF-like
carcinomas (124). COMET is a MET regulator and has been
identified as a new MAPK-induced cytosolic lncRNA. Rusinek
et al. (125) identified 18 BRAF-induced genes that are specific for
BRAF V600E-driven PTC and seven BRAF-induced genes had
not been previously reported as being related to BRAF mutation
or thyroid carcinoma: MMD, ITPR3, AACS, LAD1, PVRL3,

ALDH3B1, and RASA1. These results reported the influence of
the BRAFV600E mutation on early PTC gene expression profile.
Additionally, the expression of some lncRNAs are associated
with BRAF (V600E) mutation. These lncRNAs may be associated
with poor prognosis in PTC; thus, lncRNAs with subtype-specific
expression stratified by BRAF mutation might be significant in
individual molecular subtypes.

Related treatments targeting lncRNAs are under development,
including nucleic acid-based therapies and plasmid-based
therapies. At least 25 RNAi-based drug candidates are under
clinical evaluation (126). Moreover, plasmid-based therapies are
also being used in clinical phase III trials of bladder cancer (127).
The idea that lncRNAs may be therapeutic targets in thyroid
cancer has been proposed, and targeted therapies may be under
development (31).

CONCLUSION AND PERSPECTIVE

As molecular markers for tumor diagnosis and treatment,
lncRNAs have been shown to participate in the proliferation,
invasion, and metastasis of various malignant cells. In thyroid
cancer, lncRNAs are potential biomarkers that could be used in
diagnosis and in predicting invasion and metastasis. It has been
reported that lncRNAs can be detected in plasma, serum, and
other liquids with good stability and easy detection, suggesting
new avenues for research. However, the regulatory mechanisms
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of lncRNAs in thyroid cancer remain to be further explored.
There are still many difficulties in the extraction of lncRNA
and future clinical applications. For example, under existing
storage conditions, it is difficult to protect samples from RNA
degradation, and the lncRNA database is relatively imperfect.

lncRNA is expected to become a target in gene-targeted
therapy. Cancer treatment can be achieved by silencing or
knocking down certain oncogenes. With the development of
precision medicine, genetic diagnosis and treatment will become
the trend, but there are still great challenges in research
into lncRNA.
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