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Abstract: This study was aimed at characterizing the gut microbiota (GM) and its functional profile in
two groups of Sardinian subjects with a long healthy life expectancy, overall named Long-Lived Sub-
jects (LLS) [17 centenarians (CENT) and 29 nonagenarians (NON)] by comparing them to 46 healthy
younger controls (CTLs). In addition, the contribution of genetics and environmental factors to the
GM phenotype was assessed by comparing a subgroup of seven centenarian parents (CPAR) with a
paired cohort of centenarians’ offspring (COFF). The analysis was performed through Next Genera-
tion Sequencing (NGS) of the V3 and V4 hypervariable region of the 16S rRNA gene on the MiSeq
Illumina platform. The Verrucomicrobia phylum was identified as the main biomarker in CENT,
together with its members Verrucomicrobiaceae, Akkermansia and Akkermansia muciniphila. In NON,
the strongest associations concern Actinobacteria phylum, Bifidobacteriaceae and Bifidobacterium,
while in CTLs were related to the Bacteroidetes phylum, Bacteroidaceae, Bacteroides and Bacteroides
spp. Intestinal microbiota of CPAR and COFF did not differ significantly from each other. Significant
correlations between bacterial taxa and clinical and lifestyle data, especially with Mediterranean diet
adherence, were observed. We observed a harmonically balanced intestinal community structure in
which the increase in taxa associated with intestinal health would limit and counteract the action of
potentially pathogenic bacterial species in centenarians. The GM of long-lived individuals showed an
intrinsic ability to adapt to changing environmental conditions, as confirmed by functional analysis.
The GM analysis of centenarians’ offspring suggest that genetics and environmental factors act
synergistically as a multifactorial cause in the modulation of GM towards a phenotype similar to
that of centenarians, although these findings need to be confirmed by larger study cohorts and by
prospective studies.

Keywords: intestinal microbiota; gut dysbiosis; intestinal eubiosis; longevity; centenarians;
16S rRNA; inflammation; Mediterranean diet; lifestyle; bowel function

1. Introduction

The aging process is influenced and determined by complex interactions between ge-
netic and environmental factors which, together with the stochastic process, can contribute
to the attainment of longevity [1,2]. Evidence that relatives of people with a long lifespan
are more likely to live longer and have a reduced risk of developing significant age-related
diseases makes aging a potential therapeutic target [3–5].
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Physiologically, aging is generally associated with low-grade systemic inflammation,
determined by imbalances between pro-inflammatory and anti-inflammatory activity,
which results in higher susceptibility to chronic diseases and disabilities [6–8]. At the
gastrointestinal level, aging entails the impairment of intestinal motility and increased
permeability, as well as changes to the intestinal nervous system and associated alterations
in GM [9–11]. In addition, reduction of physical exercise, alteration of taste and smell,
dyspepsia, dysphagia and complications related to teeth loss, are factors that exert a
strong influence on the modification of the intestinal microbial community structure in
aging [12–16].

Given its involvement in the aging process and its contribution to the regulation of
immune response and metabolic homeostasis, the intestinal microbiota has been postulated
as a possible biomarker of healthy aging [12,17,18]. In fact, the ability of eubiosis to contrast
inflammation, alterations in intestinal permeability, as well as the decline of both cognitive
and bone health, is well known [19]. When in its dysbiotic state, the GM is capable of affect-
ing the homeostatic systems of the individual [20] and has been associated with diseases
(and/or their progression), such as pro-inflammatory conditions [21], cardiovascular [22],
neurological [23–26], hepatic [27], autoimmune diseases [28], as well as metabolic disorders,
including obesity and metabolic syndrome [29–31] and inflammatory bowel diseases (IBD),
such as ulcerative colitis and Crohn’s disease [32,33]. Moreover, GM composition has
shown to be positively modulated by nutritional pattern, particularly by the Mediterranean
Diet (MD), rich in fibres and antioxidant compounds [34,35].

An abundance of evidence links aging with GM alterations, e.g., decreased diversity,
together with increased colonization by pathogenic microorganisms [19,36–38], thus several
hypotheses have been made about the implications of the GM in the successful aging pro-
cess. On one hand, it is believed that age-related GM remodeling may contribute to systemic
inflammation, which in turn can directly or indirectly affect the gut community structure
in a self-sustaining cycle [39]. On the other hand, it has also been hypothesized that the
intestinal microbial rearrangements are intended to compensate for the harmful activities
associated with the excessive presence of pathogens [19]. In this regard, Biagi et al. [14]
describe the GM of long-lived people as a system able to maintain functional interaction
with the host by successfully adapting to lifestyle changes and to potentially compromised
physiological functions, which characterize advanced age.

To date, a specific microbial profile of successful aging has not been clearly defined,
partially due to the variability of the inclusion factors under study and the different
analytical methods used for analysis. In fact, factors such as geographic heterogeneity,
residence structure and different dietary regimes can contribute to the heterogeneity of the
results [9,18,37,40].

We focused the survey of our study on Sardinia, an Italian island, and more specifically
to southern Sardinia. Sardinia represents an interesting geographical study target in this
context, since it has been classified as one of the five “Blue Zones” among the five continents
of the world where the highest instances of longevity and a higher frequency of long-lived
males are found [41]. Furthermore, a high degree of internal heterogeneity has recently
been highlighted in Sardinia; the subject of numerous studies for its genetic peculiarity due
to its geographical isolation [42].

Previous studies have highlighted interesting intestinal microbial profiles [43] and
bacterial and fungal communities in different anatomical sites [44] in long-lived subjects of
Sardinian origin, who were, however, from northern Sardinia. We focused our investigation
on southern Sardinia, thus expanding the literature on this topic. In particular, we analyzed
intestinal microbiota and its metabolic function in healthy Sardinian centenarians compared
to those of nonagenarian cohorts and those of a younger population. In addition, the
contribution of genetics and environmental factors to the GM phenotype was assessed
by comparing one subgroup of centenarians to a paired cohort of their children, in order
to determine to what extent GM changes are involved in successful aging and whether
age-related GM rearrangements are a contributing factor, or rather a consequence of,
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exceptional and healthy aging. Lastly, a correlation analysis between significant microbial
taxa associated with longevity and dietary, lifestyle and clinical variables was performed.

2. Materials and Methods
2.1. Study Design and Characteristics of Subjects

The study evaluated the distinctive signatures of the GM and its functional profile in a
sample of 92 subjects of Sardinian origin. Among them, two groups of subjects with a long
and healthy life expectancy, referred to as LLS (17 CENT and 29 NON) were compared
to 46 younger CTLs. In addition, the contribution of genetics to the GM phenotype was
assessed by comparing a subgroup of seven CPAR with a paired cohort of the COFF.

Cases and controls, matched by gender, were recruited in the study by the Department
of Biomedical Sciences and Department of Medical Sciences and Public Health of the Uni-
versity Hospital of Cagliari (Sardinia, Italy). As for inclusion criteria, the groups consisted
of Sardinian subjects aged ≥ 100 and ≥ 90 for CENT and NON groups, respectively, and
aged between 40 and 60 for CTLs. Healthy subjects with a suitable index of independence in
daily life activities and of cognitive ability (assessed by “Activities of Daily Living test” and
“Mini Mental State Examination test”, respectively) were also required. The exclusion crite-
ria included the inability to provide written informed consent or to follow the procedures
determined by the protocol, diagnosis of malignant neoplasm and/or history of malignant
neoplasms surgically removed within five years prior to enrollment, IBD, celiac disease, un-
controlled diabetes, serious cardiovascular disease, cardiovascular events within five years
prior to enrollment, and other clinically significant severe pathologies such as renal, hepatic,
hematological, pulmonary, neurological, psychiatric, immunological, gastrointestinal or
endocrine diseases, therapy with immunosuppressive drugs (cyclosporine, methotrexate,
glucocorticoids) or anticoagulants, antimicrobials and/or prebiotic or probiotic intake, and
any hypocaloric diet in the 60 days preceding the sample collection.

Clinical data from each study participant, including demographic and anthropometric
data, lifestyle factors (smoking status, alcohol and coffee consumption, bowel function,
medications and Mediterranean Diet score (MDS)) and the presence of comorbidities, were
collected (Table 1). Limited to the LLS group, data relating to Mini Mental State Evalua-
tion (MMSE), Activities of Daily Living (ADL), Mini Nutritional Assessment (MNA) and
Physical Activity Scale for the Elderly (PASE) were also recorded. All clinical evaluations
were performed contextually to the sampling date. The anthropometric and lifestyle factor
assessments, such as MMSE [45], ADL [46], MNA [47,48], PASE [49] and MDS [50] scores
can be found as Supplementary Materials in the sections “Anthropometric evaluation” and
“Lifestyle factor assessment”.

2.2. Sampling

Stool samples from each subject were independently collected. The collection was
carried out at home or in the host structures by the staff, using standard safety procedures.
Transport was carried out by the staff and delivery was made to the laboratory within 3 h.
Fresh samples were stored at −80 ◦C until further processing.

2.3. Total DNA Extraction from Fecal Sample and Quantification of Bacterial DNA

Genomic DNA was isolated from the fecal sample utilizing the QIAamp Fast DNA
Stool Mini Kit following the manufacturer’s instructions (Qiagen, Hilden, Germany). The
concentration of the fecal bacterial DNA of each patient was quantified through real-
time PCR (qPCR) on the genomic DNA samples, performed using degenerate primers
encompassing the V3 and V4 hypervariable region of the bacterial 16S rRNA gene, as
previously described [32].
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Table 1. Clinical and lifestyle data of CENT and CTLs subjects.

