
83https://tcpharm.org

ABSTRACT

Safety pharmacology examines the potential for new drugs to have unusual, rare side 
effects such as torsade de pointes (TdP). Recently, as a part of the Comprehensive in vitro 
Proarrhythmia Assay (CiPA) project, techniques for predicting the development of drug-
induced TdP through computer simulations have been proposed and verified. However, 
CiPA assessment generally does not consider the effect of cardiac cell inter-individual 
variability, especially related to metabolic status. The study aimed to explore whether rare 
proarrhythmic effects may be linked to the inter-individual variability of cardiac cells and 
whether incorporating this variability into computational models could alter the prediction 
of drugs’ TdP risks. This study evaluated the contribution of two biological characteristics to 
the proarrhythmic effects. The first was spermine concentration, which varies with metabolic 
status; the second was L-type calcium permeability that could occur due to mutations. 
Twenty-eight drugs were examined throughout this study, and qNet was analyzed as an 
essential feature. Even though there were some discrepancies of TdP risk predictions from 
the baseline model, we found that considering the inter-individual variability might change 
the TdP risk of drugs. Several drugs in the high-risk drugs group were predicted to affect as 
intermediate and low-risk drugs in some individuals and vice versa. Also, most intermediate-
risk drugs were expected to act as low-risk drugs. When compared, the effects of inter-
individual variability of L-type calcium were more significant than spermine in altering 
the TdP risk of compounds. These results emphasize the importance of considering inter-
individual variability to assess drugs.

Keywords: Torsades de Pointes; In silico Simulation; Drug Toxicity; Inter-Individual Biological 
Variation

INTRODUCTION

A well-known heart disorder that can lead to sudden cardiac death is torsade de pointes 
(TdP). One of the leading causes of TdP is drug-induced TdP, which enforces the withdrawal 
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of several medicines from the market. Therefore, it has been an important concern for the 
drug industry and worldwide regulatory authorities [1]. As discussed by Sager et al. [2], the 
present drug safety approach has some significant limitations, such as repolarization that 
is not sufficiently predicted by criteria for blocking IKr alone, the prolongation of QTc being 
rather sensitive but not specific for predicting ventricular proarrhythmic risk, and some 
drugs having no proarrhythmic risk being able to block IKr. To address the limitations of the 
current drug safety approach, researchers have proposed a new safety paradigm entitled 
Comprehensive In vitro Proarrhythmia Assay (CiPA) that incorporates the in-silico assessment 
of TdP risk of drugs into drug assessment procedure.

Several studies on drug assessment have incorporated CiPA approach to predict and classify 
TdP risk of drugs. Early research by Mirams et al. [3], proposed the model of drug effect by 
using Hill’s equation [4] on multiple ion channels (hERG, sodium [Na], and L-type calcium 
[CaL]). The authors found that incorporating the drugs’ effect (inhibition effect) on multiple 
ion channels could improve the in-silico classification of TdP risk of drugs compared to using 
drug’s effect on hERG channel only. Furthermore, several studies proposed the model of drug 
effects on more ion channels, including hERG, Ks, K1, to, Na, NaL, and CaL channels [5-7]. 
Other research incorporated repolarization abnormality (RA) and electromechanical window 
(EMw) to assess the TdP risk of drugs [8,9]. The authors found that RA alone might achieve 
an accuracy of about 89%, while the combination of RA and EMw could gain 90% accuracy 
with a much lower concentration of drugs used in the simulation.

Typically, the in-silico assessment of drugs incorporates the variation of drugs’ inhibition 
effects characterized by IC50s and Hill’s coefficients into the simulation. Another possible 
approach for incorporating “variations” is imposing the inter-individual variability of the 
population on cell models that might occur due to mutations and changes in metabolic 
status. Among the early studies on applying the inter-individual variability to computational 
cardiac cells was a study by Sobie [10]. The author utilized the log-normal distribution 
to vary the ion channels’ conductance for parameter sensitivity analysis of cardiac cell 
models. Furthermore, some studies utilized the inter-individual variability of ion channels’ 
conductance on the control population during drug assessment [8,9]. The authors found that 
the optimized control population using healthy action potential criteria helps improve the 
overall drug assessment by increasing TdP prediction accuracy and reducing computational 
cost (by lowering the number of models in the population).

