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Background: Abnormal mucosal inflammation is a critical risk factor for pathogenesis and
progression of colorectal cancer (CRC). As a type of proinflammatory death, pyroptosis
can recast a suitable microenvironment to promote tumor growth. However, the potential
role of pyroptosis in CRC remains unclear.

Methods: A total of 38 pyroptosis-related gene (PRG) expression profiles and clinical
information were collected from multiple public datasets. Bioinformatics methods were
used to analyze the clinical significance, functional status, immune infiltration, genomic
alteration, and drug sensitivity in different subgroups. Whole-genome microarray analysis
was performed to analyze the regulation of gut microbiota on the expression of PRGs.

Results: Two distinct molecular subtypes were identified and suggested that multilayer PRG
alterations were associated with patient clinicopathological features, prognosis, and tumor
microenvironment (TME) infiltrating characteristics. Furthermore, we obtained eight PRG
signatures by applying differential expression analysis and univariate Cox and Lasso
regression analyses. A risk prognosis model was constructed for predicting overall survival
(OS) and recurrence-free survival (RFS) based on the PRG signature. There were significant
differences in clinical characteristics, 22 immune cells, and immune functions between the high-
and low-risk groups. In addition, the PRG signature was significantly associated with the
microsatellite instability (MSI), tumor mutation burden (TMB), cancer stem cell (CSC) index,
immunotherapeutic characteristics, and chemotherapeutic drug sensitivity. Moreover, the in vitro
experiments had shown thatFusobacteriumnucleatum (F.n) could affect theCASP6expression,
which was associated with the chemoresistance to 5-fluorouracil (5-Fu) in CRC.

Conclusion: Our findings provided a foundation for future research targeting pyroptosis
and a new insight into the prognosis and immune cell infiltration of CRC, and they
suggested that F.n might influence CRC progression through pyroptosis.
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INTRODUCTION

CRC is one of the most common malignant tumors and the
second leading cause of cancer-related death worldwide
(Cartwright, 2012; Siegel et al., 2013). The morbidity rate of
CRC remains on the rise: currently, nearly 1.8 million people have
been diagnosed, andmore than 900,000 people die each year from
CRC (Sung et al., 2021). Despite recent advances in surgical and
multimodal therapies, the 5-year survival rate remains poor for
patients with postoperative recurrence and advanced CRC
patients (Zhang L et al., 2019; Ganesh et al., 2019). The TMN
stage system has been widely used for clinical practice to predict
patient prognosis and therapy decision-making. Dishearteningly,
CRC has a complex status due to its heterogeneity; for instance,
abnormalities in the TME may lead to widespread tumor
heterogeneity and further results in significant heterogeneity
with regard to the response to therapy and heterogeneity in
their clinical outcomes. Therefore, the development of an
effective gene signature to indicate prognosis and to guide
clinical treatment in CRC patients, especially with regard to
immunotherapy and chemotherapy, is needed. Notably,
prolonged inflammation is one of the characteristics of CRC,
and a key driver of CRC development is the inflammatory
response pathway (Lasry et al., 2016; Keum and Giovannucci,
2019).

Pyroptosis is an exceptional form of inflammatory cell death
compared to other types of programmed cell death (Fang et al.,
2020), and plays an important role in antagonizing infection and
endogenous danger signals. Pyroptosis can be induced by
activation of the executors, gasdermin E (GSDME), or
gasdermin D (GSDMD), which results in the cleavage of their
N-terminal fragments (GSDME-N or GSDMD-N, respectively)
(Shi et al., 2015;Wang et al., 2017; Feng et al., 2018). Many studies
have revealed that pyroptosis plays a crucial role in the
pathogenesis and progression of CRC(Wang et al., 2019; Ruan
et al., 2020; Tan et al., 2020). CRC is characterized by inherent
biological invasiveness and specific radiological and chemical
resistance that result in high recurrence rates and progression.
GSDMD expression is decreased in CRC cells compared to that in
adjacent normal cells, and low GSDMD expression is associated
with a worse CRC prognosis. Moreover, lipopolysaccharide (LPS)
induces pyroptosis of CRC cells to improve chemosensitivity in
response to oxaliplatin via promoting GSDMD-N membrane
translocation (Wu et al., 2020). Recently, Yu et al. (2019)have
reported that JNK is involved in lobaplatin-induced CRC cell
pyroptosis by activating the caspase 3/GSDME signaling
pathway. Furthermore, the TME, which is a complex system
composed of tumor cells, lymphocytes, cancer-associated
fibroblasts, and other cells, can affect cancer development and
progression (Pottier et al., 2015; Nicholas et al., 2016). There is
increasing evidence that indicates cross-talk between pyroptosis
and the TME mediates tumor development and progression
(Runa et al., 2017; Orning et al., 2019; Erkes et al., 2020).
Pyroptosis creates a tumor-suppressive microenvironment by
releasing inflammatory factors; nevertheless, it can also impair
the body’s immune response to tumor cells and accelerate tumor
growth in different cancers (Zaki et al., 2010; Ma et al., 2016).

However, the association between pyroptosis and TME, especially
with regard to immune cell infiltration and prognosis of CRC,
remains unclear.

Here, several large public databases were used to perform
comprehensive bioinformatics analysis of PRG in CRC, including
genetic alterations, expression, prognosis, immune cell
infiltration, and functional analysis. First, 585 CRC patients
from GSE39582 were clustered according to PRG expression
levels and found that PRG alterations were related to
prognosis and immune cell infiltration. Furthermore, a PRG
signature model was constructed by using LASSO-Cox method
based on the GEO and TCGA datasets. This PRG signature
showed considerable performance, which was confirmed by
internal and external validation. In addition, This PRG
signature model was able to predict prognosis, immune cell
infiltration, immunotherapy, and chemotherapy response. On
this basis, we found that there could be an association between
pyroptosis, F.n, and chemoresistance to 5-Fu in CRC. To validate
this association, human CRC cells were incubated with or without
F.n in vitro. We initially determined that the expression of
CASP6 could be downregulated by F.n and further induces
chemoresistance of CRC cells to 5-Fu. Our evidence suggested
that the expression levels of CASP6 might serve as promising
prognosis biomarkers and therapeutic targets, and also revealed
the potential association between gut microbiota and pyroptosis
in CRC.

MATERIALS AND METHODS

Data Source Preparation and
Preprocessing
The overall flow diagram is shown in Supplementary Figure S1.
Three GEO CRC cohorts (ID: GSE39582, GSE17536, and
GSE90944) were downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),
and the relevant prognostic and clinicopathological data are
publicly available in the GEO database. The RNA sequencing
(FPKM value) data, which were transformed into transcripts per
kilobase million (TPM), including 568 tumor samples and
44 normal samples, as well as corresponding clinical
information regarding CRC, were downloaded from The
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/)
data portal on 08 November 2021. Four datasets were
combined, and batch effects were eliminated by using the
“ComBat” algorithm of the “SVA” package. The data
acquisition of the list of the immune genes was downloaded
from the ImmPort database (https://www.immport.org). The
38 PRGs were identified from the published literature (Broz
et al., 2020; Tan et al., 2020; Shao et al., 2021; Song et al.,
2021; Ye et al., 2021), which are shown in Supplementary
Table S1.

Consensus Clustering Analysis
According to the expressions of 38 PRGs, the R package
“ConsensusClusterPlus” was used to clarify patients into
distinct molecular subtypes by the cophenetic correlation
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coefficient (k-means method) (Liu et al., 2022a). Repetitions were
performed 1,000 times to guarantee the stability of distinct
classification. Effective dimensionality reduction, model
recognition, and grouping visualization of high-dimensional
data for the different clustering subtypes were performed by
principal component analysis (PCA). The relationships
between distinct subtypes and clinicopathological
characteristics were performed to examine the clinical value.
In addition, we assessed the differences in OS and RFS in
distinct subtypes using Kaplan–Meier survival analysis by the
“survival” and “survminer” R packages.

