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Abstract Animal models are requisite for genetic dis-

section of, and improved treatment regimens for, human

hereditary diseases. While several animals have been used

in academic and industrial research, the primary model for

dissection of hereditary diseases has been the many strains

of the laboratory mouse. However, given its greater (than

the mouse) genetic similarity to the human, high number of

naturally occurring hereditary diseases, unique population

structure, and the availability of the complete genome se-

quence, the purebred dog has emerged as a powerful model

for study of diseases. The major advantage the dog pro-

vides is that it is afflicted with approximately 450 heredi-

tary diseases, about half of which have remarkable clinical

similarities to corresponding diseases of the human. In

addition, humankind has a strong desire to cure diseases of

the dog so these two facts make the dog an ideal clinical

and genetic model. This review highlights several of these

shared hereditary diseases. Specifically, the canine models

discussed herein have played important roles in identifi-

cation of causative genes and/or have been utilized in novel

therapeutic approaches of interest to the dog and human.

Introduction

Model systems are vital for the study of disease and the

development of new therapeutic approaches. The dog was

not immediately recognized as a model for hereditary

diseases and few genetic-oriented investigations were car-

ried out until the mid-1990s. Since that time, the canine

genetics research community has made significant strides,

producing dense linkage and radiation hybrid maps, oligo-

based microarrays, SNP arrays, and, most importantly, the

sequence of the canine genome at 7.6X coverage (Breen

et al. 2004; Clark et al. 2005; Guyon et al. 2003; Linblad-

Toh 2006; Linblad-Toh et al. 2005).

The dog offers many of the same advantages of other

small animal models. For example, homogeneous popula-

tions exist in each of the hundreds of pure breeds, and

pedigrees can be easily established in rapid fashion. One

advantage that other model systems do not have is that for

the dog, pet populations can often be utilized, thereby often

eliminating the need for establishment of colonies. Dogs

possess other characteristics that are not found in traditional

rodent models in that they (1) receive exceptional medical

care, (2) have comparable organ sizes (to humans), and (3)

generally cohabitate with their human owners, minimizing

different environmental effects (Ostrander et al. 2000). The

last issue is of particular interest. Specifically, because the

dog does live with us, it is exposed to the same environ-

ment. Of course, the dog may react differently to such

influences/stress than does the human, but living in the same

environment is more advantageous when compared to

environments in which classic laboratory research animals

are maintained because those environments are far different

from the ones inhabited by humans. Thus, when modeling

the causes and pathogenesis of human hereditary diseases,

any environment-gene interactions are likely better studied

in an animal that lives in the same environment.

Perhaps the most exciting feature of the canine model

is that 220 naturally occurring disease phenotypes are

potential models for various human hereditary diseases
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(Online Mendelian Inheritance in Animals 2007; http://

www.omia.angis.org.au).

While the mouse is indisputably a fundamental resource

for the study of human hereditary diseases, the canine

model offers the opportunity to gain knowledge in areas for

which the mouse is deficient. For example, genetically al-

tered mice are not available for every disease of interest

and alternative models must be identified in these in-

stances. There are more than 450 canine hereditary diseases

that provide naturally occurring models in which to study

diseases (Ostrander and Giniger 1997). Among these are

diseases transmitted in X-linked, autosomal recessive, and

autosomal dominant fashions. Also, there are diseases for

which canine models were identified before the develop-

ment of murine models and were used to investigate

pathogenesis and treatment regimens. An example of this is

hereditary nephropathy (Kashtan 2002).

Research pertaining to spontaneous phenotypes of the

dog has revealed genes and pathways novel to diseases. A

prime example of this is the work on narcolepsy. In the

1990s, identification of the genetic basis of narcolepsy in

the dog led investigators to a pathway not previously known

to be involved in the disorder (Lin et al. 1999). Another

example is the recent identification of a novel gene that

causes retinal degeneration in the dog. It was subsequently

determined that an identical mutation in the homologous

gene was also responsible for a similar phenotype in a

human patient (Zangerl et al. 2006b). While these are

hallmark examples of the utility of the canine system, its

full potential has yet to be realized because, to date, only a

fraction of all hereditary traits have been characterized at

the molecular level (http://www.omia.angis.org.au).

