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Approaches to quantify axonal 
morphology for the analysis of 
axonal degeneration

Morphological hallmarks of axonal degeneration 
(AxD): Axons transmit signals from one neuron to 
another and are crucial for the proper communication 
in the nervous system. Therefore, the disintegration 
of axons, a process named AxD, has detrimental 
consequences  and p lays  a  key  ro le  in  many 
neurological diseases.

AxD is characterized by the formation of two 
morphological hallmarks, namely axonal fragments 
and axonal swellings. Whereas axonal fragments 
are separated segments of the axon resulting from 
axonal breakdown, axonal swellings are spherical 
structures that may emerge along the axon prior to 
the formation of axonal fragments (Palumbo et al., 
2021). Quantifying these morphological hallmarks 
enables researchers to follow AxD over time, better 
understand differences in AxD kinetics, and assess 
candidate treatments.

Here, we give a brief overview of the different 
approaches to quantify AxD based on axonal 
morphology and explain how recent machine learning 
tools may be used to decipher the progression of 
AxD to further our understanding of this process and 
develop novel therapeutic interventions.

Image binarization and manual labeling to quantify 
AxD: A widely applied approach to analyze AxD is 
the AxD index (or relative neurite/axonal integrity), 
the ratio of the fragmented axon area over the total 
axon area (Sasaki et al., 2009; Arrázola et al., 2019). 
To identify axons and axonal fragments, grey-scale 
microscopic images are converted to binary images 
by thresholding. Pixels are thereby assigned to 
background, axons or axonal fragments. Structures 
that are continuously connected are counted as 
axons, whereas axonal fragments are identified as 
non-connected structures and counted using the 
particle analyzer module of ImageJ. Further measures 
of AxD are: i) the distance between lesion site and 
axonal tip, ii) the distance between fragments, iii) the 
length of the axonal fragments, and iv) fragmentation 
rate. The above-described approaches can be applied 
in vitro, ex vivo, and also in vivo (Kerschensteiner et 
al., 2005; Knöferle et al., 2010; Gerdts et al., 2015; 
Canty et al., 2020). For the latter, fluorescently labeled 
axonal tracts using transgenic mice or viruses are 
required. However, image binarization is not always 
sensitive enough to recognize thin axons, which are 
then either omitted or misinterpreted as axonal 
fragments. Another drawback of image binarization is 
that it cannot be used to quantify axonal swellings.

Approaches to investigate the occurrence of axonal 
swellings in in vitro, ex vivo, and in vivo experiments 
involve calculating i) the ratio of the number of axonal 
swellings compared to the axon length by manual 
labeling of regions of interest using ImageJ (Yong et 
al., 2019) and ii) the axonal swelling density measuring 
pixel intensity per axon length using MATLAB (Canty 
et al., 2020). As is the case for image binarization, 
these approaches are semi-automatic and subjective, 
because they require manual annotation, and thus 
are very time-consuming. Hence, a tool to analyze 
axonal morphology including both hallmarks of AxD – 
axonal swellings and axonal fragments – that is more 
objective and can be used automatically would be of 
great use to the scientific community.

Principle of deep learning to classify structures in 
microscopic images: Recent progress in the field of 
machine learning has opened novel ways of how to 
quantify axonal morphology on microscopic images. 
Convolutional neural networks (CNNs) represent a 
deep learning approach to classify specific structures 
in microscopic images (Yang and Wang, 2020; Figure 
1). A CNN consists of three different layers, namely 
input, hidden, and output layer, containing several 
nodes whose connection strengths are defined by 
weights.

In the input layer, the CNN receives information about 

the dimensions of the images as input pixel values. 
The backbone of a CNN is the extraction of pixel 
information in the hidden layer by convolutional 
operations to recognize edges, lines, specific shapes, 
and gradient orientation. Convolutional operations 
are based on the application of different filters, also 
named kernels, that slide as a small window region 
over the image and calculate the sum of pixel values.

To minimize the computational power necessary to 
process the data by reducing the image size, further 
pooling operations are employed for each area of the 
image covered by the kernel. During pooling, either 
the maximum or the average pixel value of the kernel 
covering an area of the image is extracted. Each 
pixel value originating from different kernels is then 
multiplied by an associated weight and transformed 
by a mathematical activation and normalization 
function to activate the node as it incorporates 
several weighted inputs. The activated node then 
propagates the information to several subsequent 
nodes in the next layer which differently weigh the 
input. These weight-associated node activations 
eventually determine which nodes are most strongly 
connected.