Construction and Validation of the PRG
Signature
To evaluate the correlations between each PRGs and survival
status, we screened the prognosis of PRGs by univariate Cox
regression analysis in GSE39582 cohort. We then analyzed
LASSO Cox regression to develop the prognostic model by
using the “glmnet” R package. The risk score was calculated
according to the following: Risk score = ∑Expi * βi (Expi, each
PRG signature expression; βi, each PRG signature coefficient).
For the internal validation studies, the GSE39582 cohorts were
divided into low- and high-risk groups based on the median risk
score. Receiver operating characteristic (ROC) analysis was used
to assess the accuracy of PRG signature in the training dataset and
testing dataset by using the “timeROC” R package. Moreover, the
OS and RFS were compared between the low- and high-risk
groups via Kaplan-Meier analysis by the “survival” and
“survminer” R packages. Furthermore, PCA was performed by
using the “ggplot2” R package. For the external validation studies,
the patients in the GSE17536 and TCGA cohorts were also
divided into low- and high-risk groups to validate the risk
model based on the median risk score from the GSE39582 cohort.

Functional Enrichment Analysis
GSVA enrichment analysis was performed in heatmap by using
the “GSVA” R packages, and “c2.cp.kegg.v6.2.symbols” from the
MSigDB database to carry out GSVA analysis. FDR <0.05 was
considered to indicate statistical significance in distinct subtypes
based on the “limma” package. In addition, the differentially
expressed genes (DEGs) between the low- and high-risk groups
were identified by using the “limma” R package according to
specific criteria (fold-change of 1.5 and FDR <0.05). The Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were performed by applying the
“clusterProfiler” R package based on these DEGs.

Stratification Analysis and Independent
Prognostic Analysis of the PRG Signature
We first extracted the clinical features of patients in the GEO and
TCGA cohort. To determine the predictive ability of the PRG
signature, we further performed a stratified analysis based on
these clinical characteristics in low- and high-risk groups. To
explore whether risk scores were independent of other clinical
features (age, gender, and stage), univariate and multivariable

Cox regression models were employed for the analysis in training
and testing sets.

TME Cell Infiltration
The immune and stromal scores of TME were evaluated by the
ESTIMATE algorithm (Liu et al., 2021a; Liu et al., 2021b; Liu
et al., 2022a; Liu et al., 2022b), and the infiltration of 22 human
immune cell subsets was calculated by the CIBERSORT algorithm
for each patient (Newman et al., 2015). The correlations between
the distinct groups and immune checkpoints also were analyzed.
The infiltrative fractions of 22 immune cell types in different
groups were visualized by using the “vioplot” R package. The
ssGSEA was performed to evaluate the scores of infiltrating
immune cells and the activity of immune-related pathways by
using the “GSVA” R package. The correlation between PRG
signature and immune infiltration was investigated by using
the Tumor IMmune Estimation Resource (TIMER 2.0, https://
cistrome.shinyapps.io/timer/).

Construction of a Nomogram for Prediction
Based on the outcome of the independent prognosis analysis (risk
score and other clinical predictors), the nomogram prediction
model was set up by using the “rms” R package for the 1-, 3-, and
5-year OS and RFS. The calibration and accuracy of the
nomogram were verified by the calibration plot (bootstrap
methods with 1,000 replicates).

Mutation, Tumor Mutation Burden, and
Microsatellite Instability Analysis
The mutation frequency and oncoplot/waterfall plot of 38 PRGs
were drawn from the TCGA-COAD/READ database by using the
“maftools” R package. The location of CNV alteration of 38 PRGs
on 23 chromosomes from the TCGA database was generated by
using the “RCircos” R package. The correlation between PRG
signature expression with TMB and MSI score was calculated by
using spearman’s correlation analysis (p < 0.05 was considered
statistically significant).

Bacterial Strains and Cell Lines
Fusobacterium nucleatum (F.n) strain ATCC 25586 was
purchased from American Type Culture Collection (ATCC)
and was cultured in brain heart infusion (BHI) broth at 37°C
under anaerobic conditions. The colon cancer cell lines
HCT116 and HT29 were obtained from ATCC and grown in
McCoy’s 5A (Gibco, United States). All cell culture medium was
supplemented with 10% FBS (Gibco) and 1% penicillin and
streptomycin (Beyotime, China) and cultured at 37°C in a
humidified 5% CO2 atmosphere. Cells were exposed to F.n
with a multiplicity of infection (MOI) of 100 (medium
without antibiotics) (Yu et al., 2017; Zhang S et al., 2019).

Real-Time PCR and Plasmid Transfection
Total RNA was extracted from normal and tumor tissues by
TRIzol reagent (Invitrogen, Carlsbad, CA, United States). The
total RNA was performed to synthesize complementary DNA
(cDNA) by using the PrimeScript RT reagent Kit (TaKaRa,
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Japan). The cDNAs were subjected to SYBR Green assays
(TaKaRa) based RT-qPCR on a CFX-96 instrument (Bio-Rad
Laboratories). The Ct values obtained from different samples
were compared using the 2−ΔΔCT method and GAPDH served as
internal reference genes. The primers used in real-time PCR
assays were listed in Supplementary Table S2. The full length of
CASP6 was amplified and inserted into a pcDNA3.1 vector
(Invitrogen) to construct the CASP6 plasmid. Related
oligonucleotides were transfected into colon cancer cell lines
by using Lipofectamine 3,000 (Invitrogen, United States).

Drug Susceptibility Analysis, Cell
Proliferation Assay, and Drug Cytotoxicity
Assay
The semi-inhibitory concentration (IC50) values of
chemotherapeutic drugs usually used to treat CRC were
calculated by using the “pRRophetic” R package. Spearman’s
correlation analysis was performed to calculate the correlation
between PRG signature expression and chemotherapeutics
IC50 values (statistical significance was set at p < 0.05). Cell

FIGURE 1 | Landscape of the genetic alterations, expressions, and functions of PRGs in CRC. (A,B)Mutation frequencies of 38 PRGs in 399 and 137 patients with
COAD and READ based on the TCGA cohort, respectively. (C) Correlation network of PRGs (the depth of the colors reflects the strength of the relevance, red line:
positive correlation; blue line: negative correlation). (D) PPI network showing the interactions of PRGs (the minimum required interaction score was 0.4). (E) Heatmap of
the PRGs between the normal and the tumor tissues (blue: low expression level; red: high expression level). *p < 0.05; **p < 0.01; and ***p < 0.001. (F,G) Locations
of CNV alterations in PRGs on 23 chromosomes and the frequencies of CNV gain, loss, and non-CNV among PRGs, respectively. (H–J) Functional enrichment analysis
of the differential expression levels of 30 PRGs ((H): heatmap clustering functional analysis; (I) enriched item in gene ontology analysis; (J) enriched item in Kyoto
Encyclopedia of Genes and Genomes analysis).
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Counting Kit-8 (CCK8; YEASEN, China) was performed to assay
the percentage of viable cells based on different treatment
conditions. First, cells were seeded in 96-well plates with
100 μl culture medium. Second, the 10 μl of CCK-8 solution
was added to each well at specific time points and incubated
at 37°C for 4 h. The reaction product was measured according to
the manufacturer’s protocol.

Statistical Analysis
All statistical analyses were performed by R software (v4.1.0),
GraphPad Prism (version 9.0), and SPSS software (23.0). p <
0.05 was considered statistically significant for all analysis results.

RESULTS

Overview of the Genetic Alterations and
Expressions of PRGs in CRC
Our study integrated 1,209 patients from three eligible CRC
cohorts (TCGA-COAD/READ, GSE39582, and GSE17536) to
fully investigate the genetic alterations, expression patterns, and
prognostic values of 38 PRGs involved in tumorigenesis and
development. We first explored the somatic mutation patterns of
38 PRGs in the COAD and READ cohorts. As shown in
Figure 1A, 133 (33.33%) had mutations of these PRGs in
399 COAD samples. Among them, NLRP7 had the highest
mutation frequency (6%), while five PRGs (CASP3, CASP6,
PRKACA, GSDME, and PJVK) did not have any mutations.
Meanwhile, the READ cohort had a lower PRG mutation
frequency (17.52%, 24/137), and NLRP7 also had the highest
mutation frequency (5%) (Figure 1B). In addition, we also
constructed the correlation network and a protein–protein
interaction (PPI) analysis to detect the interactions of these
PRGs (Figures 1C,D). The mRNA expression levels were then
performed to compare CRC and normal tissues and found that a
total of 30 PRGs were either upregulated or downregulated in
CRC patients (heatmap: Figure 1E, boxplot: Supplementary
Figure S2A). Furthermore, we explored somatic copy number
alterations in these PRGs. The copy number variation (CNV)
alterations on their respective chromosomes as shown in
Figure 1F and found prevalent copy number alterations in all
38 PRGs (Figure 1G). Notably, we discovered that the expression
levels of most PRGs were positively correlated with CNV
alteration, such as CASP1, CASP3, CASP6, GZMA, GSDMB,
and NLRP1 were expressed at lower levels in CRC samples
compared with normal samples, while GSDMC and
CASP8 were significantly elevated in CRC samples. These
results indicated that CNV might regulate the PRG expression
in CRC. We further performed to explore the cluster functional
analysis based on the differential expression levels of 30 PRGs.
Heatmap clustering revealed that these genes were significantly
involved in the positive regulation of cytokine production,
interleukin-1 production, regulation of inflammatory response,
pyroptosis, and execution phase of apoptosis (Figure 1H). GO
enrichment analysis and KEGG pathway analysis were then
performed to identify which PRGs are significantly associated
with these functions. We found that a total of 25 of the 30 PRGs