CENT NON CTLs p CENT vs NON p CENT vs CTLs p NON vs CTLs

n 17 29 46
Demographic data
Age (M ± SD) 102.2 ± 2.3 93.1 ± 2.7 50.9 ± 8.3 1.62 × 10−14 1.11 × 10−33 3.46 × 10−39

Female (n, %) 14, 82.3 23, 79.3 37, 80.4 0.802 0.863 0.906
Male (n, %) 3, 17.6 6, 20.7 9, 19.6 0.802 0.863 0.906
Anthropometric data
BMI (M ± SD) 26.12 ± 4.5 27.14 ± 4.2 22.75, 2.8 0.274 0.001 0
Lifestyle factors
Current smoking status (n, %) 0, 0.0 0, 0.0 7, 15.2 - 0.088 0.027
Former smoking status (n, %) 2, 11.8 3, 10.3 2, 4.3 0.881 0.785 0.881
Current alcohol consumption (n, %) 8, 47.1 11, 37.9 9, 19.6 0.544 0.701 0.829
Former alcohol consumption (n, %) 13, 76.5 17, 58.6 n.d. 0.22 - -
Coffee consumption (n, %) 13, 76.5 21, 72.4 33, 71.7 0.762 0.982 0.677
Bowel function
Movements/week (M ± SD) 4.4 ± 2.2 4.9 ± 2.1 n.d. 0.193 - -
From 1 to 3 (movements/week, %) 8, 47.1 10, 30.5 n.d. n.d. - -
From 4 to 5 (movements/week, %) 3, 17.6 2, 6.9 n.d. n.d. - -
From 6 to 7 (movements/week, %) 6, 35.3 17, 58.6 n.d. n.d. - -
Medications, n/day (M ± SD) 3.4 ± 2.9 4.5 ±2.8 n.d. 0.209 4.43 × 10−09 1.12 × 10−14

MMSE score (M ± SD) 19.3 ± 4.3 25.3 ± 4.3 n.d. 0.001 - -
MDS (M ± SD) 31.0 ± 5.3 30.7 ± 4.5 32.9 ± 3.7 0.426 0.067 0.036
ADL score (M ± SD) 2.7 ± 2.3 4.2 ± 2.3 n.d. 0.03 - -
PASE score (M ± SD) 11.2 ± 12.3 31.7 ± 24.1 n.d. 0.024 - -
MNA score (M ± SD) 24.1 ± 3.4 24.0 ± 6.9 n.d. 0.782 - -
Comorbidities (n, %) 16, 94.1 27, 93.1 6, 13.0 0.893 0 0

M = mean, n = number, SD = standard deviation, BMI = Body Mass Index, MMSE = Mini Mental State Evaluation,
MDS = Mediterranean Diet score, ADL = Activities of Daily Living, PASE = Physical Activity Scale for the
Elderly, MNA = Mini Nutritional Assessment, n.d. = not determined. The statistical significance was evaluated
by t tests for independent samples for continuous variables and by Pearson’s chi-squared test for categorical
variables in SPSS software v.28.0.1.0. Bold values denote statistical significance (p ≤ 0.05). CENT = centenarians,
NON = nonagenarians, CTLs = healthy younger controls.

2.4. 16S Libraries Preparation and Sequencing

The protocol of library preparation and sequencing has been described in detail
elsewhere [29]. 16S barcoded amplicon libraries were generated using primers targeting
the V3-V4 hypervariable region of the bacterial 16S rRNA gene and the Nextera XT index
kit (Illumina, inc., San Diego, CA, USA), and their size and quality were verified using
Agilent DNA 1000 Analysis kit (Agilent Technologies, Santa Clara, CA, USA) on the Agilent
2100 Bioanalyzer system (Model G2939B, Agilent Technologies, Santa Clara, CA, USA).
Genomic libraries were quantified with a Qubit 3.0 Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA) using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific,
Waltham, MA, USA), normalized to a concentration equal to 4 nM, then pooled. The
pooled library, and the adapter-ligated library PhiX v3 used as a control, were denatured
and diluted to equal concentration (8 pM) and subsequently combined to obtain a PhiX
concentration equal to 5% of the total volume. Combined 16S library and PhiX control
were further denatured and sequenced on the MiSeq platform using MiSeq v3 Reagent
Kit (Illumina).

2.5. Data and Statistical Analysis

Analysis of the data generated on the Miseq System was carried out using the BaseS-
pace 16S Metagenomics App (Illumina), whereas operational taxonomic unit (OTU) map-
ping to the Greengenes database (v.13.8) [51] was performed using the Quantitative Insights
Into Microbial Ecology (QIIME) platform (v.1.8.0) [52].

Alpha diversity was assessed with the script alpha rarefaction.py in QIIME in order
to obtain the Shannon index. Alpha diversity and Firmicutes/Bacteroidetes ratio were
analyzed using the Kruskal-Wallis test followed by Bonferroni correction for multiple
comparisons. Beta diversity was generated in R-vegan, using the Bray-Curtis distance.
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The Non-Metric Multidimensional Scaling (NMDS) based on the Bray-Curtis distance
matrix was conducted in R software v.3.5.2 (ggplot2 package). The statistical significance of
beta diversity among the groups was determined with Permutational Multivariate Analysis
of Variance (PERMANOVA) (R-vegan, function adonis). The overall p-value obtained from
multiple comparisons was confirmed through a pairwise PERMANOVA test performed
in R (RVAdeMemoire package). The analysis at taxonomic levels was performed in SPSS
software v.28.0.1.0 (IBM, New York, NY, USA) using the Kruskal-Wallis test. Pairwise
comparison was performed only for significant taxa, followed by Bonferroni correction
for multiple comparisons. Only bacteria present in at least 25% of the samples and with
a relative abundance of ≥0.1% in cases and/or controls were considered. The Linear
Discriminant Analysis Effect Size (LEfSe) was additionally performed on statistically sig-
nificant bacterial taxa obtained by the Kruskal-Wallis test and confirmed after Bonferroni
adjustment. The LEfSe algorithm was performed on the Galaxy computational tool v.1.0.
(http://huttenhower.sph.harvard.edu/galaxy/) accessed on 30 August 2021. The associa-
tion between the relative abundance of significant taxonomic levels and dietary, lifestyle,
and clinical variables was evaluated by calculating the Spearman’s correlation on SPSS
software v.28.0.1.0.

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PI-
CRUSt) [53] algorithm was performed on Galaxy software v.1.0. (https://galaxy.morganlangille.
com/, accessed on 30 August 2021) to infer metagenome composition in the samples by an-
alyzing OTUs generated by QIIME pipeline. Bacterial metabolic pathways were predicted
and classified by Kyoto Encyclopedia of Genes and Genomes (KEGG) [54].

Statistical differences were analyzed for all metabolism pathways present in at least
25% of the samples and with a minimum abundance of 0.1% using Statistical Analysis
of Metagenomic Profiles (STAMP) software [55]. The statistical significance was tested
using Welch’s test, with a Storey False Discovery Rate correction (FDR) correction. Overall,
p ≤ 0.05 was considered statistically significant.

3. Results
3.1. Clinical and Lifestyle Data of Subjects

Clinical characteristics of the study cohorts are shown in Tables 1 and 2. Overall, the
study cohorts were rather homogeneous with each other regarding demographic, anthro-
pometric and lifestyle data. Notably, the analysis of clinical data showed no statistically
significant differences between CENT and NON in terms of gender, BMI, comorbidities
and lifestyle factors, except for MMSE, ADL and PASE scores, while LLS groups diverged
significantly from CTLs in some clinical factors, such as BMI, number of medications per
day and comorbidities. Furthermore, the number of smokers was significantly higher in
CTLs than in the NON group (p = 0.027) and NON presented a lower adherence to MD
compared to CTLs, though the statistical value was not highly significant (p = 0.036). The
CPAR and COFF cohorts were not significantly different in terms of gender, BMI and most
lifestyle factors, except bowel function, number of medications, MMSE, ADL, PASE and
MNA scores.

3.2. Gut Microbiota Analysis
3.2.1. Alpha and Beta Diversity Analysis

The Kruskal-Wallis test showed statistically significant differences in the Shannon
index across different study cohorts (p = 0.037), confirmed by pairwise testing only for
the long-lived group comparison that showed an alpha diversity in CENT significantly
lower than that in NON (CENT = 2.39 ± 0.31, NON = 2.46 ± 0.29, p = 0.020). Alpha
diversity was higher in both LLS cohorts compared to controls, albeit not significantly (see
Figure 1A and Supplementary Table S1 online). No statistically significant differences in
the Shannon index between CPAR and COFF subgroups were observed (p = 0.398; see
Supplementary Table S1 online).

http://huttenhower.sph.harvard.edu/galaxy/
https://galaxy.morganlangille.com/
https://galaxy.morganlangille.com/
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Table 2. Clinical and lifestyle data of CPAR and COFF subjects.

CPAR COFF p CPAR vs COFF

n 7 7
Demographic data
Age (M ± SD) 102 ± 1.9 65.4 ± 6.6 0.000
Female (n, %) 5, 71.4 4, 57.1 1.000
Anthropometric data
BMI (M ± SD) 27.76 ± 5.3 25.93 ± 1.9 0.425
Lifestyle factors
Current smoking status (n, %) 0, 0.0 1, 14.3 1.000
Former smoking status (n, %) 5, 71.4 6, 85.7 0.500
Current alcohol consumption (n, %) 3, 42.9 6, 85.7 0.375
Former alcohol consumption (n, %) 5, 71.4 6, 85.7 1.000
Coffee consumption (n, %) 6, 85.7 7, 100 1.000
Bowel function
Movements/week (M ± SD) 3.7 ± 1.9 6.4 ± 1.1 0.037
From 1 to 3 (movements/week, %) 4, 57.1 0, 0.0 n.d.
From 4 to 5 (movements/week, %) 2, 28.6 1, 14.3 n.d..
From 6 to 7 (movements/week, %) 1, 14.3 6, 85.7 n.d.
Medications, n/day (M ± SD) 5.0 ± 3.6 2.1 ± 1.7 0.041
MMSE score (M ± SD) 20.5 ± 4.3 27.2 ± 2.7 0.014
MDS (M ± SD) 28.6 ± 7.9 27.0 ± 7.0 0.323
ADL score (M ± SD) 2.4 ± 2.6 6.0 ± 0.0 0.010
PASE score (M ± SD) 10.5 ± 12.8 133.5 ± 22.3 0.000
MNA score (M ± SD) 24.0 ± 4.2 27.0 ± 2.5 0.023
Comorbidities (n, %) 7, 100 7, 100 1.000

M = mean, n = number, SD = standard deviation, BMI = Body Mass Index, MMSE = Mini Mental State Evaluation,
MDS = Mediterranean Diet score, ADL = Activities of Daily Living, PASE = Physical Activity Scale for the Elderly,
MNA = Mini Nutritional Assessment, n.d. = not determined. The statistical significance was evaluated by t test
for independent samples for continuous variables and by Pearson’s chi-squared test for categorical variables
in SPSS software v.28.0.1.0. Bold values denote statistical significance (p ≤ 0.05). CPAR = centenarian parents,
COFF = centenarians’ offspring.
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Figure 1. GM alpha and beta diversity analysis between CENT, NON and CTLs groups. (A) Plots
indicate a statistically significant difference in the Shannon index between CENT and NON, evaluated
by Kruskal-Wallis test. p equal to or less than 0.05 was considered statistically significant. (B) The Non-
Metric Multidimensional Scaling (NMDS) plot based on Bray-Curtis distance matrix, performed in R
software v.3.5.2 (ggplot2 package), showed a marked separation between the GM communities of LLS
groups and CTLs. The statistical significance among the groups was determined with Permutational
Multivariate Analysis of Variance (PERMANOVA) performed in R-vegan, function adonis (sum of
square s = 1.498, mean of squares = 0.749, F = 6.074, R = 0.1201, p = 0.001). Significant segregation
persisted only in the comparison between CENT and CTLs (p = 0.006) and between NON and CTLs
(p = 0.003) following the pairwise PERMANOVA test performed in R (RVAdeMemoire package).
p ≤ 0.05 was considered statistically significant. CENT = centenarian subjects, NON = nonagenarian
subjects, CTLs = healthy younger controls, MDS = Multidimensional Scaling.
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The Non-Metric Multidimensional Scaling (NMDS) based on the Bray-Curtis distance
matrix showed a marked separation between the GM communities of LLS and CLTs (see
Figure 1B and Supplementary Table S2 online), confirmed by PERMANOVA analysis, which
indicated a significant difference in beta diversity between cohorts (sum of squares = 1.498,
mean of squares = 0.749, F = 6.074, R = 0.1201, p = 0.001). Significant segregation persisted
only in the comparison between CENT and CTLs (p = 0.006) and between NON and CTLs
(p = 0.003) following the pairwise PERMANOVA test.

