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Abstract: Colorectal cancer (CRC) is one of the most common causes of cancer deaths worldwide
and the number of CRC patients is increasing progressively. Despite the improvement of the
surgical techniques and chemotherapy, we have not completely overcome this disease yet due
to the metastases. Therefore, understanding the mechanisms through which metastasis occurs
is important for overcoming CRC. Normal host cells in the tumor microenvironment, such as
macrophages and fibroblasts, have been reported to promote the growth of CRCs. Although
neutrophils were originally considered to have defensive functions against tumor cells, it has been
revealed that some populations of neutrophils, called as tumor-associated neutrophils (TANs), have
tumor-supportive functions. The plasticity between tumor-suppressive and -supportive neutrophils
are regulated by transforming growth factor (TGF)-β and Interferon-β signaling. Some studies have
demonstrated that TANs promote the spread of cancer cells to distant organs. TANs contribute
to the tumor invasion and angiogenesis through the production of matrix metalloproteinase-9
(MMP9), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) in the
primary and metastatic sites. Neutrophils also promotes tumor cell dissemination by capturing
circulating tumor cells using neutrophil extracellular traps and promote their migration to distant
sites. The neutrophil-to-lymphocyte ratio is a well-defined predictive marker for CRC patients. In this
review, we highlight the molecular signaling between TANs and CRC cells and the possibility of
TANs as a potential target for cancer therapy.
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1. Introduction

Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths
worldwide [1–3]. Despite advances in surgical techniques, chemo-drugs, and molecular-targeted
drugs (e.g., bevacizumab and cetuximab targeting vascular endothelial growth factor (VEGF) and
epidermal growth factor receptor (EGFR), respectively) [4], the number of CRC patients is increasing
progressively [5,6]. At least one third of CRC patients develop liver metastases, and CRC-related death
is usually attributable to distant metastasis [7,8]. Once the disease spreads to distant organs, neither
conventional chemotherapy nor current targeted therapy offers significant benefits. Therefore, it is
important to understand the mechanisms through which metastasis occurs and to find therapeutic
targets for distant metastasis.

The process of metastatic formation can be divided into several successive steps (Figure 1). In the
primary tumor site, the transformed tumor cells begin to grow and secrete angiogenic factors, which
results in extensive vascularization. Tumor cells locally invade through the activation of proteases and
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intravasate into thin-walled vessels (i.e., venules and lymphatic vessels) and enter the blood circulation.
Embolization of single cancer cell or aggregates occur next. During this process, most circulating
cancer cells are destroyed by the shear forces of blood flow or by the attack from components of the
host immune system such as natural killer cells. If the tumor cells can survive in blood circulation, they
become trapped in the capillary beds of distant organs. Finally, tumor cells extravasate into the organ
parenchyma and start to form micrometastases. Some tumor cells within micrometastatic sites die due
to the attack of host immune cells, while others survive in a dormant state that exits from the cell cycle
and balances their proliferation and apoptosis. Although less is understood about how dormancy is
broken, some tumor cells start to proliferate and expand through the secretion of angiogenic factors
and the activation of proteases to form metastatic colonies. Only a limited number of cancer cells can
form metastases in distant organs [9,10]. The transition from pre-angiogenic to angiogenic metastasis
is a rate-limiting step in the occurrence of liver metastasis, which suggests that the development of an
angiogenic phenotype is a key step for metastatic progression [11].
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However, the precise underlying mechanisms by which cancer cells survive in the hostile
environment and develop metastatic sites still remain unclear. It has been reported that several types
of host cells, such as fibroblasts (cancer-associated fibroblasts: CAF), macrophages (tumor-associated
macrophages: TAMs), and mesenchymal stem cells, play important roles in the formation of the
tumor microenvironment [12–14]. In addition, recent accumulating evidence has shown that some
populations of neutrophils, known as tumor-associated neutrophils (TANs), could support the growth,
invasion, and angiogenesis of cancer cells, although they have been classically considered to exhibit a
defensive response against tumor cells. They have also been reported to exert supportive functions in
the development of metastasis. Here, we highlight the role of TANs in supporting the development of
distant CRC metastasis, especially liver metastasis.