were mainly correlated with immunity in GO analysis
(Figure 1I). Moreover, KEGG pathway analysis suggested that
22 PRGs were mainly enriched in immune and cancer-related
pathways, including the Helicobacter pylori and salmonella
infection, Toll-like and NOD-like receptor signaling pathway,
VEGF and TNF signaling pathway, drug resistance and apoptosis
(Figure 1J). We also divided the CRC patients into a low-stage
group (stages I + II) and a high-stage group (stages III + IV) based
on their clinical characteristics. A total of 14 of the 38 PRGs were
identified as significantly differentially expressed in the two
groups (Supplementary Figure S1B). Notably, the expression
levels of 5 PRGs (CASP1, CASP3, CASP6, GSDMB, and GZMA)
were lower in both CRC tissues and the high-stage group,
suggesting that their potential function as tumor suppressors
in CRC tumorigenesis and development.

Identification of a Pyroptosis-Related
Subtype in CRC
GSE39582 was selected as the exploration cohort for further
analysis because it was the largest, most comprehensive, and
most complete data series among the three datasets. Except for
the GSDMA, other 37 PRGs were extracted and the prognostic
values in CRC patients were revealed by using univariate Cox
regression (Supplementary Table S3: OS, Supplementary Table
S4: RFS, respectively). In addition, a pyroptosis network was
constructed to visualize the landscape of PRG interactions,
connections, and their prognostic values (Figure 2A). We
further performed consensus clustering analysis to identify
different pyroptosis-related subtypes based on 37 PRGs.
Results showed that the patients were separated into two
different subtypes according to the optimal clustering stability
value (k = 2), including 236 cases in cluster A and 343 cases in
cluster B (Figures 2B,C). Moreover, PCA demonstrated
discernible dimensions between Cluster A and Cluster B
(Figure 2D). In addition, The Kaplan–Meier curves showed
that the OS and RFS of Cluster B for CRC patients were
worse than that of Cluster A (p = 0.043 and p = 0.006,
respectively) (Figures 2E,F). Moreover, the expression profile
of 37 PRGs and their association with clinical characteristics was
presented in a heatmap. As shown in Figure 2G, Cluster A was
significantly related to lower TNM stage (p < 0.01), right-sided
CRC (p < 0.001), higher deficient mismatch repair (dMMR) (p <
0.001), without TP53 (p < 0.01) and BRAF mutations (p < 0.001),
and lower recurrence risk (p < 0.05) compared to those in Cluster
B. Given the significant influence of PRG expression on the
function of immunity (Figures 1I,J), we next investigated the
distinct characteristics of the TME infiltration between Cluster A
and Cluster B.

Two Pyroptosis-Related Subtypes
Associated With Distinct TME Infiltration
GSVA enrichment analysis was performed to identify the
differences in biological behavior between these two subtypes.
As shown in Figure 3A, Cluster A was significantly enriched in
immune fully-activated pathways, including natural killer cell-

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9253385

Li et al. Pyroptosis-Related Genes in Colorectal Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 2 | Two distinct subtypes of CRC are related by 37 PRGs based on consistent clustering. (A) Univariate cox regression analysis of OS for each PRGs in
GSE39582 cohorts. (B,C)Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (D) PCA showed a remarkable difference in transcriptomes
between the two subtypes, respectively. (E,F)OS andRFS curves showing 37 PRGs for the two distinct subtypes, respectively. (G)Differences in clinicopathological and
biological characteristics of two distinct subtypes. *p < 0.05; **p < 0.01; and ***p < 0.001.
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mediated cytotoxicity, the activated JAK-STAT signaling
pathway, antigen processing and presentation, cytokine
receptor interaction, chemokine signaling pathway activation,

intestinal immune network, RIG-I-like, NOD-like, and Toll-
like receptor signaling pathways. To further investigate the
correlation with TME infiltration in distinct subtypes, we

FIGURE 3 | Two different CRC subtypes showed diverse tumor immune cell microenvironments. (A) Biological processes analyzed by GSVA which showed the
active biological pathways in distinct subtypes. (B–E) Expression of the TME score and tumor purity in distinct subtypes. (F) Abundance of 23 TME infiltrating cells
between the two CRC subtypes. (G–J) Expression levels of PD-1, PD-L1, LAG3, and CTLA-4 in the two CRC subtypes. *p < 0.05; **p < 0.01; and ***p < 0.001.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9253387

Li et al. Pyroptosis-Related Genes in Colorectal Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 4 | Prognostic value of six PRGs in CRC. The Kaplan–Meier curves of CASP1 (A,G), CASP3 (B,H), CASP6 (C,I), GZMB (D,J), IRF1 (E,K), and NLRP1(F,
L) for the low- and high-expression groups with the cut-off value 2.732 for OS and 2.281 for RFS in GSE39582 cohorts. (M) Cross-validation for tuning the parameter
selection in the LASSO regression. (N) LASSO regression of the OS-related PRGs.
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analyzed the differences in terms of ImmuneScore, StromalScore,
and EstimateScore between Cluster A and Cluster B. Our results
revealed that Cluster B had a lower ImmuneScore, StromalScore,
and EstimateScore than Cluster A, which indicates that Cluster B
had a higher tumor purity than Cluster A (p < 0.001) (Figures
3B–E). According to the CIBERSORT algorithm, we observed
that except for the NK cells activated, other immune cells were all
poorly activated in Cluster B (Figure 3F). Similarly, we then
performed to analyze the expression of four important immune-
oncology targets (PD-1, PD-L1, LAG3, and CTLA-4) between
Cluster A and Cluster B. As shown in Figures 3G–J, the
expression levels of PD-L1, LAG3, and CTLA-4 were higher in
Cluster A than in Cluster B (p < 0.001). Taken together, our
results indicated that all PRGs were involved in shaping the TME
infiltration, and represented different prognostic characteristics
in CRC patients.

PRG Signature Construction and Validation
of a Risk Model in CRC
The Kaplan–Meier analysis was performed to determine whether
these pyroptosis-related prognostic genes were associated with
OS and RFS of CRC patients. As shown in Figures 4A–L,
Kaplan–Meier curves showed that all the 6 PRGs were
survival-associated with both OS and RFSin the high-/low-
expression groups. To construct a prognostic PRG signature,
we then performed a LASSO penalized Cox regression analysis to
construct a six-PRG signature model in the exploration cohort
(Figures 4M, N). Meanwhile, the patient samples were randomly
divided into the training dataset (N = 291) and the test dataset
(N = 288) at a ratio of 1:1. Therefore, the risk score for each
patient in the training and testing dataset were calculated based
on the risk formula: risk score = CASP1 *
(−0.0498047128230464) + CASP3 * (−0.116381287112657) +
CASP6 * (−0.283976042054973) + NLRP1 *
0.392333000687955 + GZMB * (−0.0829855594961543) +
IRF1 * (−0.192571488474279). Furthermore, the exploration
cohort was categorized into low- and high-risk groups based
on the training dataset median value of the prognostic risk grade.
The correlation between the six PRG signatures and the risk score
can be observed in the heatmap, and the distribution of the risk
score and survival time of CRC patients is displayed in the
training and testing datasets (Supplementary Figures S3A, B).
These results showed that the expression levels of CASP1, CASP3,
CASP6, GZMB, and IRF1 were lower, while the expression levels
of NLRP1 were higher in the high-risk groups than in the low-risk
groups. In addition, the area under the curve (AUC) values for 1-,
3-, and 5-year OS were 0.70, 0.66, and 0.65 in the training dataset
and were 0.67, 0.65, and 0.65 in the testing dataset, respectively
(Supplementary Figures S3C, D). The results of the
Kaplan–Meier (KM) curve analysis showed that the low-risk
groups had a better prognosis than the high-risk groups in the
training and testing datasets (p < 0.05) (Supplementary Figures
S3E, F). Similarly, two external datasets including 177 patients in
the GSE17536 cohort and 453 patients in the TCGA cohort were
classified into the low- and high-risk groups based on the median
risk score in the GSE39582 cohort (Figure 5A). The correlation