No statistically significant differences in beta diversity between CPAR and COFF sub-
groups were obtained (sum of squares = 0.08, mean of squares = 0.08, F = 0.706, R = 0.056,
p = 1) (Supplementary Table S3 online).

3.2.2. Compositional Analysis of the Gut Microbiota

Illumina MiSeq generated a mean value of 108,775 (+/− 16,901 SD) reads per patient.
The Firmicutes/Bacteroidetes ratio was significantly higher in LLS compared to CTLs

(see Table 3), while no statistical significance persisted when CPAR and COFF were com-
pared (p = 0.499).

Table 3. Firmicutes/Bacteroidetes ratio analysis between CENT, NON and CTLs and between CPAR
and COFF.

MEAN ± SD OVERALL P BONFERRONI P
(CENT VS. CTLS)

BONFERRONI P
(NON VS. CTLS)

0.003 0.015 0.022
CENT 4.88 ± 4.79
NON 3.83 ± 4.28
CTLS 1.73 ± 1.85

0.499
CPAR 4.88 ± 4.79
COFF 3.83 ± 4.28

The statistical significance was calculated by the non-parametric Mann-Whitney test in SPSS software v.28.0.1.0.
Pairwise comparison was performed only for significant taxa, followed by Bonferroni correction for multi-
ple comparisons. The Firmicutes/Bacteroidetes ratio was significantly higher in CENT and NON compared
to CTLs (p = 0.015 and p = 0.022 respectively). No statistical significance persisted in the comparison be-
tween CPAR and COFF (p = 0.499). Bold values denote statistical significance (p ≤ 0.05). CENT = cente-
narian subjects, NON = nonagenarian subjects, CTLs = healthy younger controls, CPAR = centenarian parents,
COFF = centenarians’ offspring.

The Kruskal-Wallis test on GM composition between CENT, NON and CTLs showed
105 statistically significant results (see Table 4). Pairwise analysis showed 29 common sig-
nificant differences in the two classes of LLS compared to CTLs, 24 significant divergences
were found only from the comparison between CENT and CTLs, 41 only from the compari-
son between NON and CTLs, while the GM of CENT and NON differed significantly in 8
bacterial taxa (see Supplementary Tables S4–S7 online).

Table 4. Statistically significant differences in the relative abundance of bacterial taxa between CENT,
NON and CTLs.

Post hoc Analysis, Bonferroni Method (Only for
Significant Bacteria)

Phylum Family Genus Species Kruskal-Wallis
p-Value

Pairwise
Group

Pairwise
p-Value

Chi Square
(χ2)

↓/↑ Mean ± SD
CENT

Mean ± SD
NON

Mean ± SD
CTLs

Actinobacteria 0.0018 CENT- CTLs 0.0393
12.66

↑ 8.04 ± 10.23 9.12 ± 9.91 3.09 ± 3.61
NON- CTLs 0.0039 ↑

Actinobacteria Bifidobacteriaceae 0.0037 NON- CTLs 0.0058 11.2 ↑ 6.95 ± 10.25 8.01 ± 9.71 2.08 ± 3.03
Actinobacteria Coriobacteriaceae 0.0003 CENT- CTLs 0.0445

16.16
↑ 1.10 ± 1.13 1.17 ± 1.41 0.56 ± 0.87

NON- CTLs 0.0004 ↑
Actinobacteria Bifidobacteriaceae Bifidobacterium 0.0039 NON- CTLs 0.0061 11.1 ↑ 6.91 ± 10.18 7.98 ± 9.67 2.07 ± 3.02
Actinobacteria Coriobacteriaceae Collinsella 0.0022 NON- CTLs 0

12.26
↑ 0.66 ± 0.73 0.77 ± 1.28 0.00 ± 0.00

CENT- CTLs 0 ↑
Actinobacteria Coriobacteriaceae Eggerthella 0.0075 CENT- CTLs 0.0275

9.79
↑ 0.10 ± 0.22 0.05 ± 0.05 0.03 ± 0.05

NON- CTLs 0.0394 ↑
Actinobacteria Eggerthellaceae Slackia 0.0024 NON- CTLs 0.0028 12.07 ↑ 0.27 ± 0.29 0.29 ± 0.26 0.17 ± 0.26
Actinobacteria Bifidobacteriaceae Bifodobacterium B. angulatum 0 NON- CTLs 0 24.71 ↑ 0.01 ± 0.03 0.18 ± 0.60 0.00 ± 0.01

CENT- NON 0.0035 24.71 ↓
Actinobacteria Bifidobacteriaceae Bifodobacterium B. asteroides 0.0006 CENT- CTLs 0.0294

14.95
↑ 0.11 ± 0.18 0.11 ± 0.14 0.02 ± 0.03

NON- CTLs 0.0011 ↑
Actinobacteria Bifidobacteriaceae Bifodobacterium B. bifidum 0.0175 NON- CTLs 0.0418 8.09 ↑ 0.29 ± 0.48 0.11 ± 0.17 0.04 ± 0.17
Actinobacteria Bifidobacteriaceae Bifodobacterium B. catenulatum 0.0025 CENT- NON 0.0347 11.95 ↓ 0.92 ± 3.03 1.03 ± 2.04 0.12 ± 0.33

NON- CTLs 0.0031 11.95 ↑
Actinobacteria Bifidobacteriaceae Bifodobacterium B. choerinum 0.0118 NON- CTLs 0.033 8.88 ↑ 0.14 ± 0.19 0.24 ± 0.33 0.09 ± 0.19
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Table 4. Cont.

Post hoc Analysis, Bonferroni Method (Only for
Significant Bacteria)

Phylum Family Genus Species Kruskal-Wallis
p-Value

Pairwise
Group

Pairwise
p-Value

Chi Square
(χ2)

↓/↑ Mean ± SD
CENT

Mean ± SD
NON

Mean ± SD
CTLs

Actinobacteria Bifidobacteriaceae Bifodobacterium B. indicum 0.0018 NON- CTLs 0.0022 12.68 ↑ 0.14 ± 0.25 0.23 ± 0.25 0.06 ± 0.10
Actinobacteria Bifidobacteriaceae Bifodobacterium B. kashiwanohense 0.0011 NON- CTLs 0.0008 13.55 ↑ 0.12 ± 0.34 0.16 ± 0.29 0.02 ± 0.05
Actinobacteria Bifidobacteriaceae Bifodobacterium B. stercoris 0.04 NS NS 6.44 1.30 ± 2.75 1.26 ± 2.20 0.27 ± 0.46
Actinobacteria Coriobacteriaceae Collinsella C. aerofaciens 0.0122 NON- CTLs 0.0126 8.82 ↑ 0.36 ± 0.42 0.40 ± 0.48 0.21 ± 0.41
Actinobacteria Coriobacteriaceae Collinsella C. intestinalis 0.0048 CENT- CTLs 0.0295

10.66
↑ 0.13 ± 0.22 0.06 ± 0.06 0.09 ± 0.33

NON- CTLs 0.0192 ↓
Actinobacteria Coriobacteriaceae Collinsella C. tanakaei 0.001 NON- CTLs 0.0007 13.77 ↑ 0.09 ± 0.34 0.29 ± 1.26 0.01 ± 0.02

Bacteroidetes 0.0002 CENT- CTLs 0.0032
16.95

↓ 24.74 ±
24.26

25.28 ±
17.60

43.59 ±
21.64

NON- CTLs 0.0019 ↓

Bacteroidetes Bacteroidaceae 0.0007 CENT- CTLs 0.0085
14.54

↓ 15.77 ±
17.53

15.03 ±
12.52

28.05 ±
18.05

NON- CTLs 0.004 ↓
Bacteroidetes Rikenellaceae 0.0023 CENT- CTLs 0.0034 12.17 ↑ 0.12 ± 0.18 0.06 ± 0.11 0.07 ± 0.14

Bacteroidetes Bacteroidaceae Bacteroides 0.0007 CENT- CTLs 0.0085
14.54

↓ 15.77 ±
17.53

15.03 ±
12.52

28.05 ±
18.05

NON- CTLs 0.004 ↓
Bacteroidetes Prevotellaceae Paraprevotella 0.0495 NS NS NS 0.11 ± 0.20 0.18 ± 0.36 0.34 ± 0.51
Bacteroidetes Porphyromonadaceae Porphyromonas 0.1131 NS NS 4.36 0.02 ± 0.02 0.19 ± 0.48 0.06 ± 0.09
Bacteroidetes Bacteroidaceae Bacteroides B. caccae 0.0005 NON- CTLs 0.0003 15.31 ↓ 0.56 ± 0.76 0.27 ± 0.65 0.90 ± 1.09
Bacteroidetes Bacteroidaceae Bacteroides B. cellulosilyticus 0.011 NON- CTLs 0.0091 9.02 ↓ 0.37 ± 0.74 0.19 ± 0.56 0.61 ± 1.22
Bacteroidetes Bacteroidaceae Bacteroides B. coprocola 0.0209 CENT- CTLs 0.0333 7.73 ↓ 0.64 ± 2.45 0.28 ± 0.83 0.98 ± 3.70
Bacteroidetes Bacteroidaceae Bacteroides B. denticanum 0.0154 NON- CTLs 0.0363 8.35 ↓ 0.13 ± 0.31 0.12 ± 0.23 0.52 ± 1.20
Bacteroidetes Bacteroidaceae Bacteroides B. dorei 0.0338 NS NS 6.78 1.05 ± 2.14 1.47 ± 3.18 2.21 ± 3.23
Bacteroidetes Bacteroidaceae Bacteroides B. fragilis 0.0172 NON- CTLs 0.0316 8.13 ↑ 0.22 ± 0.30 0.68 ± 1.54 0.24 ± 0.71
Bacteroidetes Bacteroidaceae Bacteroides B. intestinalis 0.0184 CENT- NON 0.0202 7.99 ↑ 0.22 ± 0.53 0.00 ± 0.01 0.11 ± 0.54
Bacteroidetes Bacteroidaceae Bacteroides B. ovatus 0.0085 CENT- CTLs 0.0179 9.54 ↓ 0.27 ± 0.51 0.44 ± 0.63 1.27 ± 2.57