Phenotypes resulting from induced models of disease

are not always clinically equivalent to those observed in

humans. For example, a dystrophin knockout mouse with

muscular dystrophy shows muscular weakness but not the

continued wasting that is found in human patients (Tanabe

et al. 1986). Such incongruities may diminish the useful-

ness of the model, specifically with regard to testing of

possible treatments. In the last decade spontaneous canine

models have been instrumental in the development of

molecular therapies for human disease; e.g., data obtained

from a canine model of hemophilia B led to clinical trials

in humans (High 2004). Presented here is a review of the

aforementioned diseases for which examination of canine

models has revealed previously unknown genetic bases

and/or facilitated development of novel treatment options.

Hereditary nephropathy and Alport syndrome

Hereditary nephropathy (HN) is a broad term for certain

fatal inherited diseases that result in renal failure. Alport

syndrome (AS) is a form of HN in humans caused by de-

fects in the glomerular basement membrane (GBM)

(Kashtan 1998; Tryggvason and Martin 2001). The only

treatments currently available for AS are dialysis and renal

transplant. Mutations in the type IV collagen genes cause

AS, which is primarily inherited in X-linked (XLAS) and

autosomal recessive (ARAS) fashions. There is also a rare

autosomal dominant (ADAS) form (Hudson et al. 2003).

XLAS results from mutations in COL4A5 and accounts for

85% of cases, while ARAS and ADAS are caused by

mutations in COL4A3 or COL4A4 (Jais et al. 2000; Kne-

belmann et al. 1995; Lemmink et al. 1994; Martin et al.

1998; Mochizuki et al. 1994). Mutations in any of these

genes alter the triple helix formed by the COL4A3,

COL4A4, and COL4A5 proteins that are necessary for

proper GBM formation in the kidney.

Murine models for AS did not exist until 1996 when two

transgenic models for ARAS were developed and charac-

terized (Cosgrove et al. 1996; Miner and Sanes 1996). A

murine model for XLAS was not described until 2004,

despite it being the most common genetic form of AS

(Rheault et al. 2004). To date, a murine model for ADAS

has not been developed. Naturally occurring HN has been

identified in several canine families. The progression of the

disease is very similar to AS in humans with the exception

of auditory and ophthalmologic abnormalities, which have

not been described in the dog. X-linked HN (XLHN) in the

dog was identified first in the Samoyed and later in a

mixed-breed family (Fig. 1) (Jansen et al. 1986; Lees et al.

1999). A single-base substitution in exon 35 in the Samo-

yed and a 10-bp deletion in exon 9 in the mixed-breed dog

result in premature stop codons and truncated COL4A5

proteins (Cox et al. 2003; Zheng et al. 1994). The English

cocker spaniel presents with a renal disease (termed

ARHN) similar to ARAS that is caused by a nonsense

mutation in exon 3 of COL4A4 (Davidson et al. 2007). The

bull terrier is affected by ADHN but the mutation has not

been characterized (Hood et al. 1995).

Because dialysis and renal transplants are the only

treatments available for AS, correction of the defective

GBM via gene therapy as a possible remedy is being ex-

plored. In an initial experiment, an adenoviral vector

containing a human cDNA construct of COL4A5 was

successfully expressed in the kidney of normal pigs

(Heikkilä et al. 2001). This study proved that the construct

could produce a functional protein capable of trimerizing

with COL4A3 and COL4A4 (Heikkilä et al. 2001). To

assess the functionality of this in a diseased system, a ca-

nine cDNA construct was designed for use in a canine

model of the disease (Harvey et al. 2003). Because vector

delivery methods are complicated in the kidney, studies

were carried out in the bladder. In the smooth muscle of the

bladder, COL4A5 and COL4A6 form a trimer composed of
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two transcripts of COL4A5 and one transcript of COL4A6.