between the six PRG signatures and the risk score can be observed
in the heatmap (Figure 5B), and the distribution of the risk score
and survival time of CRC patients were displayed in the two
testing datasets (Figure 5C). In addition, the Kaplan-Meier
analysis also indicated that patients in the low-risk groups
have longer survival times than those in the high-risk groups
(p < 0.05) (Figure 5D). ROC curve analysis of the two external
datasets showed that our model had good predictive efficacy for
1- and 3-year OS; however, the AUC values for 5-year OS barely
showed satisfaction (GSE17536: AUC = 0.64, 0.61, 0.58 for 1-, 3-,
and 5-year survival; TCGA: AUC = 0.63, 0.62, and 0.56 for 1-, 3-,
and 5-year survival, respectively) (Figure 5E). To further predict
the ability of the prognostic model, the RFS was investigated to
distinguish between low- and high-risk CRC patients. As
predicted, the RFS differed between the low- and high-risk
groups, implying that the PRGs signature had good accuracy
in the prognostic prediction of CRC (p < 0.001) (Figure 5F).
Subsequently, the PCA was performed to test the difference
between the low- and high-risk groups based on the 38 PRGs
and six PRG signatures. Notably, our results suggest that the low-
and high-risk groups were better distinguished by the six PRG
signatures than the 38 PRGs in the GSE39582 cohort,
GSE17536 cohort, and TCGA cohort (Supplementary Figures
S4A–H).

Stratification Analysis and Independent
Prognostic Value of the PRG Signature
To explore the impact of the PRG signature on clinical
characteristics, we investigated the association between PRG
signature and clinical factors in CRC patients, including age,
gender, pathologic stage, TNM stage system, adjuvant
chemotherapy, tumor location, MMR system, TP53 mutation
status, KRAS mutation status, BRAF mutation status, and disease
recurrence. As shown in Supplementary Figures S5A–M, we
found that CRC patients in the high-risk groups tended to have a
lower OS rate than that in the low-risk groups based on our
different stratifications. These results suggested that the PRG
signature could well predict the prognosis of CRC regardless of
clinical features. In addition, The heatmap was also performed to
demonstrate the significant differences in terms of the two
pyroptosis-related subtypes, pathologic stage, and disease
recurrence between the low- and high-risk groups
(Figure 6A). Specifically, the ability of the PRG signature to
predict the efficacy of adjuvant chemotherapy (defined as ADJC
Yes/No) in CRC was assessed and found that the low-risk groups
always showed a clear survival advantage regardless of whether
chemotherapy. Moreover, the low-risk groups showed significant
therapeutic advantages compared to high-risk groups, implying
that the predictive ability of the PRG signature was not affected by
ADJC (Figure 6B). As we know, TP53, KRAS, and BRAF
mutation status are related to the sensitivity of chemotherapy
and immunotherapy, as well as can be used as a prognostic
marker in CRC (Carethers and Jung, 2015). Therefore, we further
investigated whether the PRG signature could predict the OS
outcome better than TP53, KRAS, and BRAF mutation status.
Patients in the high-risk groups (respectively, defined as
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TP53 mutation/high and TP53 wt/high, KRAS mutation/high
and KRAS wt/high, BRAFmutation/high and BRAF wt/high) had
a worse clinical outcome than patients in the low-risk groups
(respectively, defined as TP53 mutation/low and TP53 wt/low,

KRAS mutation/low and KRAS wt/low, BRAF mutation/low and
BRAF wt/low) (Figures 6C–E). Interestingly, patients in the high-
risk groups with TP53 wt, KRAS wt, and BRAF wt had a worse OS
outcome than patients in the low-risk groups with

FIGURE 5 | Construction of the PRG signature to predict patient survival. (A–C) Distribution of the risk score, survival time and survival status, and the heatmap of
the six PRGs signatures in GSE39582, TCGA, and GSE17536 cohorts between the high- and low-risk groups, respectively. (D) Kaplan–Meier survival curves of the OS
for patients in GSE39582, TCGA, and GSE17536 cohorts between the high- and low-risk groups, respectively. (E) 1-, 3-, and 5-year ROC curves of the PRG signature
for the OS prediction in GSE39582, TCGA, and GSE17536 cohorts, respectively. (F) Kaplan–Meier survival curves of the relative RFS between the high- and low-
risk groups in the GSE39582 cohort.
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TP53 mutation, KRAS mutation, and BRAF mutation. However,
patients in the high-risk groups with TP53 mutation, KRAS
mutation, and BRAF mutation had a similar prognosis to that
patient in the high-risk groups with TP53 wt, KRAS wt, and
BRAF wt. Thus, these results suggested that the PRG signature
might have greater prognostic significance than the TP53, KRAS,
and BRAF mutation status. In addition, to determine whether the
PRG signature could be used as independent prognostic factors in
the two internal and external datasets, we attempted to perform
univariate and multivariate Cox regression analyses based on the
PRG signature and clinical features. As shown in Figures 6F–I,
the PRG signature could act as independent predictors for the
prognosis of CRC in GSE39582 cohort (two internal datasets),
with consistent results observed in the GSE17536 cohort and
TCGA cohort (two external datasets). The AUC values for 5-

years OS were constructed by multivariate cox regression (p <
0.05). The AUC of the PRG signature was also higher than the
other clinical characteristics (age, gender, and pathologic stage),
suggesting that the PRG signature for the prediction prognosis of
CRC was comparatively dependable (Figure 6J).

Construction of a Nomogram for the
Individualized Prediction Model in CRC
Given the importance of the PRG signature in predicting the
prognosis of CRC patients, we further attempted to construct a
nomogram based on the multivariate Cox regression for predicting
the OS and RFS at 1, 3, and 5 years. As shown in Figures 7A,B, the
predominant predictive ability of the risk score in the nomogram
was exhibited compared with the clinical characteristics, including

FIGURE 6 | Association of six PRG signatures with clinical characteristics and the univariate and multivariate Cox regression analyses for the risk score. (A)
Heatmap of the correlation of six PRG signatures with two CRC subtypes and clinical characteristics, ***p < 0.001. (B–E) Kaplan–Meier curve analysis of OS is shown for
patients classified according to adjuvant chemotherapy and the TP53/KRAS/BRAF mutation status and six PRG signatures. (F–I) Univariate Cox regression and
multivariate Cox regression analyses for the two internal (divided GSE39582 cohort into F: training dataset and G: testing dataset, respectively) and external
datasets (H: TCGA cohort, (I) GSE17536 cohort, respectively). (J) ROC curves of the clinical characteristics and risk score.
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age, gender, and pathologic stage. Moreover, the calibration plots
indicated that the 1-, 3-, and 5-year OS and RFS could be predicted
relatively well in the GSE39582 cohort (Figures 7C,D).

Functional Enrichment Analysis of the PRG
Signature in CRC
To further explore the differences in the gene functions and pathways
between the low- and high-risk groups based on PRG signature, we
first identified 37 DEGs (FDR <0.05 and |Fold change| ≥ 1.5) between
the low- and high-risk groups in the GSE39582 cohort. The volcano
plot was applied to visually display the distribution of the DEGs and to
depict the expression of the six significant variable PRG signature
(Figure 8A, red: upregulated; blue: downregulated). Furthermore, we

employed GO enrichment analysis and KEGG pathway analysis based
on these DEGs. The results indicated that the PRG signature was
mainly correlated with the immune response, chemokine-mediated
signaling pathways, and inflammatory cell chemotaxis (Figures 8C,D).
Similarly, 76 DEGs in the TCGA cohort were also identified between
the low- and high-risk groups (Figure 8B, red: upregulated; green:
downregulated). Interestingly, the results of functional enrichment
analysis were consistent with the GSE39582 cohort (Figures 8E,F).