Bacteroidetes Bacteroidaceae Bacteroides B.
paurosaccharolyticus 0.0167 CENT- CTLs 0.0176 8.18 ↓ 0.10 ± 0.13 0.15 ± 0.18 0.18 ± 0.17

Bacteroidetes Bacteroidaceae Bacteroides B. rodentium 0.0002 CENT- CTLs 0.0446
17.37

↓ 1.82 ± 2.47 0.95 ± 1.11 2.65 ± 2.36
NON- CTLs 0.0002 ↓

Bacteroidetes Bacteroidaceae Bacteroides B. sartorii 0.0002 CENT- CTLs 0.0006
17.3

↓ 0.22 ± 0.60 0.12 ± 0.10 0.25 ± 0.20
NON- CTLs 0.0102 ↓

Bacteroidetes Bacteroidaceae Bacteroides B. stercorirosoris 0 NON- CTLs 0 23.17 ↓ 0.40 ± 0.41 0.22 ± 0.24 0.62 ± 0.52
Bacteroidetes Bacteroidaceae Bacteroides B. uniformis 0.0043 NON- CTLs 0.0042 10.89 ↓ 3.05 ± 5.92 1.43 ± 2.30 3.09 ± 3.36
Bacteroidetes Bacteroidaceae Bacteroides B. xylanisolvens 0.0005 CENT- CTLs 0.0017

15.19
↓ 0.50 ± 0.47 0.74 ± 0.82 1.74 ± 2.57

NON- CTLs 0.014 ↓
Bacteroidetes Prevotellaceae Paraprevotella P. clara 0.0378 CENT- CTLs 0.0453 6.55 ↓ 0.04 ± 0.08 0.06 ± 0.11 0.16 ± 0.28
Bacteroidetes Prevotellaceae Prevotella P. shahii 0.0276 NS NS 7.18 0.14 ± 0.59 0.02 ± 0.08 0.07 ± 0.21
Bacteroidetes Sphingobacteriaceae Sphingobacterium S. shayense 0.0389 NON- CTLs 0.0421 4.49 ↓ 0.09 ± 0.10 0.08 ± 0.10 0.18 ± 0.27
Chloroflexi Caldilineaceae 0.0288 NON- CTLs 0.0267 7.09 ↓ 0.06 ± 0.04 0.05 ± 0.06 0.12 ± 0.13
Cyanobacteria 0.0093 NON- CTLs 0.0071 9.36 ↓ 0.62 ± 0.81 0.31 ± 0.45 0.95 ± 1.63
Cyanobacteria Aphanizomenonaceae Dolichospermum 0.0019 CENT- CTLs 0.0045

12.57
↓ 0.00 ± 0.00 0.01 ± 0.01 0.34 ± 1.30

NON- CTLs 0.0348 ↓
Cyanobacteria Aphanizomenonaceae Dolichospermum D. macrosporum 0 CENT- CTLs 0.0005

26.32
↓ 0.00 ± 0.00 0.00 ± 0.00 0.34 ± 1.30

NON- CTLs 0 ↓
Euryarchaeota 0 CENT- CTLs 0

19.43
↑ 0.29 ± 0.65 0.12 ± 0.36 0.00 ± 0.00

NON- CTLs 0.0131 ↑
Euryarchaeota Methanobacteriaceae 0 CENT- CTLs 0

40.68
↑ 0.29 ± 0.65 0.12 ± 0.36 0.03 ± 0.20

NON- CTLs 0.013 ↑
Euryarchaeota Methanobacteriaceae Methanobrevibacter M. smithii 0 CENT- CTLs 0

25.27
↑ 0.28 ± 0.61 0.11 ± 0.34 0.04 ± 0.19

NON- CTLs 0.0116 ↑
Euryarchaeota Methanobacteriaceae Methanobrevibacter 0 CENT- CTLs 0

24.45
↑ 0.29 ± 0.65 0.12 ± 0.36 0.04 ± 0.20

NON- CTLs 0.0189 ↑
Firmicutes Eubacteriaceae 0.0179 NON- CTLs 0.0445 8.05 ↑ 0.13 ± 0.10 0.14 ± 0.12 0.09 ± 0.08
Firmicutes Lactobacillaceae 0.009 CENT- NON 0.0267 9.43 ↓ 0.23 ± 0.47 1.04 ± 3.22 0.13 ± 0.17

NON- CTLs 0.0235 9.43 ↑
Firmicutes Streptococcaceae 0 NON- CTLs 0 23.55 ↑ 0.72 ± 0.87 1.80 ± 2.18 0.19 ± 0.26
Firmicutes Synergistaceae 0 CENT- CTLs 0.0067 30.49 ↑ 0.48 ± 0.88 0.17 ± 0.63 0.03 ± 0.13
Firmicutes Thermicanaceae 0.0051 CENT- CTLs 0.0244

10.55
↑ 0.11 ± 0.21 0.14 ± 0.23 0.03 ± 0.06

NON- CTLs 0.0251 ↑
Firmicutes Acidaminococcaceae Acidaminococcus 0.0084 NON- CTLs 0.006 9.56 ↓ 0.36 ± 1.22 0.04 ± 0.13 0.54 ± 1.64
Firmicutes Lachnospiraceae Blautia 0.0376 CENT- CTLs 0.0335 6.56 ↓ 3.63 ± 2.36 5.48 ± 3.94 6.50 ± 4.86
Firmicutes Lachnospiraceae Butyrivibrio 0.0016 CENT- CTLs 0.0038

12.93
↓ 0.02 ± 0.02 0.02 ± 0.03 0.12 ± 0.34

NON- CTLs 0.0318 ↓
Firmicutes Syntrophomonadaceae Caldicellulosiruptor 0.0102 CENT- CTLs 0.0148 9.17 ↑ 0.11 ± 0.11 0.08 ± 0.10 0.06 ± 0.07
Firmicutes Eubacteriaceae Eubacterium 0.0296 CENT- NON 0.0283 7.04 ↓ 0.13 ± 0.21 0.30 ± 0.82 0.05 ± 0.10
Firmicutes Lactobacillaceae Lactobacillus 0.0064 NON- CTLs 0.0174 10.12 ↑ 0.22 ± 0.46 1.00 ± 3.09 0.12 ± 0.16

CENT- NON 0.0204 10.12 ↓
Firmicutes Acidaminococcaceae Phascolarctobacterium 0.0197 NON- CTLs 0.0393 7.85 ↓ 1.84 ± 2.79 0.29 ± 0.44 1.35 ± 2.00
Firmicutes Streptococcaceae Streptococcus 0 NON- CTLs 0 23.67 ↑ 0.70 ± 0.87 1.78 ± 2.16 0.19 ± 0.25

Firmicutes Bacillales_Family
X_Incertae Sedis Thermicanus 0.0051 CENT- CTLs 0.0244

10.55
↑ 0.11 ± 0.21 0.14 ± 0.23 0.03 ± 0.06

NON- CTLs 0.0251 ↑
Firmicutes Acidaminococcaceae Acidaminococcus A. intestini 0.001 NON- CTLs 0.0009 13.81 ↓ 0.02 ± 0.06 0.00 ± 0.00 0.14 ± 0.42
Firmicutes Lachnospiraceae Blautia B. coccoides 0.0072 CENT- CTLs 0.0059 9.87 ↓ 0.63 ± 0.46 1.40 ± 1.31 1.40 ± 1.05

CENT- NON 0.0375 9.87 ↓
Firmicutes Lachnospiraceae Blautia B. wexlerae 0.0526 NS NS 5.89 0.29 ± 0.42 0.59 ± 0.84 0.88 ± 1.84
Firmicutes Lachnospiraceae Butyrivibrio B. proteoclasticus 0.0016 CENT- CTLs 0.0039

12.89
↓ 0.02 ± 0.02 0.02 ± 0.03 0.12 ± 0.34

NON- CTLs 0.0327 ↓
Firmicutes Erysipelothricaceae Erysipelothrix E. inopinata 0.0317 CENT- CTLs 0.0258 6.9 ↓ 0.06 ± 0.13 0.13 ± 0.29 0.16 ± 0.49
Firmicutes Lactobacillaceae Lactobacillus L. taiwanensis 0.0001 CENT- CTLs 0.0313

18.86
↑ 0.02 ± 0.05 0.16 ± 0.84 0.00 ± 0.00

NON- CTLs 0.0001 ↑
Firmicutes Acidaminococcaceae Phascolarctobacterium P. faecium 0.0048 NON- CTLs 0.0252 10.67 ↓ 0.68±1.10 0.04±0.12 0.45±1.03

CENT- NON 0.0095 10.67 ↑
Firmicutes Ruminococcaceae Ruminococcus R. torques 0.0437 NS NS NS 0.27 ± 0.58 0.13 ± 0.26 0.14 ± 0.30
Firmicutes Streptococcaceae Streptococcus S. bovis 0 NON- CTLs 0 20.22 ↑ 0.03 ± 0.03 0.24 ± 0.55 0.03 ± 0.13
Firmicutes Streptococcaceae Streptococcus S. parasanguinis 0 NON- CTLs 0 24.27 ↑ 0.05 ± 0.08 0.19 ± 0.30 0.01 ± 0.01
Firmicutes Streptococcaceae Streptococcus S. vestibularis 0.0066 NON- CTLs 0.0046 10.05 ↑ 0.18 ± 0.31 0.57 ± 0.89 0.05 ± 0.10
Firmicutes Veillonellaceae Veillonella V. atypica 0.0122 NON- CTLs 0.0091 8.82 ↑ 0.05 ± 0.14 0.12 ± 0.22 0.04 ± 0.11
Firmicutes Veillonellaceae Veillonella V. dispar 0.0195 NON- CTLs 0.0155 7.87 ↑ 0.05 ± 0.18 0.11 ± 0.28 0.02 ± 0.04
Fusobacteria Fusobacteriaceae 0.0266 NS NS 7.26 0.03 ± 0.10 0.10 ± 0.35 0.21 ± 1.39
Proteobacteria Alcaligenaceae 0.0003 CENT- CTLs 0.0065

16.38
↓ 0.46 ± 1.31 0.46 ± 1.43 0.83 ± 0.86

NON- CTLs 0.0014 ↓
Proteobacteria Comamonadaceae 0.0357 NS NS NS 0.07 ± 0.11 0.11 ± 0.33 0.13 ± 0.18
Proteobacteria Desulfohalobiaceae 0.014 CENT- CTLs 0.0109 8.53 ↑ 0.23 ± 0.27 0.11 ± 0.09 0.15 ± 0.27
Proteobacteria Xanthomonadaceae 0 CENT- CTLs 0.0015

45.43
↑ 0.13 ± 0.15 0.09 ± 0.11 0.01 ± 0.03

NON- CTLs 0.0021 ↑
Proteobacteria Oxalobacteraceae Collimonas 0 CENT- CTLs 0

61.68
↓ 0.00 ± 0.00 0.00 ± 0.00 0.32 ± 0.54

NON- CTLs 0 ↓
Proteobacteria Desulfohalobiaceae Desulfonauticus 0.0142 CENT- CTLs 0.011 8.51 ↑ 0.23 ± 0.27 0.11 ± 0.09 0.15 ± 0.27
Proteobacteria Desulfovibrionaceae Desulfovibrio 0.0079 CENT- CTLs 0.0177 9.68 ↑ 0.44 ± 0.48 0.70 ± 1.66 0.19 ± 0.34
Proteobacteria Enterobacteriaceae Enterobacter 0.0246 NON- CTLs 0.0201 7.41 ↑ 0.34 ± 0.67 0.76 ± 2.35 0.11 ± 0.35
Proteobacteria Enterobacteriaceae Escherichia 0.0022 NON- CTLs 0.0019 12.28 ↑ 7.00 ± 12.18 3.14 ± 6.70 0.22 ± 0.65
Proteobacteria Yersiniaceae Serratia 0.0007 NON- CTLs 0.0005 14.56 ↑ 1.15 ± 1.92 0.67 ± 1.10 0.06 ± 0.13
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Table 4. Cont.