Another important aspect of in-silico TdP assessment that many still need to be considered 
is the metabolic status. Some studies reported that there was a positive correlation between 
cumulative metabolic problems and atrial fibrillation [11,12]. The corresponding metabolic 
burden included glucose intolerance, low level of high-density lipoprotein cholesterol, high 
level of triglyceride, obesity, and hypertension [13,14]. In addition, a study by Remme CA [15] 
reported several disorders in metabolic status, such as mitochondrial dysfunction, oxidative 
stress, and intracellular ionic dysregulation as well as the alteration in ion channel function 
in patients with diabetes and obesity could affect the increased risk for arrhythmias and 
sudden cardiac death. Moreover, the single nucleotide polymorphism in gene coding like 
KCNQ1 was found to be the basis for mild dysfunction of slow rectifier current IKs as reported 
by Kubota et al. [16]. However, a sensitivity analysis reported by Parikh et al. [17] showed that 
the IKs did not contribute significantly to altering the qNet as the TdP metric score.
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Another parameter of metabolic status that is well-known to affect cardiac cell performance 
is spermine. Spermine was found to regulate the IK1 current, which plays a vital role during 
the repolarization process [18,19]. Moreover, a study from [20] incorporated the variation 
of the conductance of L-type calcium and the spermine concentration within the in-silico 
drug assessment utilizing the cell model proposed by Fink et al. [21]. The authors found 
that the inter-individual variability of calcium channel and spermine concentration could 
help induce the EAD when cells were given drugs that yield 90% inhibition on IKr current. 
Also, the EADs were found in cardiac cells under spermine variation and drugs such as 
dofetilide, thioridazine, quinidine, and verapamil. However, the authors mainly considered 
the drug effects on particular drug concentrations and a limited number of drugs tested 
during the simulation. Since the CiPA paradigm has gradually evolved, drug effects on virtual 
populations with inter-individual variability on ion channels and metabolic status could be 
considered during in-silico assessment.

In this study, the effects of inter-individual variability of ion channel and a parameter of 
metabolic status were further elaborated. We conducted the CiPA-based in-silico assessment 
of TdP risk of drugs by considering the variation of L-type calcium channel and spermine 
concentration. The qNet is utilized as TdP metric for assessing the risk of drugs in three 
categories: low-, intermediate-, and high-risk.

METHODS

This section reviewed the cell model utilized in the simulation, the implementation of inter-
individual variability of spermine and permeability of calcium channels as well as the drug's 
inhibition effects on the cardiac cell model was also described. Finally, this section also 
described biomarker features and simulation protocol for assessing the drug effects on the 
models as show in the Fig. 1.

Model of cardiac cell and drug’s effects
The common cardiac cell model used for CiPA-based drug toxicity assessment, known as the 
CiPAORdv1.0 model, was proposed by Dutta et al. [6] and Li et al. [7]. However, this model 
does not account for the effects of spermine on cardiac cells and is therefore excluded from the 
analysis. Instead, the cell model utilized in this study is based on the human ventricular cell 
model proposed by ten Tusscher et al. [22,23], which was later modified by Fink et al. [21] to 
incorporate the effects of spermine. The general formula of the cell model is as follows: 

where the Vm denotes the membrane potential, Cm was the membrane capacitance, Istim 
denotes the stimulus current, and Iion denotes the summation of ionic transmembrane 
currents. The ionic currents incorporated in the model were the fast sodium current (INa), 
L-type calcium current (ICaL), transient outward current (Ito), slow delayed rectifier current 
(IKs), rapid delayed rectifier current (IKr), inward rectifier current (IK1), sodium-calcium 
exchanger current (INaCa), sodium-potassium pump current (INaK), plateau currents (IpCa & 
IpK), and background currents (IbNa & IbCa). Furthermore, Fink et al. [21] modified the IK1 
by incorporating the effects of spermine. The authors also changed the formulation of IKr 
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dVm
dt

= −
1

Cm
(Iion + Istim) 



to include the effects of magnesium on the model. The complete formula for IK1 and IKr is 
available in the Supplementary Data 1 and in [21].