Relationship Between the PRG Signature
and TME Infiltration in CRC
Increasing evidence reveals that TME cell infiltration is critical for
carcinogenesis and the therapeutic response of tumors. Based on

FIGURE 7 | Construction and evaluation of a predictive nomogram. (A) Nomogram predicts the probability of OS at 1, 3, and 5 years. (B) Nomogram predicts the
probability of RFS at 1, 3, and 5 years. (C) Calibration plot of the nomogram predicts the probability of the 1-, 3-, and 5-year OS. (D) Calibration plot of the nomogram
predicts the probability of the 1-, 3-, and 5-year RFS.
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FIGURE 8 | Functional analysis based on the DEGs between the high- and low-risk groups. (A) Overview of the DEGs between the two-risk groups in the
GSE39582 cohort (red represents upregulated genes, blue indicates downregulated genes, and gray represents no change, respectively). (B) Volcano figure of
significant DEGs between the two-risk groups in the TCGA cohort (Red represents upregulated genes, green indicates downregulated genes, and gray represents no
change, respectively). (C,D) Bubble graph for gene ontology (GO) analysis and the barplot graph for Kyoto Encylopedia of Genes and Genomes (KEGG) analysis in
the GSE39582 cohort. (E,F) Barplot graph for gene ontology (GO) analysis and the bubble graph for Kyoto Encylopedia of Genes and Genomes (KEGG) analysis in
TCGA cohort.
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the functional analyses, we first analyzed the effect of chemokines
on TME and found that there were higher expressions of CXCL9,
CXCL10, CXCL12, CXCR4, and CCL5, in the low-risk group,
which attract dendritic cells (DCs) and CD8 + T cells

(Figure 9A). Furthermore, we investigated the abundance of
different immune cell types between the low- and high-risk
groups using CIBERSORT algorithm in GSE39582 cohort
(Figure 9B). Heatmap showed the correlation between
22 immune cell types and numeric in each tiny box indicating
the values of correlation between two kinds of immune cells in
TME infiltration of the two risk groups (Figure 9C). The high-
risk groups were closely associated with a high stromal score,
whereas the low-risk groups were also significantly connected to a
high immune score in both the GEO and TCGA cohorts (Figures
9D–F). In addition, we performed to explore the score of immune
infiltration levels and immune functions between the low- and
high-risk groups by using single-sample gene set enrichment
analysis (ssGSEA). As shown in Figure 9G, the levels of immune
cell infiltration in the high-risk groups were generally lower than
those in the low-risk groups, especially for CD8+T cells, T helper
(Th) cells (Tfh, Th1, and Th2 cells), and regulatory T (Treg) cells
in the GSE39582 cohort. In addition, the immune-related
functions, except for the type-II IFN response pathway, were
also less active in the high-risk groups than in the low-risk groups
(Figure 9H). A similar conclusion was reached when evaluating
the immune status in the GSE17536 cohort and TCGA cohort.
Moreover, we found that dendritic cells (DCs), induced dendritic
cells (iDCs), T helper (Th) cells, tumor-infiltrating lymphocytes
(TILs), co-stimulation of antigen-presenting cells (APCs),
chemotaxis of CCR, and type-I INF response pathway were
enriched in the low-risk groups compared with the high-risk
groups (Figures 9I–L). Meanwhile, we discovered significant
differences in immune cell infiltration between low- and high-
risk groups in the GSE39582 cohort (Supplementary Figure
S6A) such as the infiltration levels of CD4 memory-activated
T cells, follicular helper T cells, M1 macrophages, and plasma
cells were higher in the low-risk groups than those in the high-
risk groups, while resting CD4 memory T cells, regulatory T cells
(Tregs), monocytes, M2 macrophages, activated mast cells, and
neutrophils had significantly lower infiltration in the low-risk
groups than those in the high-risk groups. In the
GSE17536 cohort, resting CD4 memory T cells, monocytes,
and activated mast cells had higher infiltration levels in the
high-risk groups, CD4 memory-activated T cells, follicular
helper T cells, gamma delta T cells, and M1 macrophages had
higher infiltration levels in the low-risk groups (Supplementary
Figure S6B). In TCGA cohort, we found that the infiltration
levels of CD8 + T cells, CD4 memory-activated T cells, activated
NK cells, M1 macrophages, resting mast cells, and eosinophils
were higher in the low-risk groups than those in the high-risk
groups, while regulatory T cells (Tregs), M0 and
M2 macrophages, and activated mast cells had significantly
lower infiltration in the low-risk groups compared to those in
the high-risk groups (Supplementary Figure S6C). Moreover, we
generated a scatter diagram to visually display the association
between our risk model and the abundance of immune cells. As
shown in Supplementary Figures S7A–D, the risk score was
positively correlated with memory B cells, Tregs, resting
CD4 memory T cells, monocytes, M0 and M2 macrophages,
neutrophils, activated mast cells and negatively correlated with
CD8 + T cells, CD4 memory-activated T cells, gamma delta

FIGURE 9 | Variations in immune-related genes and the infiltration
characteristics of TME cells between the high- and low-risk groups. (A)
Thermogram shows variations in the mRNA expression of chemokines
between the two-risk groups. (B) Bar plot shows the proportion of
22 infiltrating immune cells based on the CIBERSORT algorithm between the
two-risk groups. (C) Correlation matrix of all 22 infiltrating immune cells (red
represents positively related and green represents negatively related; p <
0.05 was the cut-off). (D–F) Correlations between the two-risk groups and
TME score in GSE39582 (D), TCGA (E), and GSE17536 (F) cohorts,
respectively. (G–L) Comparison of the enrichment scores of 16 types of
immune cells and 13 immune-related pathways between low- and high-risk
groups in GSE39582 (G, H, respectively), TCGA [(I, J), respectively] and
GSE17536 [(K, L), respectively] cohorts. *p < 0.05; **p < 0.01; and ***p <
0.001.
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FIGURE 10 |Comprehensive analysis of the PRG signature in CRC. (A) Kaplan–Meier curves for the high- and low-TMBwith the cut-off value of 2.421 of 399 CRC
patients in TCGA cohorts. (B) TMB difference in the high- and low-risk groups. (C) Kaplan–Meier curves for CRC patients in TMB and risk score subgroups. (D,E)
Waterfall plot of somatic mutation features established with the high- and low-risk groups. (F,G) Correlation between two risk groups and MSI. (H) Kaplan–Meier curves
for MSS, MSI-L, and MSI-H of CRC patients. (I) Kaplan–Meier curves for CRC patients in MSS, MSI-L, and MSI-H and risk score subgroups. (J) Correlation
between two risk groups and CSC index. (K) Thermogram shows variations in the mRNA expression of EMT-related genes between the two risk groups. *p < 0.05; **p <
0.01; and ***p < 0.001.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 92533815

Li et al. Pyroptosis-Related Genes in Colorectal Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


T cells, follicular helper T cells, plasma cells, M1 macrophages,
resting mast cells, and activated NK cells. Taken together, our
results suggested that the PRG signature plays an important role
in the immune regulation of the TME.