Post hoc Analysis, Bonferroni Method (Only for
Significant Bacteria)

Phylum Family Genus Species Kruskal-Wallis
p-Value

Pairwise
Group

Pairwise
p-Value

Chi Square
(χ2)

↓/↑ Mean ± SD
CENT

Mean ± SD
NON

Mean ± SD
CTLs

Proteobacteria Sutterellaceae Sutterella 0.0003 CENT- CTLs 0.0068
16.32

↓ 0.43 ± 1.17 0.46 ± 1.43 0.80 ± 0.84
NON- CTLs 0.0015 ↓

Proteobacteria Zoogloeaceae Uliginosibacterium 0.0327 NON- CTLs 0.0356 6.84 ↓ 0.02 ± 0.07 0.00 ± 0.00 0.20 ± 1.25

Proteobacteria Enterobacteriaceae Candidatus
Blochmannia C. B. rufipes 0.0118 NON- CTLs 0.0123 8.89 ↓ 0.00 ± 0.00 0.00 ± 0.00 0.65 ± 0.76

Proteobacteria Desulfohalobiaceae Desulfonauticus D. autotrophicus 0.0142 CENT- CTLs 0.011 8.51 ↑ 0.23 ± 0.27 0.11 ± 0.09 0.15 ± 0.27
Proteobacteria Desulfovibrionaceae Desulfovibrio D. piger 0.0004 CENT- CTLs 0.0093

15.42
↑ 0.14 ± 0.36 0.20 ± 0.72 0.03 ± 0.09

NON- CTLs 0.002 ↑
Proteobacteria Enterobacteriaceae Escherichia E. albertii 0.004 NON- CTLs 0.0037 11.06 ↑ 5.67 ± 9.94 2.54 ± 5.38 0.20 ± 0.60
Proteobacteria Yersiniaceae Serratia S. entomophila 0.0009 NON- CTLs 0.0007 14.12 ↑ 1.13 ± 1.90 0.66 ± 1.09 0.06 ± 0.13
Synergistetes 0.0007 CENT- CTLs 0.0024

14.54
↑ 0.56 ± 0.95 0.28 ± 0.70 0.04 ± 0.07

NON- CTLs 0.0154 ↑
Synergistetes Synergistaceae Cloacibacillus 0.0028 CENT- CTLs 0.0018 11.77 ↑ 0.27 ± 0.71 0.11 ± 0.57 0.02 ± 0.11
Synergistetes Synergistaceae Synergistes 0.0191 CENT- CTLs 0.0148 7.92 ↑ 0.15 ± 0.45 0.03 ± 0.09 0.01 ± 0.06

Verrucomicrobia 0.0032 CENT- CTLs 0.0036 11.47 ↑ 10.26 ±
14.88 6.46 ± 10.39 2.20 ± 4.71

Verrucomicrobia Verrucomicrobiaceae 0.0047 CENT- CTLs 0.0054 10.72 ↑ 10.19 ±
14.84 6.43 ± 10.36 2.19 ± 4.70

Verrucomicrobia Verrucomicrobiaceae Akkermansia 0.0054 CENT- CTLs 0.0058 10.45 ↑ 9.02 ± 13.17 5.67 ± 9.17 1.91 ± 4.12
Verrucomicrobia Verrucomicrobiaceae Luteolibacter 0.001 CENT- CTLs 0.0012 13.78 ↑ 0.49 ± 0.70 0.31 ± 0.50 0.11 ± 0.24
Verrucomicrobia Verrucomicrobiaceae Prosthecobacter 0.0072 CENT- CTLs 0.0098 9.86 ↑ 0.16 ± 0.22 0.10 ± 0.15 0.04 ± 0.08
Verrucomicrobia Rubritaleaceae Rubritalea 0.0035 CENT- CTLs 0.0045 11.29 ↑ 0.38 ± 0.53 0.24 ± 0.39 0.09 ± 0.18
Verrucomicrobia Verrucomicrobiaceae Akkermansia A. muciniphila 0.0054 CENT- CTLs 0.0058 10.45 ↑ 9.02 ± 13.16 5.67 ± 9.17 1.91 ± 4.12
Verrucomicrobia Verrucomicrobiaceae Luteolibacter L. algae 0.001 CENT- CTLs 0.0012 13.78 ↑ 0.49 ± 0.70 0.31 ± 0.50 0.11 ± 0.24

Table shows the GM significant differences between CENT, NON and CTLs performed by Kruskal-Wallis test on R
software v.3.5.2. Pairwise comparison was performed only for significant taxa, followed by Bonferroni correction
for multiple comparisons. p equal to or less than 0.05 was considered statistically significant. CENT = centenarian
subjects, NON = nonagenarian subjects, CTLs = healthy younger controls, ↓ = significantly reduced in the first
term of the pairwise group, ↑ = significantly increased in the first term of the pairwise group.

The Kruskal-Wallis test on GM composition between CPAR and COFF showed five sta-
tistically significant results, which did not maintain statistical significance after Bonferroni
correction (see Table 5).

Table 5. Relative abundance differences of bacterial taxa between CPAR and COFF.

Post-Hoc Analysis,
Bonferroni Method

(only for Significant Bacteria)

Phylum Family Genus Species Kruskal-Wallis
p-Value Bonferroni p ↓/↑ Mean ± SD

CPAR
Mean ± SD

COFF

Bacteroidetes Bacteroidaceae Bacteroides B. denticanum 0.028 1.37 ↓ 0.05 ± 0.03 0.97 ± 0.84
Bacteroidetes Bacteroidaceae Bacteroides B. plebeius 0.043 1.98 ↓ 0.06 ± 0.14 2.03 ± 2.10
Firmicutes Ruminococcaceae Faecalibacterium 0.018 0.90 ↓ 7.52 ± 4.48 12.83 ± 8.04
Firmicutes Ruminococcaceae Faecalibacterium F. prausnitzii 0.028 1.37 ↓ 1.81 ± 1.34 3.34 ± 2.63
Firmicutes Lachnospiraceae Roseburia R. faecis 0.028 1.37 ↓ 0.32 ± 0.23 1.26 ± 0.90

Relative abundance differences of bacterial taxa between CPAR and COFF were performed by Kruskal-Wallis test
on R software v.3.5.2 followed by Bonferroni correction for multiple comparisons. Bonferroni p equal to or less
than 0.05 was considered statistically significant. CPAR = centenarian parents, COFF = centenarians’ offspring,
↓ = significantly reduced in CPAR.

The LEfSe was additionally performed on statistically significant bacterial taxa ob-
tained by the Kruskal- Wallis test and confirmed after Bonferroni adjustment. Results were
ranked by their Linear Discriminant Analysis (LDA) score (see Figure 2): the Verrucomi-
crobia phylum was identified as the main biomarker in CENT, together with its members
Verrucomicrobiaceae, Akkermansia, Akkermansia muciniphila, Prosthecobacter, Luteolibacter,
Luteolibacter algae, Rubritaleaceae and Rubritalea, while within the Firmicutes phylum the
strongest associations were related to Acidaminococcaceae, Phascolarctobacterium and Phas-
colarctobacterium faecium. Strongly associated were the Synergistetes phylum and related
Synergistaceae and Cloacibacillus taxa, as well as Xanthomonadaceae, Desulfonauticus, Desulfo-
nauticus autotrophicus (Proteobacteria) and Eggerthella, Bifidobacterium bifidum and Collinsella
intestinalis (Actinobacteria). Euryarchaeota phylum and related taxa Methanobacteriaceae,
Methanobrevibacter, Methanobrevibacter smithii also showed a strong association in CENT,
as well as Rikenellaceae, Bacteroides intestinalis, Prevotella and Prevotella shahii, relative to
Bacteroidetes phylum.



Nutrients 2022, 14, 2436 10 of 25Nutrients 2022, 14, x FOR PEER REVIEW  17  of  32 
 

 

 

Figure 2. Linear Discriminant Analysis Effect Size (LEfSe) of microbial taxa between CENT, NON 

and CTLs. 

LEfSe plots of taxonomic biomarkers were generated on the Galaxy computational 

tool  v.1.0.  (https://huttenhower.sph.harvard.edu/galaxy/)  accessed  on  30 August  2021. 

Results were ranked by  their Linear Discriminant Analysis  (LDA) score. Blue bacterial 

taxa were more abundant in NON, green bacterial taxa were more abundant in CTLs, red 

Figure 2. Linear Discriminant Analysis Effect Size (LEfSe) of microbial taxa between CENT, NON
and CTLs.

In CTLs, the strongest associations were related to Bacteroidetes phylum and its
members Bacteroidaceae, Bacteroides and Bacteroides spp. In the same cohort, the main
biomarkers were taxa belonging to Cyanobacteria phylum, such as Aphanizomenonaceae,
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Dolichospermum and Dolichospermum macrosporum, to Proteobacteria phylum (Alcalige-
naceae, Comamonadaceae, Oxalobacteraceae, Collimonas, Candidatus Blochmannia, Candida-
tus Blochmannia rufipes, Sutterellaceae and Sutterella), and to Firmicutes phylum, such as
Acidaminococcus intestini, Erysipelothricaceae, Erysipelothrix, Erysipelothrix inopinata, Butyriv-
ibrio and Butyrivibrio proteoclasticus. The Prevotellaceae family (Bacteroidetes phylum), also
showed strong association in CTLs.

In NON, the strongest associations concern Actinobacteria phylum and related mem-
bers Bifidobacteriaceae, Bifidobacterium spp., Coriobacteriaceae, Collinsella, Collinsella tanakaei,
Eggerthellaceae, Slackia and Blautia coccoides. A strong association was also found for the
taxa Streptococcaceae, Streptococcus, Streptococcus spp., Lactobacillaceae, Lactobacillus, Lacto-
bacillus spp., Veillonellaceae, Veillonella, Veillonella dispar, Veillonella atypica, Thermicanaceae,
Thermicanus, Bacillales_Family X_Incertae Sedis, all belonging to Firmicutes phylum. In
the Bacteroidetes phylum an association was found only for the Bacteroides fragilis species.
Desulfovibrionaceae, Desulfovibrio and Desulfovibrio piger (Proteobacteria) were also strongly
associated in NON.