The drug’s effect was modeled as conductance inhibition based on the Hill equation [4] as 
proposed by Mirams et al. [3]:

where gi denotes the conductance of ion channel i under drug’s effect, gcontrol,i was the 
maximum value of conductance of ion channel i, [D] was the drug concentration, and [IC50] 
was the drug concentration resulting in a 50% blocking effect. This study assumed that 
several ion channels (Na, Kr, Ks, K1, to, and CaL) would be affected by the drug and the Hill’s 
coefficient equal to one (h=1) for all drugs and all ion channels affected by drugs [3].

Virtual population of models
Two calculation steps were taken to estimate the actual distribution of spermine and L-type 
calcium channels’ permeability when implementing inter-individual variability variations. 
The first step was generating the grid by applying 11 variation values for both spermine 
and calcium permeability. The inter-individual variability of spermine was implemented 
by varying its value from 1×10-3 mM to 5×10-3 mM (including the control value of spermine 
of 1.4×10-3 mM) as shown in [20]. Moreover, the permeability of calcium channels was also 
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h 

12 training drugs and 16 testing drugs

Control (baseline model)
simulations

Inter-individual variability
simulations

qNet thresholds 121 models

1,000 models

880 models

Predicted TdP risk distribution

Figure 1. The overall procedure for obtaining the predictions of TdP risk distribution under the effect of inter-
individual variability. First, the simulations of drugs’ effects on the baseline models were utilized to generate 
the qNet thresholds. Second, the inter-individual variability simulations on 11×11 variations of spermine and 
L-type calcium permeability revealed the qNet map showing the distribution of TdP risk of drugs. Then the qNet 
thresholds would be used to separate three TdP regions on each qNet map. Furthermore, the 1,000 models were 
generated by varying the spermine and L-type calcium channels’ permeability using the log-normal distribution. 
The 1,000 models were filtered to fit the region of qNet map to obtain 880 models. From the 880 models, the 
corresponding qNet values were interpolated from the qNet map and the predicted distribution of TdP risk under 
inter-individual variability could be obtained as shown in Fig. 7. 
TdP, torsade de pointes.



altered, ranging from -30% to +30% from its control value of 2.0×10-5 L/(F.ms) as studied 
by Romero et al. [24], resulting in the range of calcium permeability from 1.4×10-5 L/(F.ms) 
to 2.5×10-5 L/(F.ms). The 121 models generated from the variation of spermine and calcium 
channel’s permeability were the basis for predicting the region of TdP risk of drugs based on 
each individual's biomarker (qNet) value. A detailed description of the qNet calculations is 
provided in the next subsection.

Furthermore, the second step was generating the virtual population of models following the 
proposed method by Sobie [10] using log-normal distribution. The log-normal variable is 
expressed as follows:

X=eZ

where X is the log-normal variable with mean and standard deviation of μX and σX, and Z 
is the standard normal variable with mean and standard deviation of μ and σ. The relation 
between the mean and standard deviation of log-normal and standard-normal variables can 
be expressed as follows:

The coefficient of variance σv=σX/μX was set to 0.2 and the μX was set to 1. To generate 
variations of spermine and calcium permeability, the resulting log-normal distribution (X) 
was multiplied by the desired mean of variables. For spermine variations, the target mean 
value was 3×10-3 mM following the report from [20]. Moreover, the target mean value of 
calcium permeability was 2.0××10-5 L/(F.ms) (the default value from [21]).

At first, 1,000 individuals were generated by varying the spermine and L-type calcium 
channel’s permeability. Then the individuals were selected only within the region of interest, 
following the region generated by 11×11 spermine and calcium permeability variations, 
resulting in 880 models of individuals as shown in Supplementary Data 1.

Biomarkers and simulation protocol
qNet was used as a TdP metric to evaluate the effects of inter-individual variability on drug 
assessment. qNet was the total charge accumulated during an AP by several ion channels 
(ICaL, IKr, IKs, IK1, and Ito), similar to the one proposed by Dutta et al. [6] except no late sodium 
current was included as it was not considered in the cardiac cell model proposed by Fink et al. 
[21]. To obtain the qNet, a selection procedure was applied to obtain the most drug-affected 
AP, as proposed by Chang et al. [5]. At the first 1,000 beats, the cell was simulated without 
drug effects to obtain the steady condition of AP. After that, the drug effects were induced 
during the successive 1,000 beats. The cycle length of the AP was set to 2,000 ms. Within 
the last 250 beats under drug effects, the AP with the highest value of membrane potential 
gradient during repolarization (

dV
dt repol

 ) was selected. The maximum 
dV
dt repol

  calculation 
started when AP repolarized between 30% and 90% for the completely repolarized AP. If 
the repolarization could reach 30% but not 90%, the maximum dV

dt repol
  could be searched 
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from 30% repolarization to the end of one cycle. If the AP could not repolarize by 30%, the 
maximum dV

dt repol
  was calculated from the peak of AP to the end of one cycle.