Liver metastasis is a complex, multistep process. In the primary tumor site, transformed tumor
cells start to proliferate and secrete angiogenic factors, which results in extensive vascularization.
Tumor cells locally invade blood vessels. Most circulating tumor cells are destroyed by the shear forces
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of blood flow or by the attack from the host immune system such as natural killer cells. If the tumor
cells can survive in blood circulation, they become trapped in the capillary beds of distant organs.
Finally, tumor cells extravasate into the organ parenchyma and start to form micrometastases. Some
tumor cells die and others survive in a dormant state. Some tumor cells break the dormancy and start
to proliferate and expand through the secretion of angiogenic factors and the activation of proteases.

2. Tumor-Associated Neutrophils (TANs)

Normal host cells in the tumor microenvironment, such as CAFs and TAMs, assist in
the growth, invasion, and metastasis of cancer cells [13,14]. It has become evident that bone
marrow-derived cells including TAMs, TANs, and myeloid-derived suppressor cells (MDSCs),
contribute to tumor progression [12,15–19]. Recently, a number of studies have demonstrated through
immunohistochemical analyses that neutrophils, which are another leukocyte population, were
intermingled in various cancer tissues. Chemokines are small peptides binding to G protein-coupled
receptors to induce chemoattraction, inflammation, and/or angiogenesis [20]. They are one of the
key factors that facilitate cancer metastasis [21]. Tumor cells often produce several inflammatory
chemokines, including neutrophil-attracting CXC-chemokines [22,23]. The migration of neutrophils
toward the tumor is mainly mediated by CXC-chemokines that bind to CXCR1 and/or CXCR2 [24–26].

Neutrophils have been originally viewed as the first-responder of the innate immune system in
the resistance against extracellular pathogens. However, recent evidence has added a new aspect on
the function of neutrophils. Neutrophils are involved in the regulation of innate and adaptive immune
systems, and can be polarized towards distinct phenotypes in response to environmental signals [22].
They are classically characterized based on their ability to induce phagocytosis, release lytic enzymes,
and produce reactive oxygen species (ROS) [27,28]. In the context of the tumor microenvironment,
accumulating evidence has revealed the prominent role of neutrophils in infiltrating tumor tissues to
promote their growth, invasion, angiogenesis, and metastasis in various types of cancers, although
they were initially considered to have a defensive function against tumor cells [29–31].

TAMs are divided into two populations: the anti-tumorigenic “M1” phenotype and
pro-tumorigenic “M2” phenotype. As with TAMs, recent studies have suggested that TANs also
exhibit considerable plasticity and are capable of polarization into either an anti-tumorigenic “N1”
phenotype or a pro-tumorigenic “N2” phenotype [22,32,33]. Their surface markers, transcriptional
regulators, and cytokine profiles remain to be investigated. Neutrophils are known to secrete several
inflammatory, immunoregulatory, and angiogenic factors, including neutrophil elastase [34], matrix
metalloproteinases (MMPs), vascular endothelial growth factor (VEGF) [35,36], and hepatocyte growth
factor [37], which can exhibit paracrine effects on the tumor microenvironment. “N1” neutrophils
exhibit increased cytotoxicity and reduced immunosuppressive ability by the production of tumor
necrosis factor (TNF)-α, intercellular adhesion molecule (ICAM)-1, ROS, and Fas and by decreasing
arginase expression. In contrast, “N2” neutrophils support tumor expansion by expressing arginase,
MMP-9, VEGF, and numerous chemokines including CCL2, CCL5 and CXCL4 [32]. Fridlender et al.
reported that transforming growth factor (TGF)-β signaling functions as a regulator between the N1
and N2 phenotypes. TGF-β within tumors skews differentiation toward the N2 phenotype, while
inhibition of TGF-β signaling induces an anti-tumoral N1 phenotype [32]. Interferon-β was also
recently reported to induce an N1 phenotype [38]. Taken together, the phenotype of TANs depends on
the signals encountered in the tumor microenvironment.

Moreover, some studies have recently investigated the possible involvement of neutrophil
extracellular traps (NETs) in promoting the migration and extravasation of cancer cells. NETs are
composed mainly of fibers of decondensed DNA, and are decorated with proteins released from
activated neutrophils [39–43]. They act as meshes that trap microorganisms and, in turn, promote
the interaction between pathogens and neutrophil-derived effector molecules [39,44]. NETs have
recently been suggested to capture circulating cancer cells and promote their migration to new
sites [45,46]. NETs has also been shown that they can activate toll-like receptor 9 on CRC cells,
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resulting in cellular growth, migration, and invasion via activation of mitogen-activated protein kinase
(MAPK) signaling [47]. Najmeh et al. recently reported the importance of β1-integrin expression on
both circulating cancer cells and NETs in mediating cancer cell adhesion to NETs in vivo, resulting in
the development of metastatic diseases [48].