Relationship of the PRG Signature With
Mutation, MSI, CSC Index, and EMT
Based on the TCGA-COAD/READ mutation data, we first
assessed the potential relationship between the TMB level and
OS and observed that the survival rate of patients with high TMB
was lower than that of patients with low TMB (the optimal
cutoff = 2.4211; p = 0.029) (Figure 10A). In addition, Figure 10B
showed a lower TMB in the low-risk groups than that in high-risk
groups, and the survival rate of the low-risk groups was more
affected by TMB status than that of the high-risk groups (p =
0.018) (Figure 10C). Furthermore, the distribution variations of
the top ten somatic mutation genes between two PRG signature
groups were analyzed based on the TCGA-COAD cohort
(Figures 10D,E). Except for the APC, TP53, and KRAS, other
mutated genes had higher mutation frequencies in the low-risk
groups than the high-risk groups. Moreover, correlation analyses
revealed that the high-risk groups were associated with
microsatellite stability (MSS) and low microsatellite instability
(MSI−L) status, while low-risk groups were correlated with the
high microsatellite instability (MSI-H) status (Figures 10F,G).
Although the influence of MSI status on OS in CRC is less
obvious, we found that patients with MSS status had a poorer
prognosis than the other two subgroups (p = 0.3502)
(Figure 10H). Interestingly, combination of the PRG signature
risk model and MSI/MSS (respectively defined as MSI + high-
risk, MSI + low-risk, MSS + high-risk, and MSS + low-risk) could
clearly stratify patients better. As shown in Figure 10I, patients
with MSS + low-risk group had worse survival outcomes than
patients with MSI + low-risk group, while the trend of survival
advantage in the MSI + high-risk group was reversed by the risk
score (p < 0.05). Moreover, we analyzed the relationships between
the risk score and cancer stem cell (CSC) in the two risk groups.
As shown in Figure 10J, the result demonstrated a negative
correlation between the risk score and the CSC index values
(R = −0.41; p < 0.001), implying that the low-risk score had more
distinct stem cell properties and a lower degree of cell
differentiation. EMT is one of the core mechanisms of tumor
metastasis, and it is also one of the main factors leading to poor
prognosis of patients. Notably, we found that EMT markers,
including N-cadherin, vimentin, snails, TWIST1, and MMPs,
were higher in high-risk groups than in low-risk groups
(Figure 10K). Finally, a sankey diagram was constructed to
visualize these changes in patient characteristics (Figure 11A).

PRG Signature Predict Sensitivity of CRC to
Immunotherapy and Chemotherapy
There is increasing evidence suggesting that patients with high
TMB and MSI-H status may benefit from immune checkpoint
blockade therapy (Topalian et al., 2016; Ganesh et al., 2019;
Picard et al., 2020; Zhang et al., 2020). We then performed to

analyze the associations between 47 important immune
checkpoints (Mahoney et al., 2015; Wang J. B et al., 2020;
Zhang et al., 2020; Zhao et al., 2021) and our risk model in
the GSE39582 cohort. As shown in Figures 11B–D, we found
that immune checkpoints (showed statistical differences among
47 immune checkpoints) were differentially expressed between
low- and high-risk groups in GSE39582, GSE17536, and TCGA
datasets, including PD-L1, CTLA-4, and LAG3. According to
these results, we speculated that low-risk groups might benefit
from immunotherapy compared to high-risk groups.
Unsurprisingly, we found that the high-risk groups showed
higher dysfunction and exclusion score by using the Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm,
implying that the low-risk groups benefited from
immunotherapy (Figure 11E), consistent with the results
observed in the MSS analyses. To explore the potential
therapeutic drugs of patients in the high-risk groups, we
further performed the analysis of the drug sensitivity
(IC50 value) based on Genomics of Drug Sensitivity in Cancer
(GDSC). According to the drug result, we found that the IC50 of
most drugs, such as cisplatin, gemcitabine, and camptothecin
were significantly lower in low-risk groups than those in high-risk
groups, while IC50 of pazopanib, midostaurin, imatinib,
elesclomol, dasatinib, bryostatin.1, bicalutamide, bexarotene,
etc., were significantly lower in the patients in high-risk
groups (Supplementary Figure S8), suggesting that our study
might provide therapeutic schedules for further analysis.
Together, our PRG signature model is a potential metric for
evaluating prognoses and the clinical response to immunotherapy
and chemotherapy.

Correlation of the PRG Signature
Expression With Immune Infiltration and
Survival in CRC
To identify the roles of PRG signature in the TME of CRC, we
used the TISCH database to analyze the distribution of the PRG
signature in CRC. We found that the expression distributions of
CASP1, CASP3, GZMB, and NLRP1 were abundant in immune
cells. The gene expression of CASP6 and IRF1 were evenly
distributed in immune cells and malignant cells (Figures
11F–L). We also analyzed the distribution of PRG signature in
immune infiltration. The results showed that most immune cells
were significantly associated with the PRG signature
(Supplementary Figure S9), which was consistent with
previous results. (Figure 12A). We further analyzed the
relationship between PRG signature expression and staging in
different subsets of cells. Except for the CD8 + T cells, six PRGs
signatures were significantly correlated with staging in the
mononuclear/macrophage and plasma cells subgroup
(Supplementary Figure S10). To explore the correlation of
the estimated proportion of immune infiltration with the OS
rate, we performed Kaplan–Meier survival analysis based on the
level of ImmuneScore. As shown in Figure 12B, the proportion of
immune components had a positive correlation with the OS rate
(p = 0.029). Furthermore, we investigated the differences in terms
of Immune scores with high-/low-expression groups depending
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FIGURE 11 | Estimation and validation of the 47 immune checkpoints and cancer immunotherapy response in two risk groups. (A) Alluvial diagram showing the
changes in risk score, immune score, TMB, MSI, TMN staging, and survival outcomes in the GSE39582 cohort. Expression of immune checkpoints between the high-
and low-risk groups in GSE39582 (B), TCGA (C),and GSE17536 (D) cohorts, respectively. € TIDE prediction difference in the high- and low-risk groups. (F–L)
Correlation and distribution of the expressed PRG signature and immune cell infiltration in CRC. *p < 0.05; **p < 0.01; and ***p < 0.001.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 92533817

Li et al. Pyroptosis-Related Genes in Colorectal Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 12 | Correlation of the immune score with the OS of patients in CRC. (A) Relationships between the abundance of 22 types of immune cells and six PRG
signatures. (B) Kaplan–Meier curves for the high- and low-immune score with the cut-off value -11.072 of 579 CRC patients. (C–H) Relationships between the
expression levels of six PRG signatures and immune score with the cut-off value -11.072 of 579 CRC patients. (I–N) Kaplan–Meier curves for CRC patients in immune
score and PRG signature expression subgroups. (O) Venn plot showed four common PRG signatures based on both immune score and prognosis. p < 0.05 was
the cut-off. *p < 0.05; **p < 0.01; and ***p < 0.001.
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on the comparison with the median expression levels of six-PRG
signatures. Except for the CASP3, other PRG signatures had a
significant correlation with the ImmuneScore (p < 0.001)
(Figures 12C–H). The effect of gene expression combined
with the level of immune infiltration on the prognosis of CRC
had been focused on. As shown in Figures 12I–N, the OS was
longer in high CASP1/CASP3/CASP6/GZMB expression
(respectively, defined as High_exp and Low_exp) + high
ImmuneScore (respectively, defined as High_score and
Low_score) and low NLRP1 expression + high ImmuneScore,
while the IRF1 expression combined with the level of
ImmuneScore had no significant correlation with the OS.
Finally, four common PRG signatures (CASP1, CASP6,
NLRP1, and GZMB) were identified from the two lists
(Figure 12O), which were of ImmuneScore (p < 0.05) and
immune-related OS (p < 0.05). We further conducted to verify
the relationship between the expression of four PRG signatures
and the levels of TME infiltration based on TIMER 2.0. The
expression levels of CASP1 were found to be positively correlated
with the infiltration levels of CD8 + T cells, plasma cells, dendritic
cells (DCs), CD4 + T cells, monocytes, mast cells, NK cells,
macrophages, regulatory T cells (Tregs), and neutrophils.
Notably, we also found that the CASP1 expression was
negatively associated with the cancer-associated fibroblast cells
and tumor purity (Supplementary Figure S11A). In addition,
there was a negative association between CASP6 expression and
the immune infiltration level of CD8 + T cells, NK cells,
macrophages, monocytes, dendritic cells (DCs), neutrophils,
and cancer-associated fibroblast cells, whereas showed a
positive association with the abundance of CD4 + T cells,
plasma cells, and tumor purity (Supplementary Figure S11B).
Moreover, the expression levels of GZMB were found to be
positively correlated with the infiltration levels of CD8 +
T cells, plasma cells, dendritic cells (DCs), CD4 + T cells,
monocytes, NK cells, macrophages, neutrophils, endothelial
cells, and cancer-associated fibroblast cells were negatively
associated with regulatory T cells (Tregs) (Supplementary
Figure S11C). Moreover, highly expressed NLRP1 was
positively correlated with the infiltration level of plasma cells,
CD4 + T cells, CD8 + T cells, macrophages, dendritic cells (DCs),
NK cells, monocytes, neutrophils, regulatory T cells (Tregs), mast
cells, endothelial cells, and cancer-associated fibroblast cells,
while was negatively associated with tumor purity
(Supplementary Figure S11D). These results indicated that
PRGs had crosstalk between CRC and immune cells and had
the potential to shape the unique TME of CRC.