I n  t h e  o u t p u t  l a y e r,  t h e  p r o b a b i l i t i e s  o f  
classifying specific structures in the microscopic 
image are calculated leading to the assignment of 
each pixel to a class (semantic image segmentation) 
as output. The resulting segmented image containing 
the classif ied pixels is then compared to the 
original image. A mathematical operation called 
“backpropagation” is eventually used to re-adjust the 
weights among the nodes in each layer to ensure that 
the output prediction of the CNN corresponds to the 
original image.

This learning process can be performed by the CNN 
itself or be taught via supervised learning (Yang and 
Wang, 2020). In the case of supervised learning, 
several microscopic images are annotated by experts. 
The original microscopic images and their annotations 
are “fed” into the CNN and used for  output 
comparisons. Finally, the performance of a CNN to 
match the original image should be validated using 
independent datasets and compared against expert 
raters.

Deep learning-based approaches to quantify AxD: 
Several CNNs have recently been developed for the 
recognition of axonal morphologies (Box 1). TrailMap 
facilitates the 3D visualization of axonal projections 
in cleared brain tissue (Friedmann et al., 2020). The 
authors adapted the AdipoClear protocol to reduce 
the autofluorescence of myelin and axons of healthy 
brains that were fluorescently labeled by viral-genetic 
strategies. The recognized axons were then aligned 
to the different brain regions using the Allen Brain 
Atlas Common Coordinate Framework as a standard 
reference space. Using this approach, the authors 
were able to quantify axonal density within noisy 
whole-brain volumetric data. However, this tool is 
not suitable to determine AxD as it has not been 
trained to distinguish between healthy axons and 
axons undergoing AxD. In addition, although TrailMap 
identifies differently labeled axons originating from 
various neuron types, the resulting visualization does 
not discriminate between axons and dendrites.

Another tool developed by Schubert et al. (2019) 
allows to distinguish between neuronal substructures 
(axons, dendrites, and somata) using cellular 
morphology neural networks (CMN) based on 
multi-view projections. These networks combine 
unsupervised and supervised learning approaches to 
analyze electron microscopy images. In addition to the 
reconstruction of different neuronal substructures, 
the authors were also able to distinguish between 
various neuron types and glial cells. Despite the 
advantage of cellular morphology neural networks to 
reconstruct the axonal 3D shape from several multi-
view 2D images, they have not been specifically 
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developed to reconstruct fragmented axons.

AxonDeepSeg is another supervised CNN that can 
be used to segment axons and myelin in cross-
sectional electron microscopy images of brain and 
spinal cord tissue (Zaimi et al., 2018). The authors 
provide two ready-to-use models for scanning and 
transmission electron microscopy and demonstrated 
high segmentation accuracy across different species 
and tissues. Although this method allows to calculate 
the volume, diameter, and density of axons and 
myelin, which can be used as estimates to evaluate 
AxD, it does not consider axonal swellings as a direct 
morphological hallmark of AxD.

For axonal swelling recognition, Cheng et al. (2019) 
developed the DeepBouton supervised CNN. It counts 
the overall number of axonal swellings along individual 
neurons based on the different sizes and fluorescence 
intensities in confocal images of the whole brain of 
mice that the authors acquired by high-resolution 
stage-scanning microscopy. The method is superior 
to other conventional methods and can be used to 
detect axonal swellings in different neuron types.

Whereas whole brain or tissue section imaging is 
useful to determine AxD ex vivo at specific time 
points, it does not allow to examine the progression of 
AxD over time and to study the molecular machinery 
underlying AxD in its detail.

Cell culture systems allow to study spatially isolated 
axons by using a media volume difference that 
generates a microflux between a soma compartment 
and an axonal compartment. This microflux drives 
the outgrowth of axons from the soma compartment 
into the axonal compartment. Axons and somata can 
then be separately manipulated to assess different 
AxD stimuli. Recently, we have developed a microflux-
based cell culture system and the CNN-based deep 
learning tool EntireAxon to quantify axons, axonal 
fragments, and axonal swellings on microscopic phase-
contrast images for AxD assessment (Palumbo et al., 
2021). This allows the continuous detection of AxD 
over time without the need of expressing fluorescently 
labeled proteins or the fixation of the axons at 
different time points. The EntireAxon is trained to 
recognize the occurrence of axons, axonal swellings, 
and axonal fragments by segmenting each pixel of 
the image that is then classified as background, 
axon, axonal swelling, or axonal fragment. Further 
application of the EntireAxon on fluorescent images is 
also possible (Menon et al., 2020).