In addition, TAMs and TANs have the potential to drive tumor angiogenesis. In various murine
models, TAMs and TANs are major sources of MMP9 [49], which promotes angiogenesis by its
extracellular matrix-degrading properties [50]. In a genetically-engineered mouse model of pancreatic
cancer, MMP9 expression was exclusively found in neutrophils, and neutrophil depletion inhibited the
angiogenic switch in the primary tumors [51]. Moreover, in a tumor xenograft model, granulocyte
colony-stimulating factor (G-CSF)-induced upregulation of Bv8 (known as prokineticin-2) in neutrophil
was shown to promote tumor angiogenesis [52]. G-CSF facilitated neutrophil recruitment into the
tumor, stimulated Bv8 expression, and promoted angiogenesis, which resulted in resistance against
anti-VEGF treatment [53–55].

CXCR2 and its ligands (i.e., CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, and CXCL8) are responsible
for the recruitment of neutrophils under normal physiological conditions and are implicated in
the mobilization of TANs [56]. In tumor-bearing mouse models, targeting CXCR2-mediated TAN
mobilization has been reported to increase the number of tumor-infiltrating lymphocytes and potentiate
anti-programmed death 1 checkpoint blockade [57–60]. Nywening et al. have recently reported that
dual blocking of CXCR2+ TANs and CCR2+ TAMs disrupted the recruitment of myeloid cells and
improved anti-tumor immunity in a mouse model of pancreatic cancer [61]. Recently, we have found
that loss of SMAD4 from CRC cells results in the secretion of CXCL1 and CXCL8 to recruit CXCR2+

neutrophils, and that, in turn, the recruited neutrophils abundantly produce CXCL1 and CXCL8,
which further prompts the accumulation of CXCR2+ neutrophils and results in an amplification of the
cytokine/chemokine milieu shaped by the CXCL1/8-CXCR2 axis [62].

3. TANs in Human CRC

The relationship between TAN infiltration and human cancer prognosis has not been systemically
investigated, although some studies have reported the role of neutrophils as a prognostic factor
in various types of human cancers. The increase of neutrophil count in peripheral blood (i.e.,
neutrophil-to-lymphocyte ratio (NLR)) has been shown to be related to poor clinical outcomes in
pancreatic cancer, gastric cancer, and breast cancer [63–65], emphasizing the importance of neutrophils
in cancer biology. High NLR has also been demonstrated as a poor prognostic factor in CRC patients.
Li et al. retrospectively analyzed a cohort of 354 CRC patients with stage I–III cancer and revealed a
strong relationship between dynamic changes in NLR and overall survival [66]. Other studies have also
reported that high NLR had an adverse effect on overall survival in CRC patients subjected to curative
surgery [67,68]. High NLR was also shown to predict poor outcome following hepatic resection for
liver metastasis of CRC [69]. Dell’Aquila et al. showed that high NLR was also a poor prognostic factor
in unresectable metastatic CRC patients treated with bevacizumab plus chemotherapy [70].

However, the effect of intratumoral neutrophils on the survival for CRC patients is still unclear.
Rao et al. demonstrated that the increase in intratumoral neutrophils was associated with malignant
phenotypes and could predict adverse prognosis in CRC [71]. On the other hand, Berry et al. analyzed
the number of neutrophils in CRC tissues by counting neutrophils manually based on their morphology
because of the lack of neutrophil-specific antibodies and demonstrated that high levels of TANs were
associated with improved overall survival in patients with stage II CRC [72]. As described, the signals
from the tumor microenvironment that determine the N1 and N2 neutrophil phenotypes might affect
the results. We have recently reported that loss of SMAD4-promoted CCL15 expression from CRC
cells to recruit CCR1+ myeloid cells through the CCL15-CCR1 axis, and that CCL15 expression in
primary and metastatic CRCs was a predictor of CRC patients’ prognosis [73–75]. Most CCR1+

myeloid cells recruited into the primary CRC and metastatic CRC were of the granulocytic-MDSC
phenotype (CD11b+, CD33+, HLA-DR−, and CD15+) [74] and TAN phenotype (CD11b+, CD33−,
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HLA-DR−, CD15+, and CD16+) [75], respectively. MDSCs constitute a heterogeneous population of
immature myeloid cells at various differentiation stages and represent a group of myeloid cells that
suppress immune responses. Because TANs and MDSCs share a common set of markers and are
morphologically similar, it remains unclear whether TANs and MDSCs are separate populations or
not [29,76,77]. In addition, MDSCs were reported to differentiate into mature TAMs or TANs within
the tumor [64]. Further analysis is needed to evaluate the significance of intratumoral neutrophils
in CRC.