CASP6 and NLRP1 Had Potential to be
Targets of Immunotherapy and
Chemotherapy in CRC
The aforementioned results revealed that the expression levels of
CASP1/CASP6/GZMB/NLRP1 significantly affected the immune
activity of TME in CRC. To clarify whether these PRGs could also
serve as biomarkers to predict the response to immune
checkpoint blockade therapy, we first detected the correlation
of several important immune checkpoints (such as PD-L1, LAG3,

and CTLA-4) with them in GSE39582 cohort. As shown in
Supplementary Figures S12A–C, the data demonstrated a
negative correlation between the CASP6 expression and the
immune checkpoints, while other PRGs were positively
correlated with the immune checkpoints (p < 0.05).
Furthermore, Spearman’s correlation analysis demonstrated
that the expression levels of CASP1 were positively associated
with a high TMB (p = 2.38e−05), while CASP6 expression was
negatively related to a high TMB (p = 0.036) (Figure 13A). In
addition, the results revealed a positive correlation between
CASP1 and MSI (p = 0.027), whereas MSI was negatively
correlated with CASP6 expression (p = 0.01) (Figure 13B).
There was no significant correlation between GZMB and TMB
or MSI (p = 0.057 and p = 0.216, respectively). Interestingly, we
found that low CASP6 expression showed higher dysfunction and
a lower exclusion score using the TIDE algorithm (p < 0.001),
suggesting that high CASP6 expression may benefit from
immunotherapy in CRC (Figure 13C). This is inconsistent
with the results of TMB and MSI, which might be related to
the negative correlation between CASP6 expression and the
immune checkpoints. Despite NLRP1 expression had no
significant correlation with the TMB or MSI (p = 0.219 and
p = 0.074, respectively), our results indicated that low
NLRP1 expression also might benefit from immunotherapy in
CRC (p < 0.001). To validation of the expression levels of
CASP6 and NLRP1 used for therapeutic targets, RT-qPCR was
carried out in six pairs of CRC tissues and normal tissues. As
shown in Supplementary Figures S12D–E, compared with
normal tissues, the expressions of CASP6 and NLRP1 in CRC
tissues were significantly lower. The experimental results were
consistent with the results predicted by bioinformatics methods
(Supplementary Figure S2) and GEPIA database
(Supplementary Figures S12F, G). In Human Protein Atlas
(HPA) database, the expression levels of CASP6 were
downregulated in CRC tissues compared to the levels in the
corresponding normal tissues (Supplementary Figures S12H, I).
However, there was no significant difference in the expression of
NLRP1 (Supplementary Figures S12J, K). Also, the verification
in the GEPIA database found that the low expression of
CASP6 and high expression of NLRP1 had a higher survival
risk, and the expression of CASP6 and NLRP1 were significantly
associated with the stages of CRC, which were consistent with our
results (Supplementary Figure S13). In addition, CRC
recurrence is attributed to chemoresistance. Thus, we further
focused on the correlation of CASP6 and NLRP1 expressions with
the sensitivities of chemotherapy drugs that currently were used
for the treatment of CRC. Interestingly, the IC50 values of
shikonin, cisplatin, paclitaxel, gefitinib, and camptothecin
showed a positive association with the expression levels of
CASP6, while the correlation of IC50 values of 5-Fu and
gemcitabine with CASP6 expression was negative. Moreover,
we also found that the IC50 values for shikonin, cisplatin,
paclitaxel, and camptothecin were significantly negatively
associated with the expression levels of NLRP1, and the
IC50 values of gemcitabine showed a positive association with
the expression levels of NLRP1. However, the IC50 values of 5-Fu
and gefitinib had no significant correlation with the
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NLRP1 expression (Supplementary Figure S14). 5-Fu
chemoresistance is a major challenge and the prognosis for
CRC patients can be very poor due to recurrence of the
disease (Brenner et al., 2014). For further validation, the
pcDNA3.1-CASP6 expression plasmid was transfected into
HT29 and HCT116 cells. CASP6 expression was drastically
increased in both HCT116 and HT29 cells after transfection
with the pcDNA3.1-CASP6 vector compared with the expression
in cells transfected with an empty pcDNA3.1 vector
(Supplementary Figures S15A, B). Elevation in
CASP6 significantly inhibited the proliferation ability of
HT29 and HCT116 cells (Supplementary Figures S15C, D).
In addition, our experiments’ results suggested that pcDNA3.1-
CASP6 increased cytotoxicity induced by 5-Fu in HCT116 and
HT29 cells (Supplementary Figure S15E, F). Moreover, the
IC50 value of 5-Fu in HCT116 and HT29 cells were
approximately 40 and 30 μM, and over-expression of
CASP6 also increased IC50 value of 5-FU induced apoptosis
in HCT116 cells and HT29 cells compared with controls
(Supplementary Figure S15G). Therefore, these results

indicated that low expression of CASP6 and high expression
of NLRP1 promoted tumor development, and it also was
associated with poor prognosis, the sensitivity of
immunotherapy, and chemotherapy in CRC.

CASP6 Induces Chemoresistance of CRC
Cells to 5-Fu Partly Associated With
Fusobacterium nucleatum
The important contribution of the gut microbiota to human
health and disease is widely recognized. Increasing evidence
suggests that patients with high F.n abundance are associated
with poor RFS and can promote chemoresistance to 5-Fu in CRC
(33, 34). We hypothesized that dysregulated F.nmight contribute
to downregulate the CASP6 expression. To test this hypothesis,
we performed a global mRNA expression profiling of
HCT116 cell lines infected with F.n for 24 h (Supplementary
Table S5). Additionally, we analyzed the gene expression profile
of the RNA-seq dataset (GSE90944) in HT29 cell lines treated
with or without F.n. Interestingly, we found there could be a

FIGURE 13 | TMB, MSI, and cancer immunotherapy response analysis with four PRG signatures. (A) Correlation between four PRG signatures and TMB in CRC.
(B) Relationships between four PRG signatures and MSI. (C) Relationship between four PRG signatures and TIDE.
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FIGURE 14 | F.n induces chemoresistance of CRC cells to 5-Fu via downregulation of CASP6 in vitro. (A) Venn diagram showed CASP6 shared by F.n-related
DEGs and PRG signature. (B) Expression of CASP6 in GSE90944. (C) Expression of CASP6 between HCT116 cells and F.n-infected HCT116 cells using microarray
analysis. (D–G) Expression of CASP6 was quantified by qPCR in CRC cell lines infected with or without F.n for 24 and 48 h, respectively. (H,I) Cells were incubated with
or without F.n and then exposed to serial dilutions of 5-Fu for 48 h (cell viability was determined by CCK8 assay, and data are presented as the percentage of viable
cells). (J,K) RT–qPCR analysis of the CASP6 expression in CRC cell lines co-cultured with F.n for 24 h and then transfected with pcDNA3.1-CASP6 or empty
pcDNA3.1 vector. (L, M) Cell proliferation was detected in HCT116 cells and HT29 cells after transfection with pcDNA3.1-CASP6 or empty pcDNA3.1 vector. (N) Cell
viability of HCT116 cells and HT29 cells were detected using a CCK8 assay after transfection with a CASP6 overexpression vector under F.n treatment for 24 h. (O) Venn
diagram of differential miRNAs and possibly combined miRNAs with CASP6. (P, Q) Heatmap of significantly differential eight candidates’miRNAs (Q) and relationships
between CASP6 and eight candidates’ miRNAs (P). *p < 0.05; **p < 0.01; and ***p < 0.001.
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possible association between F.n and CASP6 (Figure 14A, DEGs
was set as an FDR <0.05 and |log2 FC| ≥ 1). In addition, the results
showed that the mRNA levels of CASP6 were significantly
downregulated by F.n (Figure 14B: GSE90944, Figure 14C:
mRNA Chip array). Furthermore, we performed to validate
the downregulation of CASP6 in both HCT116 and
HT29 cells infected with F.n for 24 and 48 h based on qPCR
(Figures 14D–G). To determine whether the downregulation of
CASP6 expression induced by F.n infection leaded to
chemoresistance in CRC, we first detected the cytotoxicity
induced by 5-Fu (Absin, China) in CRC cells with or without
F.n infection. The results suggested that F.n decreased
cytotoxicity induced by 5-Fu in HCT116 and HT29 cells
(Figures 14H,I). Moreover, pcDNA3.1-CASP6 was transfected
in HCT116 cells and HT29 cells cultured with F.n (Figures
14J,K), and we found that had no effect on CRC proliferation
(Figures 14L,M). However, pcDNA3.1-CASP6 increased IC50 5-
FU-induced apoptosis in HCT116 cells and HT29 cells cultured
with F.n, compared with controls (Figure 14N). miRNAs often
regulate gene expression by binding to the RNA-induced
silencing complex (RISC) and directing sequence-specific
cleavage of target mRNA or repressing the target mRNA
translation (Krek et al., 2005; Bartel, 2009). We speculated that
dysregulated miRNAs might contribute to downregulate
CASP6 expression by F.n. To test this hypothesis,
252 miRNAs were identified that can bind to the 3′-UTR of
CASP6 based on miRWalk database analysis (Supplementary
Table S6). In addition, a total of 109 differentially expressed
miRNAs (p < 0.05) were identified by usingmiRNA data, which is
presented in the Supplementary Material (miRNA expression
profiling of twelve CRC tissues with a distinct amount of F.n).
Finally, eight common miRNAs were identified from these two
lists, and we speculated that the hsa-miR-4494 and hsa-miR-509-
3-5p might regulate F.n-CASP6-chemoresistance axis (Figures
14O–Q, Supplementary Table S7). Further study should be
conducted to verify these results. Taken together, our results
proved that gut microbiota dysregulation could affect the
expression of CASP6 and thus induce chemoresistance of CRC
cells to 5-Fu.