Based on the acquired data on the changes of 
morphological hallmarks of AxD over time, we 
were able to detect four morphological patterns 
of AxD (granular, retraction, swelling, and transport 
degeneration) in a model of AxD in hemorrhagic 
stroke (Palumbo et al., 2021). The EntireAxon 
tool cannot only assess AxD by quantifying the 
morphological hallmarks of AxD, but also determine 
the morphological heterogeneity of degenerating 
axons. This versatility may allow to expand our 
understanding of AxD in the context of neurological 
diseases. However, the EntireAxon CNN cannot be 
used to determine AxD on 3D images. Features 
such as branching, lengths, and diameters as well as 
tracking of axonal cargo transports are also of high 
relevance and subject of future development.

One of the main limitations of the currently available 
deep learning-based approaches is that they cannot 
quantify AxD in vivo. In the future, it is thus important 
to generate and share datasets to train CNNs that 
include in vivo microscopic recordings of axons 
undergoing AxD over time, which will enable the 
analysis of AxD progression in animal models. In 
addition, one of the general limitations in training 
neural networks is the availability of training data, 
which must be annotated manually by experts. To 
reduce labeling costs, active learning approaches can 
be applied to identify the images that yield the best 
results (Grüning et al., 2020), thereby saving time to 
implement or modify existing deep learning-based 
approaches.

Conclusions: Recent deep learning-based approaches 
have significantly improved our abilities to quantify 
axonal morphological changes ensuring objectivity 
and automatization in the analysis process without 
the need for manual annotation and thresholding. 
This is of high importance to allow systematic 
investigation and to increase our understanding of the 
mechanisms underlying AxD. Together with enhanced 
throughput test systems, this will form a platform for 
the assessment of new drug candidates to prevent 
and treat AxD in many neurological diseases. 
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Figure 1 ｜ Schematic illustration of the recognition of the morphology features of AxD by a CNN. 
A microscopic image containing axonal features (axons, axonal swellings, and axonal fragments) is introduced to the CNN as an input image. Each node of the input layer forwards 
dimensional pixel values to the hidden layers for structural information extraction via convolutional and pooling operations. In each of the hidden layers, nodes employ different filters 
(e.g., cyan filter for edges, orange filter for gradients, yellow filter for shapes, and purple filter for curvatures) and propagate the information to the nodes of the subsequent layer 
until reaching the output layer. In the output layer, all information is integrated to fully segment the input image. To correct potential errors in the output prediction of the CNN (dark 
grey = axons, light grey = axonal swellings, white = axonal fragments), backpropagation alters the connections among the nodes by readjusting the weights. Scale bar: 100 µm. AxD: 
Axonal degeneration; CNN: convolutional neural network. Unpublished data.

Box 1 Comparison of different deep learning-based approaches to quantify features of AxD:

Deep learning-
based 
approach

TrailMap 
(Friedmann et 
al., 2020)

CMN (Schubert et 
al., 2019)

AxonDeepSeg 
(Zaimi et al., 
2018)

DeepBouton (Cheng 
et al., 2019)

EntireAxon (Menon et 
al., 2020; Palumbo et al., 
2021) 

Specimen Whole tissue ex 
vivo

Tissue slices ex vivo Tissue slices ex 
vivo

Whole tissue ex vivo Spatially isolated axons in 
microfluidic device in vitro

Microscopy Light sheet 
microscopy

Electron 
microscopy

Electron 
microscopy

High-resolution 
stage-scanning 
confocal microscopy

Phase-contrast and 
fluorescence microscopy, 
time-lapse imaging

Networks 3D CNN based 
on u-net

Cellular 
morphology neural 
networks based on 
multi view CNN

CNN based on 
u-net

CNN based on u-net 
with ResNet-50

Ensemble of CNNs, based 
on u-net with ResNet-50, 
recurrent neural network

Learning 
strategy

Supervised Supervised and 
unsupervised

Supervised Supervised Supervised

Recognized 
structures

Axons Axons, dendrites, 
and somata

Axons and 
myelin

Axonal swellings Axons, axonal swellings, 
and axonal fragments

Outcome 
parameters

Axon density Reconstruction 
of volume and 
localization of 
axons, dendrites, 
and somata

Volume, 
diameter, 
and density 
of axons and 
myelin, G-ratio

Number of axonal 
swellings

Area of axons, axonal 
swellings, and axonal 
fragments, degeneration 
patterns