LEfSe plots of taxonomic biomarkers were generated on the Galaxy computational tool
v.1.0. (https://huttenhower.sph.harvard.edu/galaxy/) accessed on 30 August 2021. Results
were ranked by their Linear Discriminant Analysis (LDA) score. Blue bacterial taxa were
more abundant in NON, green bacterial taxa were more abundant in CTLs, red bacterial
taxa were more abundant in CENT. CENT = centenarian subjects, NON = nonagenarian
subjects, CTLs = healthy younger controls.

3.2.3. Spearman Correlation between Gut Microbiota Alterations and Dietary, Lifestyle and
Clinical Variables in CENT and Non

Taxa significantly associated with longevity were correlated with dietary, lifestyle
and clinical parameters in both CENT and NON. Most taxa associated with CENT were
correlated with MDS score and bowel function (see Figure 3A and Supplementary Table S8
online). As for the former, seven bacterial taxa were positively correlated, while six were
negatively correlated. The taxa related to MDS score mainly concerned the Firmicutes
phylum, such as Lactobacillus taiwanensis, Clostridiaceae and its members Clostridium
and Dorea, Peptoniphilus, Thermicanaceae and Thermicanus, all of which were positively
correlated, and Catenibacterium, Veillonella and Dialister invisus, which were all negatively
correlated. Furthermore, Bacteroides rodentium and Parabacteroides merdae, which belong
to Bacteroidetes phylum, and Eggerthella, which belongs to Actinobacteria phylum, were
negatively and positively correlated with MDS, respectively. As for bowel function, eight
bacterial taxa were positively correlated, and one was negatively correlated. The positively
correlated taxa mostly concerned the Firmicutes phylum (Thermicanaceae, Thermicanus,
E. inopinata), but also included Desulfohalobiaceae, Desulfonauticus, D. autotrophicus (Pro-
teobacteria) and Synergistetes phylum with its Synergistaceae family. The taxa negatively
correlated to bowel function belonged to the Firmicutes phylum (L. taiwanensis). Some
bacterial taxa have frequently shown a correlation with several clinical variables. The
Thermicanaceae family and related Thermicanus genus were also positively related to levels
of current and former alcohol consumption, whereas Desulfovibrio was negatively corre-
lated with MMSE and MNA scores and to former alcohol consumption; D. piger negatively
correlated with ADL, MNA and PASE scores.

In NON, there was a greater number of correlations than in CENT (see Figure 3B
and Supplementary Table S9 online), mainly related to the number of medications, MDS
and PASE score. Taxa belonging to Actinobacteria phylum, such as Bifidobacterium, Bifi-
dobacterium spp., Blautia wexlerae (Firmicutes) and Bacteroidaceae (Bacteroidetes phylum)
were negatively correlated to the number of medications, while the Bacteroidetes phylum
(and related Bacteroides, Bacteroides spp., Sphingobacterium shayense) and Alcaligenaceae and
Sutterella (Proteobacteria phylum) showed a positive correlation. Members belonging to
the Actinobacteria phylum were all negatively correlated to MDS scores (Bifidobacteri-
aceae, Bifidobacterium, Bifidobacterium spp., Streptomycetaceae), as were those belonging to

https://huttenhower.sph.harvard.edu/galaxy/
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Bacteroidetes (Odoribacteraceae, Bacteroides spp., Pedobacter kwangyangensis and Parabac-
teroides spp.) and to Firmicutes (Alkaliphilus, Clostridium frigoris, Lactobacillus ultunensis,
Peptoniphilus). Several significant associations were found for other clinical variables, such
as ADL and PASE scores. Taxa belonging to Proteobacteria phylum (Serratia, S. ento-
mophila, Escherichia, E. albertii) and Eggerthella (Actinobacteria) were inversely related to
ADL scores. In relation to PASE scores, Firmicutes members (Thermicanaceae, Thermicanus,
Blautia wexlerae), on one hand, and Bacteroidetes and Proteobacteria members, on the other,
showed a positive and negative correlation, respectively.
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Figure 3. Spearman correlation analysis between GM alterations and clinical variables in CENT and
NON. Heatmaps were generated in GraphPad Prism v.7.0d. A correlation heatmap was used to
represent significant statistical correlation values (Rho) between intestinal microbiota taxa signif-
icantly associated with CENT (A), NON (B) and clinical features. In the heatmap, violet squares
indicate significant negative correlations (Rho < 0.0, p ≤ 0.05) and blue squares indicate significant
positive correlations (Rho > 0.0, p ≤ 0.05). Only p ≤ 0.05 are shown. BMI = Body Mass Index,
ADL = Activities of Daily Living, DMS = Mediterranean Diet score, MMSE = Mini Mental State
Evaluation, MNA = Mini Nutritional Assessment, PASE = Physical Activity Scale for the Elderly.
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3.2.4. Functional Metagenome Prediction Analysis

A comparative prediction analysis of the functional metagenome was performed using
PICRUSt. A total of three different significantly metabolic pathways were identified by
comparing CENT and NON (see Figure 4A). In particular, the pathway related to the
biosynthesis of secondary metabolites (tropane, piperidine and pyridine alkaloid) were
most expressed in CENT, while the pathways related to lipid metabolism (Ether lipid
metabolism) and amino acid metabolism (D-Arginine and D-ornithine metabolism) were
enriched in NON. The comparative functional metagenome prediction between LLS groups
and CTLs showed a common significative decrease in glycan degradation in both LLS
groups and a significant increase in secretion systems and in signal transduction (two-
component system) in the same subjects (Figure 4B,C). In CENT the bacterial secretion
system and the pathway of replication, recombination and reparation of proteins were
also most expressed compared to CTLs; on the other hand, the metabolism of pyrimidine,
amino and nucleotide sugar was reduced.

Nutrients 2022, 14, x FOR PEER REVIEW  20  of  32 
 

 

A  comparative prediction  analysis  of  the  functional metagenome was performed 

using PICRUSt. A total of three different significantly metabolic pathways were identified 

by comparing CENT and NON (see Figure 4A). In particular, the pathway related to the 

biosynthesis of secondary metabolites (tropane, piperidine and pyridine alkaloid) were 

most expressed  in CENT, while  the pathways  related  to  lipid metabolism  (Ether  lipid 

metabolism) and amino acid metabolism (D‐Arginine and D‐ornithine metabolism) were 

enriched  in NON.  The  comparative  functional metagenome  prediction  between  LLS 

groups and CTLs showed a common significative decrease in glycan degradation in both 

LLS groups and a significant increase in secretion systems and in signal transduction (two‐

component  system)  in  the  same  subjects  (Figures  4B  and  C).  In  CENT  the  bacterial 

secretion system and the pathway of replication, recombination and reparation of proteins 

were  also most  expressed  compared  to CTLs;  on  the  other  hand,  the metabolism  of 

pyrimidine, amino and nucleotide sugar was reduced. 

Comparing  the  functional metagenome prediction profile of NON  and CTLs has 

shown  that  in  the  former, a significant decrease  in starch and sucrose metabolism was 

observed, whereas in the latter, a reduction in transporters and ABC transporter pathways 

was  found.  No  statistically  significant  differences  in  the  functional  metagenome 

comparing CPAR and COFF subgroups were observed. 

 

Figure 4. Statistically significant functional alterations of intestinal microbiome between CENT and 

NON and between LLS and CTLs. Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved  States  (PICRUSt)  algorithm  was  performed  on  Galaxy  software  v.1.0. 

(https://galaxy.morganlangille.com/), accessed on 18 May 2020, to infer metagenome composition 

in the samples by analyzing OTUs generated by QIIME pipeline. Bacterial metabolic pathways were 

Figure 4. Statistically significant functional alterations of intestinal microbiome between CENT and
NON and between LLS and CTLs. Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt) algorithm was performed on Galaxy software v.1.0. (https://galaxy.
morganlangille.com/), accessed on 18 May 2020, to infer metagenome composition in the samples
by analyzing OTUs generated by QIIME pipeline. Bacterial metabolic pathways were predicted
and classified by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Statistical differences
were analyzed for all metabolism pathways using the Statistical Analysis of Metagenomic Profiles
(STAMP) software. Statistical significance was tested using Welch’s test, with a Storey False
Discovery Rate correction (FDR) correction. q equal to or less than 0.05 was considered statistically
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significant. (A) Pathways more abundant in CENT are on the positive side (green circle with 95% CI);
pathways less abundant in CENT are on the negative side (red circle with 95% CI). Mean proportions
are shown in stacks (CENT = green; NON = red). The difference in mean proportions indicates
the mean proportion CENT minus the mean proportion NON. (B,C) Pathways more abundant are
on the positive side (red or green circle with 95% CI). Pathways less abundant are on the negative
side (blue circle with 95% CI). Mean proportions are shown in stacks (CENT = red, NON = green;
CTLs = blue. The difference in mean proportions indicates the mean proportion LLS group minus the
mean proportion CTLs. CENT = centenarian subjects, NON = nonagenarian subjects, CTLs = healthy
younger controls, LLS = long-lived subjects.

Comparing the functional metagenome prediction profile of NON and CTLs has
shown that in the former, a significant decrease in starch and sucrose metabolism was
observed, whereas in the latter, a reduction in transporters and ABC transporter pathways
was found. No statistically significant differences in the functional metagenome comparing
CPAR and COFF subgroups were observed.

4. Discussion

The present study aimed at characterizing human GM and its functional profile in
two groups of Sardinian subjects with long, healthy lifespans (17 CENT and 29 NON)
by comparing them to 46 younger CTLs. In addition, the contribution of genetics and
environmental factors to the GM phenotype was assessed by comparing a subgroup of
centenarian parents (CPAR) with a paired cohort of centenarians’ offspring (COFF). The
analysis was performed through NGS of the V3 and V4 hypervariable regions of the 16S
bacterial rRNA gene on the MiSeq Illumina platform.

The alpha diversity in CENT and NON was higher than in CTLs, although no signifi-
cant difference in the Shannon index was observed. These data confirm previous studies’
results, as the literature agrees on a greater alpha diversity being associated with aging
among elderly and extremely elderly adults; however, findings are not always statistically
significant [56,57].

Beta diversity analysis showed a significant dissimilarity between both groups of long-lived
subjects (CENT and NON) compared to CTLs, as previously reported [19,43,58,59].

Our microbial diversity findings represent a strong indicator of GM implications in
advanced aging, in agreement with previous hypotheses. In fact, greater alpha diversity
in both CENT and NON cohorts compared to healthy controls reflects a rich and complex
microbial ecosystem, indicative of an adaptable intestinal microbiota, capable of adapting
to multiple environmental perturbations. Due to this peculiarity, high intestinal microbial
diversity has been defined as an indicator of longevity [60].