Furthermore, to incorporate the drug effects into the cell model, 28 drugs were selected 
as recently studied by Li et al. [25]. The drug dataset was obtained from dose-response 
experimental data of 28 drugs. Table 1 shows the maximum drug concentration in blood 
(cmax) values and TdP risk labels of 28 drugs employed in this study. The values of IC50 
of drugs for multiple channels were obtained from non-linear fitting (optimal sample) of 
dose-response data and sampled by using the Markov chain Monte Carlo (MCMC) method to 
obtain 2,000 samples for each drug as proposed by Chang et al. [5]. The drug dose-response 
data and code for generating optimum and 2,000 pairs of IC50 and Hill’s coefficient is 
available at https://github.com/FDA/CiPA/.

In this study, as depicted in Fig. 1, there were several steps of simulation to examine the 
effects of inter-individual variability of spermine and L-type calcium channel permeability 
under drug influence. The first step was to obtain qNet thresholds and their prior 
accuracy. The 2,000 drug samples from each of the 12 training drugs (in Table 1) were 
simulated to cardiac cells without inter-individual variability (baseline model), and the 
qNet was calculated for each drug sample. Each drug sample was simulated with drug 
concentrations of 1, 2, 3, and 4×cmax, the same as those reported by Chang et al. [5] that 
drug concentrations of 1 to 4×cmax had the lowest prediction error in classifying TdP risk of 
drugs. The cmax values for 12 drugs can be seen in training drugs in Table 1. The qNet values 
were then averaged across the four concentrations. The analysis was limited to 1 to 4×cmax 
mainly due to lack of drug inhibition experimental data for higher concentration than 4× 
cmax [5]. The ordinal logistic regression was applied to obtain qNet threshold values to 
classify the drugs based on their TdP label. The qNet threshold1 classified low-risk and high/
intermediate-risk drugs, whereas threshold2 identified high-risk and intermediate/low-risk 
drugs [25]. To illustrate the predictive capability of threshold1 and threshold2, we assessed 
their accuracy in classifying drugs for the control population (without inter-individual 
variability) by using 10,000 iterations of testing as proposed by Jeong et al. [26]. The results 
are available in the Supplementary Data 1.
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Table 1. The 28 drugs and its torsade de pointes risk label and cmax value
Proarrhythmic risk level Training drugs Testing drugs

Drug name Cmax (nM) Drug name Cmax (nM)
High-risk Quinidine 3,237 Disopyramide 742

Sotalol 14,690 Ibutilide 100
Dofetilide 2 Vandetanib 255
Bepridil 33 Azimilide 70

Intermediate-risk Cisapride 2.6 Clarithromycin 1,206
Terfenadine 4 Clozapine 71

Chlorpromazine 38 Pimozide 0.43
Ondansetron 139 Astemizole 0.26

Domperidone 19
Droperidol 6.3

Risperidone 1.81
Low-risk Verapamil 81 Metoprolol 1,800

Ranolazine 1,948.20 Nifedipine 7.7
Diltiazem 122 Loratadine 0.45
Mexiletine 4,129 Nitrendipine 3.02

Tamoxifen 21

https://github.com/FDA/CiPA/


Once the qNet thresholds were calculated from the control population, the effects of inter-
individual variability of spermine and calcium permeability on the TdP risk assessment were 
simulated. Initially, the 121 pairs of spermine and calcium permeability variations were 
applied to the cell model and 1,000 beats of drug-free conditions were simulated. Then, the 
successive 1,000 beats were calculated under drug effects for multiple concentrations of 1, 2, 
3, and 4×cmax. The drugs used for this simulation were 28 drugs, as shown in training and 
testing drugs in Table 1. After that, the averaged qNet values were obtained and classified 
based on the qNet threshold1 and threshold2 previously obtained in the control simulation. 
Finally, the averaged qNet values of 880 individuals to estimate the actual distribution of TdP 
risk of drugs for the populations were obtained by interpolating the qNet values from 121 
spermine and calcium channels’ permeability variations.