4. TANs in Animal Model for CRC Liver Metastasis

A number of studies have tried to clarify the underlying mechanisms by which neutrophils
support liver metastasis of CRC cells in vitro and in vivo using metastatic mouse models (Table 1).

Table 1. TANs in animal models for CRC metastasis.

Authors Reference Animal Cell Molecules Effect

Hirai et al. [78] Mouse CRC cells CCL-9

CCL-9 in CRC cells recruit
CCR1+ neutrophils which

produce MMP9 for
cancer expansion

Rodero et al. [79] Mouse
Hematopoietic/

nonhematopoietic
cells

CCR1

CCR1 expression by both
hematopoietic and

non-hematopoietic cells
favors tumor aggressiveness

Kiyasu, Y. [80] Mouse Myeloid cells CCR1
CCR1-knockout in myeloid

cells suppress CRC
liver metastasis

Kumar et al. [81] Mouse CRC cells CXCL8
CXCL8 promotes neutrophil

recruitment, metastasis,
angiogenesis and invasion

Yamamoto et al. [82] Mouse CXCL1/CXCR2
CXCL1/CXCR2 axis is

important in
cancer metastasis

Varney et al. [83] Mouse Systemic CXCR1/CXCR2

Systemic inhibition of
CXCR1/CXCR2 induced
apoptosis and inhibited

angiogenesis in the
liver metastasis

Gordon-Weeks et al. [84] Mouse TANs FGF2 FGF2 in TANs induce
polarization of neutrophils

Rayes et al. [85] Mouse Liver IGF-1
Sustained IGF-1 deficiency

in liver alters the
neutrophil phenotypes

Seubert et al. [86] Mouse Systemic TIMP-1

Systemic TIMP-1 expression
promotes neutrophil

recruitment through the
increase of hepatic SDF-1

and increase the
liver susceptibility

Ma et al. [87] Mouse TANs EP2

EP2 signaling in TANs
promotes tumor growth

through TNF-β, IL-6,
CXCL1, COX-2, and Wnt5A

In a mouse model of liver metastasis in which tumor cells were inoculated through splenic
injection, Hirai et al. demonstrated the interaction between neutrophils and CRC cells during the
process of colonization within the liver [78]. They found that mouse CCL9 (mCCL9)-expressing CRC
cells recruited myeloid cells expressing CCR1, the cognate receptor of mCCL9, to form early metastatic
foci in the liver, and that four distinct types of myeloid cells were recruited to the site of liver metastasis:
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CCR1+ neutrophils, monocytes, eosinophils, and fibrocytes. CCR1+ neutrophils produce MMP9, which
helps cancer foci to expand in the early stage, and trigger the recruitment of fibrocytes and monocytes
that produce MMP2 during the later stages. We have also reported that the recruitment of CCR1+

myeloid cells facilitates primary CRC invasion [74] and metastasis to the liver [73] and lungs [75].
Using Ccr1-knockout mice, Rodero et al. reported that CCR1 expression in hematopoietic and
non-hematopoietic cells facilitated liver metastasis through myeloid cell accumulation in the metastatic
tumors [79]. Moreover, using the bone-marrow transplantation model of Ccr1-knockout mice, we have
recently found that knockout of CCR1 expression in myeloid cells significantly suppressed tumor
growth in primary and metastatic CRCs [80], which suggests that the use of CCR1 inhibitors can be a
promising strategy to treat CRC.