In XLHN-affected animals, COL4A6 is not deposited into

the basement membrane because COL4A5 is not available

to form the trimer. Therefore, for gene therapy to be

effective, not only must the construct be produced, but the

other type IV collagens must also be able to properly tri-

merize with it. An adenoviral vector containing the canine

cDNA of COL4A5 was injected into smooth muscle of the

bladder in XLHN-affected Samoyed dogs. Five weeks after

injection, expression of both COL4A5 and COL4A6 was

found in the basement membranes surrounding the injec-

tion site, indicating that COL4A5 was expressed and

functional and that COL4A6 was made and deposited

(Harvey et al. 2006). These findings are promising for gene

therapy of HN and AS.

Narcolepsy

Narcolepsy is a neurologic condition characterized by

excessive daytime sleepiness and cataplexy, the sudden

loss of muscle tone (Mignot 2004). This rare sleep disor-

der, which affects less than 0.1% of humans, is debilitating

and difficult to diagnose (Dauvilliers et al. 2003). Most

cases are sporadic, with familial causes representing fewer

than 10% of cases, and twin studies indicate a strong

influence of nongenetic factors (Mignot 1998).

In the 1980s, an association with narcolepsy and specific

HLA genes and alleles was identified in several ethnic

populations (Juji et al. 1984; Seignalet and Billiard 1984).

Subsequent studies of these genes have shown that they do

not harbor deleterious mutations but rather confer suscep-

tibility to the disease (Maret and Tafti 2005). Based on this

significant association with the major histocompatibility

(MHC) system, it has been suggested that narcolepsy may

result from an autoimmune reaction to environmental

agents (Lin et al. 2001).

Naturally occurring narcolepsy was first described in the

dog in the 1970s (Knecht et al. 1973). Narcoleptic dogs

have clinical signs that parallel those observed in humans

and were used as a model to elucidate the genetics

underlying the disorder (Hungs et al. 2006). In the dog,

narcolepsy is inherited in an autosomal recessive fashion

and, unlike the human, is not associated with the dog

leukocyte antigen (DLA) system (Foutz et al. 1979;

Wagner 2000). In 1999, colonies of Doberman pinchers

and Labrador retrievers with narcolepsy were used in

positional cloning efforts that identified linkage with the

hypocretin/orexin receptor 2 (Hcrtr-2) gene (Lin et al.

1999). Hypocretin proteins (orexins), discovered in 1998,

are neurotransmitters processed from a common precursor,

preprohypocretin (Hcrt) (de Lecea et al. 1998; Sakurai

et al. 1998). Independent mutations in these canine families

cause exon-skipping and result in altered proteins. In

addition, Hungs et al. (2006) identified a single-base

change resulting in an amino acid substitution in Hcrtr-2

that causes narcolepsy in a family of Dachshunds. Hcrtr-2

does not cause narcolepsy in a family of poodles or in 11

individual cases with no family history (Hungs et al. 2006).

The role of hypocretins in canine narcolepsy, and the

simultaneous finding that orexin knockout mice have nar-

coleptic symptoms (Chemelli et al. 1999), led to the

investigation of hypocretins in humans. Hcrt and its

receptors encoded by Hcrtr-1 and Hcrtr-2 were sequenced

in human patients with narcolepsy and a substitution

mutation in Hcrt of a single patient was identified (Peyron

et al. 2000). Although mutations in these genes may be a

rare cause of human narcolepsy, expression studies show

Fig. 1 A Hound/Labrador retriever colony having XLHN is main-

tained at Texas A&M University. A A carrier female (left) can live up

to seven years. An affected male (right) will enter renal failure before

two years of age. B Immunofluorescent staining for COL4A5 in

glomeruli of a normal dog. C Immunofluorescent staining for

COL4A5 in glomeruli of an affected dog showing complete lack of

labeling. Glomeruli images taken with permission from Am J Vet Res

(1999) 60(3):373–383
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that hypocretins are important in the etiology of the dis-

order. Hypocretin concentrations are below average or

undetectable in the cerebrospinal fluid of most narcoleptic

patients, indicating deficient neurotransmission (Nishino

et al. 2000; Peyron et al. 2000).