RESULTS

The values of qNet thresholds are shown in Table 2, whereas the distribution of the averaged 
qNet values for 12 drugs could be seen in Fig. 2. In Fig. 2, some drugs have qNet values that 
did not always comply with predetermined thresholds. For example, although dofetilide 
and bepridil were high-risk drugs, some samples were classified into the intermediate-risk 
drug group. Also, some samples of quinidine were classified into high-risk, and others were 
low-risk drug group. Sotalol in the high-risk drug group was classified into intermediate-
risk and low-risk drug groups. For the intermediate-risk drug group, most terfenadine and 
ondansetron drug samples were classified as intermediate-risk, but some were classified as 
low-risk drugs. In contrast, ondansetron and chlorpromazine were categorized as low-risk 
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Table 2. Thresholds for classifying torsade de pointes risk of drugs
Feature Threshold 1 Threshold 2
qNet (C/F) 0.291759 0.285049

Sotalol

Quinidine

Dofetilide

Bepridil

Terfenadine

Ondansetron

Cisapride

Chlorpromazine

Verapamil

Ranolazine

Mexiletine

Diltiazem

0.20 0.28 0.30 0.60 0.80 1.00 1.20
qNet (C/F)

Figure 2. Distribution of qNet values for drugs of training drugs. The red horizontal line represents qNet value 
distribution of high-risk drug group, the blue horizontal line represents qNet value distribution of intermediate-
risk drug group, and the black horizontal line represents qNet value distribution of low-risk drug group. The cyan 
vertical line shows threshold1, and the red vertical line shows threshold2.



drugs. Only diltiazem had all samples categorized as low-risk drugs in the low-risk drug group. 
All samples of ranolazine and most samples of verapamil were classified as intermediate-risk. 
Finally, some samples of mexiletine were categorized as intermediate-risk drugs.

The distribution of qNet for all drugs under inter-individual variation of spermine and 
permeability of L-type calcium channel was shown in qNet maps. qNet maps for high-risk, 
intermediate-risk, and low-risk drugs were shown in Figs. 3, 4, and 5, respectively. Overall, 
the line Th1-line and Th2-line were primarily horizontal, indicating that the variation of 
calcium permeability has a stronger effect than spermine in determining the qNet values 
that affect the TdP risk of drugs. Individuals with low calcium permeability of around 1.52 L/
(F.ms) consider most drugs low-risk. However, the quinidine in the high-risk drugs group 
of Fig. 3 showed a quite distinct map where Th1-line and Th2-lines were very close, and there 
were vertical lines that separate a relatively huge gap in qNet values (between 0.14 C/F and 
1.35 C/F). In addition, the map for ibutilide showed that the TdP risk for almost all individuals 
was high.

The distribution of the predicted effects for high-risk, intermediate-risk, and low-risk drug 
groups was shown in Fig. 6. As depicted in panel A of Fig. 6, for some individuals quinidine 
(75.9%), disopyramide (53.3%), sotalol (40.7%), and azimilide (50.3%) were considered 
low-risk. In contrast, other drugs such as bepridil, dofetilide, ibutilide, and vandetanib 
were mainly considered as high-risk drugs (for more than 50% of simulated individuals). 
In addition, quinidine became the only drug individuals recognized as either low-risk or 
high-risk (only 0.5% of the population recognize quinidine as an intermediate-risk drug). 
Furthermore, the distribution for intermediate-risk drugs in panel B of Fig. 6 showed that 
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shows the threshold2 value.



less than 38% of individuals considered all drugs intermediate-risk. Some drugs were 
mostly regarded as low-risk drugs by individuals (indicated by a percentage equal to or more 
than 50%), such as astemizole, chlorpromazine, clarithromycin, clozapine, pimozide, and 
risperidone. Individuals recognized other drugs such as cisapride, domperidone, droperidol, 
ondansetron, and terfenadine as high-risk drugs (30% or higher). Moreover, the distribution 
of low-risk drugs in panel C of Fig. 6 showed that some of the drugs were considered low-risk 
drugs on individuals (50% or more), such as diltiazem, loratadine, nifedipine, nitrendipine, 
and tamoxifen. Other drugs, such as metoprolol and mexiletine, affected as low-risk drugs 
for around 40% of individuals. On the contrary, slightly more individuals recognized 
ranolazine and verapamil as high-risk drugs than low-risk drugs.