DISCUSSION

There is increasing evidence suggesting the indispensable role of
pyroptosis in innate immunity and antitumor effects (Zaki et al.,
2010; Wang Q et al., 2020; Tsuchiya, 2021). However, there is a
lack of bioinformatics analysis to demonstrate the immune
infiltration characteristics and prognostic values of pyroptosis
in CRC. In this study, all the pathways directly related to
pyroptosis were explored and a prognostic signature was
identified by analyzing the influence of the involved pathways
on the TME infiltration. Our PRG signature provided potential
targets for immunotherapy of pyroptosis and implied that
pyroptosis combined with immunotherapy to improve the
prognosis of patients might be an effective treatment direction.
Moreover, this study is the first to suggest that pyroptosis may be
involved in the interactions between gut microbiota and the

chemo-sensitivity to 5-Fu in CRC. We hope that our findings
will help improve our understanding of the role of pyroptosis and
provide a foundation for future research targeting pyroptosis to
improve treatment design and the accuracy of prognosis in CRC.

First, 585 cases of CRC from GSE39582 datasets were selected
as the exploration cohort, and two distinct molecular subtypes
were identified based on the expression levels of 38 PRGs. The
characteristics of clinical and TME infiltration differed
significantly between the two subtypes. Two subtypes were
also characterized by a significant immune activation,
suggesting that there was a significant correlation between
pyroptosis levels and the TME infiltration in CRC. Second, the
PGR signature model was constructed to quantify the prognostic
risk in both GEO and TCGA cohorts by using LASSO penalized
Cox regression analysis. Patients with low- and high-risk groups
showed significantly different prognoses, clinicopathological
characteristics, TME infiltration, TMB, MSI, CSC index,
immune checkpoints, TIDE, and drug susceptibility. Notably,
there was a negative correlation between the high-risk groups and
the infiltration level of anti-tumor immune cells. Moreover, we
confirmed that the PGR signature could be used for prognosis
stratification of patients with CRC, and the predictive ability of
the risk model was reliable. Moreover, multivariate Cox
regression analysis indicated that the PRG signature could act
as an independent predictor. Finally, we established a quantitative
nomogram to improve the performance and facilitated the use of
the model by integrating the PRG signature and clinical
characteristics. Taken together, our PGR signature will assist
in better understanding the molecular mechanism of CRC and
may provide dependable molecular biomarkers for CRC
therapies.

A large number of studies have revealed the importance of the
immune microenvironment in tumorigenesis. Our results
implied that the immune components in the TME contributed
to the prognosis of CRC patients. Here, we revealed that the
expression levels of CASP1, CASP6, GZMB, and NLRP1 were
significantly associated with the proportion of immune
components in the TME and prognosis (expression combined
with ImmuneScore). In addition, a low CASP6 expression and
high NLRP1 expression showed higher dysfunction and a lower
exclusion score based on the TIDE algorithm, which implied that
CASP6 and NLRP1 might be a potential prognostic marker and a
therapeutic target for the immune microenvironment in CRC.
Previous studies have confirmed that PRGs play a crucial role in
chemotherapy (Jiang et al., 2020; An et al., 2021; Shen et al., 2021).
5-Fu chemoresistance is a major challenge and the prognosis for
CRC patients can be very poor due to recurrence of disease
(Brenner et al., 2014). Thus, we focused on CASP6 and NLRP1 to
determine whether it was related to 5-Fu sensitivity. Interestingly,
the expression levels of CASP6 had a negative correlation with the
IC50 value for 5-Fu (p < 0.001). CASP6 has been revealed that is
involved in carcinogenesis and progression by facilitating the
activation of programmed cell death pathways, including
pyroptosis, apoptosis, and necroptosis (Lee et al., 2006; Cheng
et al., 2016; Chen et al., 2021; Lin et al., 2021). Recently,
CASP6 has been generally considered to be a key regulatory
factor for innate immune-inflammatory activation and host
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defense (Zheng et al., 2020). Combining the importance of
CASP6 effects on the immune microenvironment, our results
suggested the possibility of using target CASP6 to enhance the
immunotherapy and chemotherapy effect on CRC. In addition,
F.n, an anaerobic bacterium parasitic in the oral cavity, is
increasingly linked to colorectal carcinogenesis and therapies
(Rubinstein et al., 2013; Yang et al., 2017; Yu et al., 2017;
Zhang S et al., 2019). However, there are no reports on the
influence of the gut microbiota on the progression of CRC
mediated by the expression of pyroptosis. Astonishingly, we
investigated the results of sequencing obtained after co-culture
of F.n with colon cancer cell lines and determined that the
expression of CASP6 was significantly decreased in both
HCT116 and HT29 cell lines. Thus, F.n might promote 5-Fu
resistance by reducing the expression of CASP6, and affect the
prognosis of CRC patients. Furthermore, we performed to
combine these data with the data on differential expression of
miRNAs in CRC tissues with a distinct amount of F.n, which
indicated that changes in the expression levels of miRNAs acting
on the corresponding 3′-UTR of CASP6. According to this result,
F.n might influence the changes in CASP6 at the transcriptional
and posttranscriptional levels and further influence the
progression and the prognosis of CRC. Further study
verification of the mechanism may identify new pathogenic
pathways and therapeutic targets.

Nonetheless, our study had several limitations.Most of the results
were predicted by bioinformatics analysis, and the transcriptional
level could reflect the TME infiltration status but not reflect the
specific changes. We should pay attention to the results of some
single-cell sequencing in the future, whichmay be able to explain the
specific changes in the TME. In addition, multicenter clinical queues
should be performed to verify our results. Our results suggested that
CASP6 might play an important role in CRC; therefore, further
experiments in vitro or in vivo were needed to demonstrate the
associations between pyroptosis, gut microbiota, and CRC. Our
laboratory is conducting further research on the subject.

CONCLUSION

In conclusion, we systematically analyzed the expression and
prognostic value of pyroptosis in CRC and provided a thorough
evaluation of the heterogeneity and complexity of the TME. Low
expressions of certain PRGs could be used as a molecular marker
to identify CRC patients in high-risk groups. The therapeutic
liabilities of pyroptosis in immunotherapy and chemotherapy
were also determined. At present, this is the first research to
propose the theory that gut microbiota may influence
chemoresistance of CRC cells in response to 5-Fu by
influencing the transcriptional changes in pyroptosis, which
provides a direction for further study. These findings highlight

the vital clinical implications of pyroptosis and provide new ideas
for guiding personalized therapeutic strategies for CRC patients.
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