CXCL8, or interleukin(IL)-8, is the first-described angiogenic chemokine, and is secreted from CRC
cells stimulated by TNF-α and IL-1α [88]. CXCL8 is also induced by hypoxia as a hypoxia-inducible
factor 1-independent pathway to preserve tumor angiogenesis as a compensatory pathway of
VEGF [89]. Kumar et al. revealed that the upregulation of CXCL8 secreted from CRC cells promoted
CRC liver metastasis [81]. They demonstrated that the expression of CXCL8 was upregulated
in the invasion front of the tumor and that shRNA-mediated knockdown of CXCL8 resulted in
significantly decreased cell proliferation, migration, and invasion in vitro and dramatic reduction of
tumor metastasis in vivo. They also revealed that the knockdown of CXCL8 resulted in a reduction
in VEGF-A expression, suggesting that overexpression of CXCL8 could induce a VEGF-dependent
angiogenic response. CXCL8 could also promote angiogenesis in a VEGF-independent manner in
CRC [90]. Using a CRC xenograft model, Yamamoto et al. reported that the CXCL1-CXCR2 axis
was important in modulating the pre-metastatic niche of CRC liver metastasis, and that TSU68
(an inhibitor of VEGF receptor 2, platelet-derived growth factor receptor β and fibroblast growth
factor (FGF) receptor 1) suppressed CXCL1 expression in the pre-metastatic liver, resulting in
suppression of CXCR2+ neutrophils homing and subsequent liver metastasis [82]. In Cxcr2-knockout
mice, the deficiency of the CXCL8-CXCR2 axis in the host cells resulted in the inhibition of CRC
growth and metastasis [91]. Moreover, the CXCR1/CXCR2 antagonist inhibited CRC liver metastasis
by decreasing tumor angiogenesis and facilitating tumor cell apoptosis in a mouse model [83].
Combination of a CXCR2 antagonist and oxaliplatin was reported to result in a great decrease of
tumor growth and angiogenesis in xenograft models [92]. Using CXCL8-expressing transgenic mice,
Asfaha et al. reported that CXCL8 expression increased the mobilization of immature myeloid cells in
dextran sodium sulfate-induced colitis, which exacerbated acute inflammation and accelerated colon
carcinogenesis [93].

Other signaling molecules are indicated to be involved in the pro-tumorigenic function of
neutrophils. Gordon-Weeks et al. demonstrated that human CRC metastasis to the liver and
experimental murine models of liver metastasis were infiltrated by neutrophils. They showed
that metastasis-associated neutrophils in the liver substantially expressed FGF 2, a pro-angiogenic
molecule, indicating neutrophil polarization by the tumor microenvironment [84]. Of note, neutralizing
anti-FGF2 antibodies could cause neutrophil depletion and reduce liver metastatic colony growth and
vascular density.

Some studies have revealed that signaling pathways in the liver itself make it more susceptible to
metastasis and regulate the polarization of the TAN phenotype. In transgenic mice with a conditional,
liver-specific insulin-like growth factor (IGF)-1 deficiency, Rayes et al. showed that IGF-1 signaling
in the liver was important in the polarization of neutrophils. In mice subjected to IGF-1 deficiency
three weeks but not two days prior to the inoculation of CRC cells, infiltrated neutrophils in the liver
did not show characteristics of tumor-promoting phenotypes, although the number of neutrophils
was increased. They suggested that sustained IGF-1 deficiency is necessary to alter the neutrophil
phenotype [85].

Seubert et al. demonstrated that high systemic expression of tissue inhibitor of metalloproteases-1
(TIMP-1) increased liver susceptibility towards metastasis by triggering the formation of a



Int. J. Mol. Sci. 2019, 20, 529 7 of 14

pre-metastatic niche. High systemic levels of TIMP-1 resulted in increased hepatic CXCL12 levels,
which in turn promoted recruitment of neutrophils to the liver. Both inhibition of CXCL12-dependent
neutrophil recruitment and systemic depletion of neutrophils could suppress TIMP-1-induced
susceptibility towards liver metastasis [86].

Using a colitis-associated CRC mouse model, Ma et al. reported that prostaglandin E2 receptor
subtype EP2 was expressed in infiltrating TANs and CAFs in CRC, and that the expression of cytokines
such as TNF-α, IL-6, CXCL1, cyclooygenase-2, and Wnt5A was amplified in tumor lesions via EP2
expression in TANs and CAFs. Importantly, treatment with a selective EP2 antagonist potently
suppressed tumor growth in this model [87].