The overall results of inter-individual variability on the TdP risk of drugs were shown in Fig. 7. 
Within all TdP groups, the intermediate and low-risk groups show quite similar distribution 
where drugs affecting as high and intermediate-risk shared a similar portion of the 
individuals. In contrast, the drugs affecting as high-risk within the high-risk group showed 
a considerably more significant portion of population compared to their intermediate and 
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Figure 4. qNet distribution with the inter-individual variability applied for intermediate-risk drugs group.



low-risk counterparts. Within the high-risk group, the average percentage that a drug was 
affecting as high, intermediate, and low-risk drug was 54%, 15%, and 31%, respectively; the 
average percentage for the intermediate-risk group was 27%, 26%, and 47%; the low-risk 
group also had a similar average percentage of 27%, 24%, and 49% for a drug to affect as 
high, intermediate, and low-risk, respectively.

DISCUSSION

In this study, we demonstrated the effects of inter-individual variability of spermine and 
permeability of L-type calcium channel in altering TdP risk of drugs. The averaged qNet over 
1, 2, 3, and 4×cmax was used to classify the compounds’ TdP risk. The qNet distribution 
for the control population (without inter-individual variability) shown in Fig. 2 illustrated 
that some samples of drugs yielded qNet values within the incorrectly classified region. The 
misclassified values in qNet distribution might lead to an inaccurate prediction of TdP risk 
of drugs by the qNet thresholds. For example, in Supplementary Table 1, the accuracy of the 
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qNet thresholds (from Table 2) under the 10,000 testing method was around 0.68, smaller 
than the one obtained by Jeong et al. [26] at around 0.7. In addition, the TdP risk prediction 
using baseline model (calcium permeability of 2.0×10-5 L/(F.ms) and spermine concentration 
of 1.4×10-3 mM), as shown in Table 3, depicts that some discrepancies of TdP risk labels 
for drugs are also occurred. We argue that these differences, including some incorrectly 
classified qNet values from drug samples, might rise because the different cardiac cell models 
utilized in the simulation, i.e. [26] used a ToR-ORD model of cardiac cell [27] whereas the 
model from [21] was utilized in this study. However, despite the differences in classification 
performance and TdP risk predictions, data on the variation of metabolites such as spermine 
were not available in the ToR-ORD model or other well-known models for drug evaluations, 
such as those from references [6,7,28]. This absence makes it challenging to evaluate the 
effect of metabolite status on TdP risk. Nevertheless, our findings, as shown in Fig. 3 to Fig. 7,  
reveal that the TdP risk associated with drugs can clearly differ among individuals with 
varying spermine concentrations and calcium channel permeabilities.

Furthermore, in contrast to Fig. 2, which showed the distribution of qNet values under 
various drug samples applied to the baseline model of cardiac cells, Figs. 3, 4, and 5 showed 
that spermine and L-type calcium channel permeability could affect drug’s TdP risk. For 
example, TdP risk for bepridil was high under the baseline model. However, when spermine 
and CaL permeability vary, as demonstrated in Figs. 3 and 6 (panel A), bepridil’s TdP risk 
might be low (18%), intermediate (12.8%), or high (69.2%). Table 3 showed the baseline 
model’s predicted TdP risk for every drug. Furthermore, as reported in a study by Le Guennec 
et al. [20], the high values of calcium permeability and spermine concentration in the cardiac 
cell may produce EAD (Fig. 6 of Le Guennec et al. paper [20]). EAD might also be connected 
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Table 3. Predicted risk of drugs applied to base-line model of cardiac cell
Risk label Drug name Predicted risk
High Azimilide Low

Disopyramide Low
Bepridil High

Dofetilide High
Ibutilide High

Vandetanib High
Quinidine High

Sotalol Low
Intermediate Astemizole Low

Clarithromycin Low
Chlorpromazine Low

Cisapride Intermediate
Clozapine Low

Domperidone Low
Ondansetron Intermediate
Terfenadine Intermediate
Droperidol Intermediate
Pimozide Low

Risperidone Low
Low Loratadine Low

Metoprolol Low
Diltiazem Low
Mexiletine Low
Nifedipine Low

Nitrendipine Low
Ranolazine Intermediate
Verapamil Intermediate
Tamoxifen Low



to TdP risk [8], and the lower value of qNet may also be highly associated with high TdP risk 
[5-7,25]. Therefore, the findings from [20] were comparable with ours in the sense that the 
lower value of qNet (greater TdP risk) was indicated when calcium permeability and spermine 
concentration were relatively high, as seen in Figs. 3, 4, and 5.