We also observed a statistically significant reduction in the alpha diversity of CENT
compared to NON. It should be pointed out that lower alpha diversity has been associated
with poor cognitive function [61], in line with a significantly lower MMSE score in the CENT
cohort compared to NON. Furthermore, although the CENT cohort represents a healthy
population, during aging, and especially in advanced aging, a physiological reduction
in gastrointestinal function and host immune response has been observed linked to the
development of chronic low-grade inflammation [6]. In this regard, it has been observed
that reduced alpha diversity is related to metabolic and inflammatory diseases [62,63].
Therefore, a reduction in alpha diversity in CENT compared to NON is not surprising.

At the taxonomic level, we observed a significant increase in the Firmicutes/Bacteroidetes
ratio in both CENT and NON groups compared to CTLs, in contrast to previous stud-
ies on centenarian subjects with the same [43] or a different geographic origin [36] and
also to studies on the elderly [9,64]. Notably, among our CENT, NON and CTLs cohorts,
the relative abundance of Firmicutes was approximately the same and did not change
significantly (40.54, 47.72 and 43.15, respectively; p = 0.387), while that of Bacteroidetes
almost doubled in CTLs compared to CENT and NON groups (43.59, 24.74 and 25.28,
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respectively; pCENTvsCTLs = 0.015 pNONvsCTLs = 0.022). In other words, the higher Firmi-
cutes/Bacteroidetes ratio in our long-living subjects compared to controls reflected a
significant reduction in the relative abundance of the Bacteroidetes phylum, rather than an
increase in that of Firmicutes.

Multilevel taxonomic analysis showed greater divergences between LLS and CTLs,
while the GM composition between CENT and NON did not diverge considerably. Specifi-
cally, more statistically significant differences (n = 41 taxa) were found between NON and
CTLs. Twenty-four taxa significantly diverged when comparing CENT to CTLs, while
twenty-nine common taxa in both CENT and NON were significantly altered compared to
CTLs. Lastly, only eight bacterial taxa were significantly altered when comparing CENT to
NON. This demonstrates that the GMs of the older cohorts are more similar to each other
than to the cohort of younger subjects.

LEfSe showed that the Verrucomicrobia phylum was identified as the main biomarker
in CENT, together with its members Verrucomicrobiaceae, Akkermansia and Akkermansia
muciniphila, as often reported in previous studies of centenarians [57,65,66], while one
study observed an opposite trend [64]. In addition, Akkermansia has been reported to
increase with aging in several studies [6]. Akkermansia muciniphila is a mucin degrading
bacterium that resides in the human intestinal mucous layer and is able of promoting
intestinal integrity due to its capacity for restoring mucous thickness and thus stimulating
the mucous turnover rate [67,68]. It is considered a significant biomarker of intestinal
homeostasis, as its depletion has been associated with many diseases such as inflammatory
bowel diseases and metabolic disorders [69]. Several studies confirm its protective effects.
A. muciniphila has been reported to increase anti-tumor responses during anti-programmed
cell death protein 1 (PD-1) immunotherapy [70], improve metabolic status and clinical
outcomes after a dietary intervention in overweight/obese adults [71] and have protective
effects in diet-induced obesity [72,73]. A. muciniphila supplementation in patients with over-
weight/obesity has reduced inflammation marker levels and improved several metabolic
parameters [74], while in animal models of diabetes and obesity, it has restored the integrity
of the epithelial mucosa, improved glucose tolerance and improved metabolic parameters,
such as endotoxemia and inflammation [75].

Other strongly associated taxa in CENT were the Synergistaceae family, which belong
to the Synergistetes phylum, Eggerthella, Collinsella intestinalis and Bifidobacterium bifidum
(Actinobacteria), Methanobrevibacter and Methanobrevibacter smithii (Euryarchaeota phylum),
as well as Rikenellaceae and Prevotella within the Bacteroidetes phylum. These associations
are consistent with previous studies in which an increase in the abundance of all these
taxa, with the exception of Prevotella, was observed in centenarians compared to younger
subjects [19,43,58,66].

Some strongly associated taxa in CENT have never been reported before: Prosthe-
cobacter, Luteolibacter, Luteolibacter algae, Rubritaleaceae and Rubritalea, belonging to the
Verrucomicrobia phylum; Acidaminococcaceae, Phascolarctobacterium and Phascolarctobac-
terium faecium (Firmicutes phylum), the Synergistetes phylum and related Cloacibacillus
taxa, Xanthomonadaceae, Desulfonauticus and Desulfonauticus autotrophicus (Proteobacteria),
the Euryarchaeota phylum and related taxa Methanobacteriaceae, in addition to Bacteroides
intestinalis and Prevotella shahii, relative of the Bacteroidetes phylum.

To date, the metabolic role of most of the taxa mentioned above has not been charac-
terized. However, the beneficial effect of some of them has been described. For instance,
Bifidobacterium bifidum constitutes one of the most dominant taxa of human intestinal mi-
crobiota in healthy breast-fed infants [76] and it has been individuated as one of the most
abundant Bifidobacteria species in Italian centenarians [77].

Bacteroides intestinalis is able to degrade complex arabinoxylans from dietary fibre with
the consequent release of the beneficial ferulic acid metabolite. It has been demonstrated
that cultured Bacteroides intestinalis in the presence of complex insoluble arabinoxylans
enhances the Th1-type immune response in mice and exerts anti-inflammatory activity in
dendritic cells under inflammatory conditions [78].
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Phascolarctobacterium is an acetate/propionate-producer, whose increase, observed
after treatment with berberine and metformin in high-fat diet-induced obesity in rats, has
been hypothesized to contribute to the beneficial effects of these two drugs [79]. Phascolarc-
tobacterium faecium exerted beneficial effects on the host in rat models with nonalcoholic
fatty liver disease [80], and has been associated with the supplementation of cruciferous
vegetables in a controlled fruit and vegetable-free diet [81].

Regarding the Euryarchaeota phylum, the Methanobacteriaceae family and its mem-
bers, Methanobrevibacter and Methanobrevibacter smithii, were strongly associated with CENT.
These data are in agreement with previous studies that reported a high abundance of
Methanobrevibacter smithii and of Methanobrevibacter genus in the centenarian gut microbiota
of Sardinian and Chinese subjects, respectively [43,82]. Methanobrevibacter smithii represents
the most dominant methanogen in the human gut due to its ability to reduce CO2 by
using H2 (or formate) [83]. Several studies have investigated the possible link between
the presence of methanogens and some human diseases, such as colorectal cancers (CRC),
inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), obesity and constipa-
tion, although contradictory findings make them difficult to interpret [83]. However, the
mutualistic activity of M. smithii and B. thetaiotaomicron, inoculated into a germ-free mice
model, has shown to promote an increase in caloric intake from diets, in lipogenesis and in
host fat [84]. Noteworthy is the relationship between methanogens and aging, based on the
excreting methane breath test, which has been consistently observed [83]. This association
has not yet been defined, but different hypotheses have been formulated. Among them, the
possibility that methanogens are selected during aging for their insensitivity to most of the
antibiotics used throughout a lifespan, their slower transit time observed in aging, which
possibly contributes to their over-representation, and favorable environmental exposure to
methanogens in extreme long-living subjects during their life compared to current adults
(different dietary habits, exposure to livestock) [83].

In NON, the strongest associations observed concerned the Actinobacteria phylum
and related members Bifidobacteriaceae, Bifidobacterium angulatum, Bifidobacterium
asteroides, Bifidobacterium catenulatum, Bifidobacterium choerinum, Bifidobacterium
indicum and Bifidobacterium kashiwanohense. It should be pointed out that the abun-
dance of these taxa was elevated in NON compared with CTLs and underwent a slight
decrease in extreme longevity (CENT) compared with NON, albeit still higher than in CTLs.
Interestingly, several studies have demonstrated that Bifidobacteria and its species diversity
are decreased in elderlies [85]. Consistent with our findings, higher proportions have been
identified in successful aging compared to younger elderlies or younger adult [14,43,86,87].
A reduction in Bifidobacteria has been associated with impaired adhesion to the intestinal
mucosa, but it remains to be clarified whether the cause is attributable to changes in the
mucus structure in the microbiota of elderly subjects [85]. Furthermore, Bifidobacteria
depletion has been correlated with enhanced susceptibility to infections and impaired
intestinal activity [88].

A strong association in NON was also found for Lactobacillaceae, Lactobacillus and
Lactobacillus spp., which all belong to the Firmicutes phylum.

The probiotic effect of Lactobacillus and Bifidobacterium taxa has been well doc-
umented [89]. It has been demonstrated that Lactobacillus spp. or Bifidobacterium spp.
probiotic supplementation attenuates oxidative stress and inflammation and improves
physiological parameters such as gut barrier function, learning and memory ability in aged
mice [90]. In addition, improved immunity in elderly humans and aged mice has been
observed [91].

The taxa Streptococcaceae, Streptococcus, Streptococcus spp., Veillonellaceae, Veillonella,
Veillonella dispar, Veillonella atypica, Thermicanaceae, Thermicanus, Bacillales_Family X_Incertae
Sedis (Firmicutes phylum), Desulfovibrionaceae, Desulfovibrio, Desulfovibrio piger (Pro-
teobacteria) and Bacteroides fragilis (Bacteroidetes) were also strongly associated with NON.
Veillonella species are known to use lactic acid as a source of carbon and energy and are
believed to ferment the lactic acid produced by Streptococcus, derived from the fermenta-
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tion of carbohydrates [92], and positively correlates with the abundance of Streptococcus in
irritable bowel syndrome (IBS) [93,94]. Furthermore, this bacterial genus has the ability to
ferment organic acids through the production of propionic and acetic acids, carbon dioxide
and hydrogen. The propionic acid produced by Veillonella potentially presents greater risks
than benefits regarding the neurotoxic character linked to its accumulation [95,96].

As for Desulfovibrio bacteria, it has been demonstrated, using a Stress-Induced Pre-
mature Senescence Model of Bmi-1 Deficiency, that mice in whom this bacterial genus
penetrated the epithelium underwent an induced TNF-α secretion by macrophages, which
caused impairment of TNF-α-dependent intestinal barrier permeability and aging. Further-
more, Desulfovibrio, one of the predominant sulphate-reducing bacterial generates residing
in the human gut, is capable of leading to the formation of hydrogen sulfide, which is toxic
for intestinal epithelial cells and exerts a pro-inflammatory effect. In fact, its abundance has
been correlated with IBD [97,98] and obesity [29].