Current treatments address only the symptoms of nar-

colepsy and have significant side effects (Nishino et al.

1997). The availability of a naturally occurring canine

model has allowed pharmacologic studies to improve

treatments for narcoleptic patients (Nishino et al. 1994).

Animal models are currently being used to study the hyp-

ocretin system as a target for new therapeutic approaches

(Dauvilliers and Tafti 2006). In addition, the canine models

in which the causative factors remain unknown may still be

useful for unmasking the genetic and environmental factors

that are associated with narcolepsy.

Retinal degeneration

Retinitis pigmentosa (RP) is a group of hereditary disorders

characterized by progressive retinal degeneration, eventual

night blindness, loss of peripheral vision, and often com-

plete blindness. RP affects 1 in 4000 people and may be

inherited as an autosomal dominant, autosomal recessive,

or X-linked trait (Hartong et al. 2006). More than 45 genes,

accounting for 60% of all cases, have been implicated in

RP (Hartong et al. 2006).

Progressive retinal atrophy (PRA) is a group of heredi-

tary diseases of the dog that are phenotypically and

molecularly similar to RP. Progressive rod-cone degener-

ation (prcd) is an autosomal recessive, late-onset form of

PRA. In 1998, the prcd locus was mapped to the centro-

meric end of CFA9 using classical linkage analysis (Ac-

land et al. 1998). Fortuitously, prcd in multiple breeds

results from allelic or identical mutations in the PRCD

gene. This allowed for multiple breeds to be used in a

large-scale linkage disequilibrium (LD) approach, which

further defined the interval that harbors the prcd locus

(Goldstein et al. 2006). A retinal EST library was instru-

mental in the identification of novel candidate genes in this

region (Zangerl et al. 2006a, b). A single G-to-A transition

in a gene of unknown function, termed PRCD, was found

to cause prcd in at least 18 breeds (Zangerl et al. 2006b).

Upon discovery of the canine mutation, human patients

with inherited retinal disorders for which known causative

mutations had been excluded were screened for mutations

in the PRCD gene. A woman from Bangladesh having an

autosomal recessive form of RP was found to harbor a

homozygous mutation in the PRCD gene (Zangerl et al.

2006b). Interestingly, the mutation is identical at the

genetic and protein level to the mutation causing prcd in

the dog (Zangerl et al. 2006b).

The similarities between humans and dogs can be

exploited to develop treatments for retinal degenerative

diseases, with significant strides in this field having already

been made. In 2001, gene therapy restored vision to dogs

with severe retinal degeneration caused by a homozygous,

4-bp deletion in RPE65 (Acland et al. 2001). The dose

efficacy and safety data obtained from the successful use of

the canine model have led to gene therapy studies in

nonhuman primates and the consideration of human trials

(Jacobson et al. 2006).

Hemophilia B

Hemophilia B is a recessive bleeding disorder that results

from mutations in the Factor IX (FIX) gene on the X

chromosome. FIX, synthesized by hepatocytes, is an

essential part of the blood coagulation cascade. Clotting

factor deficiencies result in bleeding into joints, soft tissue,

and muscles. Such bleeding may occur spontaneously or be

triggered by a minor injury. Hemophilia B is estimated to

occur in 1 in 30,000 males and is both clinically and

molecularly heterogeneous. Approximately 1000 unique

mutations causing hemophilia B have been reported in

humans (Green et al. 2004).

Canine hemophilia B is highly similar to the human

disease and is well studied. In 1989, Evans et al. (1989a)

published the coding sequence of canine FIX. The same

group also identified the first known mutation to cause

hemophilia B in the dog, a missense mutation resulting in

the complete absence of detectable protein (Evans et al.

1989b). Since then, multiple cases have been described in

different breeds and distinct mutations for five of these

have been reported (Table 1) (Brooks et al. 1997, 2003; Gu

et al. 1999; Mauser et al. 1996).