Most individuals with low L-type calcium channel permeability value considered drugs as 
low risk, as shown in, Figs. 4 and 5. Our finding was consistent with a study from [17] that 
L-type calcium affected the qNet and the drug classification performance, especially for 
low-intermediate risk drugs. Furthermore, the spermine’s effect on cardiac cells was strongly 
associated with the alteration of IK1 current [18,19] that showed a less significant effect 
compared to L-type calcium channel when regulating the qNet [17]. Results from Figs. 3, 4,  
and 5 showed that most contour lines were horizontal, indicating a consistent result compared 
to previous studies that the variation of L-type calcium channel influences more than the 
disparity of spermine to qNet (thus the TdP risk of drugs). In addition, results from the 
linear regression analysis, as shown in Supplementary Figs. 2-5 in the Supplementary Data 
1, support a similar conclusion: variations in L-type calcium channels significantly affect 
changes in qNet more than spermine does. Moreover, variations in calcium permeability 
generally reveal a clearer separation between risks, as illustrated in panel A of Supplementary 
Figs. 6-33, which aligns with the results shown in Figs. 3, 4, and 5 where the threshold lines 
are almost horizontal. Our findings indicate that patients with mutations in the calcium 
channel, such as loss-of-function mutations [29-31], may require careful consideration when 
prescribed medications, as the TdP risk associated with drugs could be significantly altered.

Furthermore, the TdP risk predictions under varied spermine values show overlapping regions 
between three TdP risk classes (panel B of Supplementary Figs. 6-33). The overlapping regions 
could indicate that the variation in spermine concentrations from 1×10-3mM to 5×10-3mM may not 
clearly separate the TdP risk classes in a virtual population. A study from [32] reported possible 
ranges of spermine in a control population (individuals who exclude polyamine-rich food from 
their diet) of 6.7×10-3mM±3.2×10-3mM (range=3.4×10-3mM-12.8×10-3mM), suggesting potential 
changes in TdP risk distribution. However, the statistical tests in Supplementary Fig. 2 of the  
Supplementary Data 1, along with the nearly horizontal threshold lines in Figs. 3, 4, and 5, 
indicate that increases in spermine concentrations may not significantly affect the TdP risk 
distribution. Therefore, the limited ranges of spermine concentration presented in this study 
remain relevant.

Although some promising findings are shown in this study, some limitations might require 
further analysis. First, the variations in the permeability of the calcium channel deployed 
in the simulations were not derived from clinical data such as variations in spermine 
concentrations. Therefore, experimental validations could be required. Since there is no 
consensus on the exact variation of L-type calcium channels, one may incorporate other 
inter-individual variability mechanisms [8-10] to more realistically depict the L-type calcium 
channel variation within the population. Additionally, the cardiac cell model used in this 
study differs from the standard model commonly used for assessing TdP risk levels derived 
from the CiPA initiative, typically employing cell models from [27,28] which might alter the 
predictive performance of the whole simulation protocol. Considering the metabolic status 
in conjunction with the well-known cell model might be necessary for a more accurate drug 
toxicity evaluation and to enable a more realistic population analysis. Furthermore, changes 
of spermine ranges implemented in the virtual population could affect the TdP risk prediction 
of the baseline model when the baseline model is defined with different target of mean value 

95

Inter-individual cardiac toxicity evaluation

https://doi.org/10.12793/tcp.2024.32.e7https://tcpharm.org



of spermine concentrations using the data from [32], and combined with the calibrated 
baseline model, i. e., utilizing the mean value of spermine from virtual population instead 
of from original value from Fink et al. [21] model as the baseline parameters, could yield 
possible improvement of overall TdP risk prediction.

SUPPLEMENTARY MATERIAL

Supplementary Data 1
Supplementary Material.
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