In CTLs, the strongest associations were related to the Bacteroidetes phylum and
its members Bacteroidaceae, Bacteroides, Bacteroides spp. and the Prevotellaceae family.
In the same cohort, the main biomarkers were taxa belonging to the Cyanobacteria phy-
lum, such as Aphanizomenonaceae, Dolichospermum and Dolichospermum macrosporum, to
Proteobacteria phylum (Alcaligenaceae, Comamonadaceae, Oxalobacteraceae, Collimonas,
Candidatus Blochmannia, Candidatus Blochmannia rufipes, Sutterellaceae and Sutterella) and to
the Firmicutes phylum, such as Acidaminococcus intestini, Erysipelothricaceae, Erysipelothrix,
Erysipelothrix inopinata, Butyrivibrio and Butyrivibrio proteoclasticus.

The association with the Bacteroidetes phylum was in line with previous studies [19,77,99]
and disagrees with the initial hypothesis concerning the increase in the abundance of
Bacteroidetes in old age, and with the reduction of the Firmicutes/Bacteroidetes ratio
in older adults [6,64]. It should be borne in mind that the harmonic balance between
Firmicutes and Bacteroidetes phyla in the human microbiota can be indicative of good
health, but it is subject to the influence of lifestyle factors. The significant reduction in
Bacteroidetes in both CENT and NON subjects compared to CTLs could be explained by
the significantly higher BMI in these cohorts than in controls, given that Bacteroidetes are
known to positively correlate with a reduction in body fat [29]. Furthermore, the relative
abundance of Bacteroidetes has been shown to be substantially accentuated as a consequent
exercise intervention in an early obesity and NAFLD model and in controls, compared
with corresponding untrained group [100]. It should be pointed out that our LLS cohorts,
mainly CENT, had a low PASE score, which indicates a sedentary lifestyle, consistent with
a reduction in the Bacteroidetes phylum in these subjects compared to controls.

Taxa significantly associated with longevity were correlated with dietary, lifestyle and
clinical variables in both CENT and NON. Most taxa associated with CENT were correlated
with DMS score and bowel function. As for the former, most of the bacteria belonged
to the Firmicutes phylum. Specifically, taxa belonging to the Clostridiaceae (Clostridium),
Lachnospiraceae (Dorea), Peptostreptococcaceae (Peptoniphilus) and Thermicanaceae (Ther-
micanus) families positively correlated with DMS scores. The Clostridiaceae family has
been associated with increased dietary fibers in rodent models [101], responding to dietary
carbohydrates. Interestingly, fiber represents one of the nutrients with a beneficial impact
evaluated for the attribution of adherence score to the Mediterranean diet [50]. Clostridium
species can ferment carbohydrates, proteins, organic acids, and other organics, and pro-
duce acetic acid, propionic acid, butyric acid (SCFAs) and some solvents, such as acetone
and butanol. SCFAs and most of the metabolites they produce, such as bile acids (BAs),
proteins and other metabolic substances, bring many benefits to gut health [102]. As for
Dorea, its ability to produce SCFAs from vegetables has been reported [103]. In CENT,
Catenibacterium correlated negatively with DMS scores. This bacterial genus belongs to the
Erysipelotrichidae family (Firmicutes), which has been associated with high fat diets in
humans and in rodent models [104,105] and with inflammation-related intestinal disease
and metabolic disorders [106], although a subsequent study observed an increase related to
their diets [107] in a group of Egyptian adolescents compared to US Children.
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In regard to bowel function, eight bacterial taxa were positively correlated, and one
was negatively correlated. The positively correlated taxa mostly belonged to the Firmicutes
phylum (Thermicanaceae, Thermicanus, E. inopinata), but also included Desulfohalobiaceae,
Desulfonauticus, D. autotrophicus (Proteobacteria) and the Synergistetes phylum, with its
Synergistaceae family. The taxa negatively correlated with bowel function belonged to the
Firmicutes phylum (L. taiwanensis). Further studies are needed to clarify the significance
of these correlations with the intestinal function of the study subjects, given that, to our
knowledge, the literature does not describe the physiological implications of these taxa
on human health. Diet may mediate some of these correlations, as Thermicanaceae and
Thermicanus are positively associated with both DM and bowel function.

In CENT, Desulfovibrio negatively correlated with MMSE and MNA scores and to
former alcohol consumption. D. piger negatively correlated with ADL, MNA and PASE
scores. This data is not surprising, given the pro-inflammatory implications of these taxa
(discussed above).

In NON there was a greater number of correlations with DMS, to the number of
medications and to PASE score. Members belonging to the Actinobacteria phylum were
all negatively correlated to DMS score (Bifidobacteriaceae, Bifidobacterium, Bifidobacterium
spp., Streptomycetaceae), as well as those belonging to Bacteroidetes (Bacteroides clarus) and
Firmicutes (Lactobacillus ultunensis), whereas others belonging to Bacteroidetes (Odoribac-
teraceae, Bacteroides dorei, Pedobacter kwangyangensis and Parabacteroides spp.), Firmicutes
(Alkaliphilus, Clostridium frigoris, Lactobacillus ultunensis, Peptoniphilus) and Proteobacte-
ria (Bilophila and Bilophila wadsworthia) were positively correlated. Taxa belonging to the
Actinobacteria phylum, such as Bifidobacterium, Bifidobacterium spp., Blautia wexlerae (Fir-
micutes) and Bacteroidaceae (Bacteroidetes phylum) were negatively correlated with the
number of medications, while the Bacteroidetes phylum (and related Bacteroides, Bacteroides
spp., Sphingobacterium shayense) and Alcaligenaceae and Sutterella (Proteobacteria phy-
lum) showed positive correlations. Several significant associations have also been found
for other clinical variables, such as ADL score and PASE scores. Taxa belonging to the
Proteobacteria phylum (Serratia, S. entomophila, Escherichia, E. albertii) and Eggerthella
(Actinobacteria) were inversely related to ADL scores; however, in relation to PASE score,
Firmicutes members (Thermicanaceae, Thermicanus, Blautia wexlerae) on one hand, and
Bacteroidetes and Proteobacteria members on the other, showed positive and negative
correlations, respectively.

We performed a comparative prediction analysis of the functional metagenome
using PICRUSt.

It was previously observed that older adults and long-lived subjects have reduced
pathways related to carbohydrate metabolism and amino acid synthesis [6]. It should be
pointed out that, with aging, dietary habits change due to a reduction in appetite, loss of
teeth, decrease in gustatory perception and decreased efficiency of the digestive system,
which results in a reduction in the absorption of essential nutrients [6]. In this regard,
we observed a depletion in glycan metabolism in both CENT and NON, and a reduction
of starch and sucrose metabolism (carbohydrate degradation related pathway) in NON.
This result agrees with a previous study carried out on a group of subjects recruited in the
same territory (Sardinia, Italy), in which a reduction of pathways related to carbohydrate
degradation was observed compared to elderly and younger subjects [43]. In our study
cohort, this finding is of particular interest in the light of the contextual reduction of
the Bacteroidetes phylum in both CENT and NON. In fact, Bacteroidetes encode more
carbohydrate-degrading enzymes than Firmicutes (more representative than Bacteroidetes
in our long-lived cohorts) and possess a lesser number of ABC carbohydrate transporters.
Genes encoding ABC transporters specific for glycans are often located adjacent to those
encoding glycoside hydrolases (with which they are co-expressed) in Firmicutes but not in
Bacteroidetes; this might be a glycan acquisition strategy that Firmicutes have evolved [108].
Furthermore, ABC transporters are involved in the transport of a variety of substrates,
including nutrients, toxins, antibiotics and xenobiotics [109]. NON showed a significant
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increase in ABC transporter expression, which may be related to more frequent use of
medications in this cohort.

Another noteworthy finding of our research is the significant increase in the two-
component system pathway in both CENT and NON compared to CTLs, which points
out the greater adaptability of the long-lived intestinal microbial ecosystem compared to
that of younger subjects. Two-component signal transduction systems represent a means
of communication through which bacteria perceive and respond to their environment,
including stress conditions, nutrient availability, quorum signals, chemokines, pH and
other factors [110]. It is a strategy developed by bacteria to adapt their cellular physiology
to changes in the environment. The importance of such a sophisticated signaling mechanism
justifies their prevalence throughout the bacterial kingdom [111].

Assuming that the microbial phenotypic patterns observed in our cohort of centenari-
ans were peculiar and/or predisposing to the state of longevity, we hypothesized that they
were not significantly divergent in terms of abundance from those of the paired centenar-
ian’s offspring cohort, considering both genetic and environmental effects as predisposing
factors for the state of longevity. As expected, CPAR and COFF differed significantly only
in five bacterial taxa, which lost statistical significance following Bonferroni’s post-hoc
correction. In CPAR, we have observed a reduction in taxa belonging to the Firmicutes
phylum, such as Faecalibacterium, Faecalibacterium prausnitzii (Clostridiaceae) and Roseburia
faecis (Lachnospiraceae), as well as a reduction in Bacteroides denticanum and Bacteroides
plebeius, which belong to the Bacteroidetes phylum. Furthermore, no statistically significant
differences in alpha and beta diversity, nor in metabolic function, between CPAR and COFF
were observed. These findings were not surprising and seemed to confirm our hypothesis.
The genetic make-up and environmental factors, such as diet, geographical environment,
type of residence, modality of childbirth or type of breastfeeding, act synergistically as a
multifactorial cause in the modulation of GM. In fact, it should be noted that all subjects
of our COFF cohort were born through natural childbirth and were nursed with their
mother’s milk and all, except one, lived in their own home and maintained an identical
diet to that of their parents until adulthood. Moreover, their diet remained similar until
before the sampling of the study.

5. Conclusions

In conclusion, long-lived subjects were more similar to each other than to younger
controls and the greatest divergences, in terms of microbial composition, emerged from the
comparison between nonagenarians and controls. Nonagenarians showed an increase in
both anti and pro-inflammatory bacterial taxa compared to younger subjects. This is not
entirely surprising, given that these are subjects in an advanced aging phase, thus subjects
in whom the likelihood of successful extreme aging, as we see in centenaries, is unknown.
In this context, a prospective analysis of the nonagenarian population might be useful in
order to understand what intestinal microbial pattern would predispose a subject to reach
the age of a hundred.

Our population of centenarians diverged less from younger subjects in term of bacte-
rial taxa compared to NON. Overall, the main biomarkers associated with centenarians
belonged to the Verrucomicrobia phylum, including the Akkermansia muciniphila species,
considered to be a significant biomarker of gut homeostasis for its ability to promote
intestinal integrity; at the same time, there is a significant increase in taxa with an anti-
inflammatory phenotype, biomarkers of a state of health. This intestinal microbial ecosys-
tem could guarantee intestinal health, which would then translate into the health of the
whole organism.

The results deriving from the GM analysis of centenarians’ offspring suggest that
genetics and environmental factors act synergistically as a multifactorial cause in the
modulation of GM towards a phenotype similar to that of centenarians, although these
findings need to be confirmed by larger study cohorts and by prospective studies in order
to clarify whether such microbial phenotypic patterns are predisposing factors in longevity.
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