5. Limitations of Studies on the Interaction Between Neutrophils and Cancer Cells

In most studies, the interaction between neutrophils and CRC cells has been analyzed in vitro
using cancer cells, isolated neutrophils and human umbilical vein endothelial cells. However, isolated
neutrophils for in vitro experiments do not behave normally as they are primed or pre-activated
during the process of isolation [94]. In addition, some studies with in vivo experiments use xenograft
models to show the interaction between neutrophils and CRC cells. However, xenograft models are
less reliable for cancer metastasis. Therefore, we must keep in mind that the mechanisms that are
observed through in vitro experiments or in vivo experiments with xenografts do not always represent
actual in vivo biological phenomena. Although the development of microscopic techniques, such as
confocal microscopy and two-photon excitation microscopy, combined with fluorescent proteins have
enabled us to visualize various biological events in vivo, it is still challenging to observe the interaction
between cancer cells and neutrophils during the process of liver metastasis. Further in vivo studies
will be required.

Accumulating evidence indicated that exogenous and endogenous factors, such as diet,
alcohol, smoking, obesity, lifestyle, environmental exposures, and microbiome, can influence the
tumor–immune interactions. Through recruitment of host immune cells, the gut microbiome
could generate a proinflammatory microenvironment that is conductive for CRC progression [95].
Molecular pathological epidemiology (MPE) integrates tumor immunology into population health
sciences, and links the exposures and germline genetics to tumor and immune characteristics using
bioinformatics, in vivo pathology and omics technologies. This kind of integrative approach would be
important to understand the mechanisms of tumor progression, effective prevention and therapeutic
strategies for precision medicine for CRC [96,97].

6. TANs as a Potential Target for Cancer Therapy

The evaluation of TANs as a potential therapeutic target is still ongoing because their role in
cancer development and metastasis is not completely understood. Considering the role of TANs
in tumor progression, targeting neutrophils in cancer could be a potential new anti-tumor therapy.
However, depletion of neutrophils in humans could lead to self-defeating immunosuppression as
neutrophils are essential for host defense against infection. Therefore, it has been postulated that
blocking specific populations of neutrophils, especially TANs, can be beneficial and promote tumor
regression or metastatic spread.

Since TGF-β modulates the pro- and anti-tumor phenotypes of neutrophils, TGF-β blocking
could theoretically be a potential therapeutic strategy. Multiple trials that have tested the effect of
TGF-β blocking failed as a result of significant side effects because TGF-β is involved in numerous
physiological pathways [98]. New strategies and molecules directed toward either TGF-β or its
receptors are currently being clinically tested [99]. In CRC, a TGF-β receptor II antibody (IMC-TR1,
also known as LY3022859) has been developed, and the murinized derivative exhibited good response
in mouse models of CRC and breast cancer [100]. At the time of writing, this drug is in a phase I trial
for patients with advanced solid tumors including CRC for whom standard therapies have failed
(NCT01646203) [101].
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Chemokine blocking could be another effective strategy resulting in impaired neutrophil
recruitment to the tumor. Since CXCL8 secreted from CRC cells recruits neutrophils [81,88,89],
blocking the CXCL8 axis by neutralizing antibodies could be a good therapeutic approach. However,
its consequences on the phenotype of circulating or intratumoral neutrophils in human cancer are still
unknown. Therefore, further studies are needed to gain a detailed understanding of TANs and CRC
and for the application of future novel anti-tumor therapies.

7. Conclusions

Accumulating evidence has shown that neutrophils infiltrating CRC tissues, as well as
macrophages and fibroblasts, play important roles in the tumor microenvironment. TANs exhibit the
plasticity between the anti-tumorigenic N1 or tumor-promoting N2 phenotype, which is determined by
signals from surrounding tissues. In this review, we highlighted the role of neutrophils in promoting
liver metastasis of CRC. NLR is a well-defined predictive biomarker for CRC patients. Studies with
animal models for liver metastasis of CRC demonstrated the underlying mechanisms by which
neutrophils promoted liver metastasis, which could contribute to novel therapeutic targets and
biological markers.
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FGF fibroblast growth factor
G-CSF granulocyte colony-stimulating factor
ICAM intercellular adhesion molecule
IGF insulin-like growth factor
IL interleukin
MAPK mitogen-activated protein kinase
MDSC myeloid-derived suppressor cell
MMP matrix metalloproteinase
MPE molecular pathological epidemiology
NETs neutrophil extracellular traps
NLR neutrophil-to-lymphocyte ratio
ROS reactive oxygen species
TAM tumor-associated macrophage
TAN tumor-associated neutrophil
TGF-β transforming growth factor-beta
TIMP-1 tissue inhibitor of metalloproteases-1
TNF tumor necrosis factor
VEGF vascular endothelial growth factor
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