The standard treatment for hemophilia B is intravenous

infusion of FIX concentrates to prevent or treat bleeding

Table 1 Mutations in canine hemophilia B

Breed Mutation Reference

Not reported Missense Evans et al.

1989b

Lhaso Apso 5-bp deletion Mauser et al.

1996

Labrador Retriever Complete gene

deletion

Brooks et al.

1997

American Pit Bull Terrier

mix

Partial gene deletion Gu et al. 1999

Airedale Terrier 5-kb insertion Gu et al. 1999

German Wirehair Pointer LINE1 insertion Brooks et al.

2003

Canine breed, mutation, and reference are shown for each of the six

cases of hemophilia B in which the underlying genetics has been

reported
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episodes. While treatment is effective and generally safe, it

is expensive and inconvenient (Lillicrap et al. 2006).

Molecular therapies for hemophilia B are being investi-

gated not only to provide patients with treatment options

but also to evaluate the overall efficacy of such approaches.

The factors that make hemophilia a superior model for

assessment of genetic intervention strategies are (1) tissue-

specific gene expression is not necessary, (2) nominal in-

creases in clotting factor levels will result in significant

phenotypic improvements, (3) measurement of clotting

factor levels can be achieved through simple blood tests,

and (4) naturally occurring canine models are available

(Lillicrap et al. 2006).

A colony of dogs with hemophilia B due to a missense

mutation first characterized by Evans et al. (1989b), has

been used in numerous pioneering gene therapy studies

(Kay et al. 1993, 1994; Snyder et al. 1999; Wang et al.

2000). The first of these utilized a retroviral vector con-

taining FIX cDNA and resulted in long-term expression of

low levels of FIX (Kay et al. 1993). A subsequent study

used a recombinant adenoviral vector and achieved short-

term expression of therapeutic levels of FIX (Kay et al.

1994). To attain both long-term and therapeutic levels of

FIX expression in these dogs, researchers found success

by using adeno-associated viral (AAV) vectors (Herzog

et al. 1999; Snyder et al. 1999; Wang et al. 2000). An

AAV vector was also later used to correct a severe

hemophilia B phenotype in dogs with a null mutation

(Mount et al. 2002).

The data obtained using the AAV vector in these ca-

nine studies provided the proof of principle necessary to

move forward with hemophilia B gene therapy trials in

humans (High 2004). The dog has also been instrumental

in advancing molecular therapy approaches for hemo-

philia A, which results from factor VIII deficiency (Lil-

licrap et al. 2006). Hemophilia A is significantly more

common than hemophilia B, but gene therapy studies

have been impeded by large size of the FVIII gene (Kay

and High 1999).

Muscular dystrophy

The most common and severe muscular disorder in humans

is Duchenne muscular dystrophy (DMD). DMD is an X-

linked disorder that results in muscle degeneration and

death around the age of 20. It affects approximately 1 in

3500 males and there are currently no effective treatments

available. A naturally occurring form of DMD has been

described in the golden retriever (Kornegay et al. 1988).

Golden retriever muscular dystrophy (GRMD) is charac-

terized by elevated serum creatinine kinase activity, pro-

gressive muscle atrophy and necrosis, and regeneration by

fibrotic and adipose tissues. Affected dogs develop clinical

signs in 8-10 weeks (Kornegay et al. 1988).

DMD is caused by a defective dystrophin gene, which

codes for a cytoskeletal protein responsible for stabilizing

the sarcolemma (Hoffman et al. 1987). Northern and

Western blots using human probes failed to detect dystro-

phin transcripts or proteins in muscle tissue from GRMD-

affected dogs (Cooper et al. 1988). Sequence analysis of

the dystrophin gene revealed an A-to-G transition in the

exon 7 splice acceptor of affected dogs (Sharp et al. 1992).

This mutation causes either the deletion of exon 7 or the

use of an alternative splice site 5 bp downstream; both

result in a reading frame shift and a truncated transcript

(Dell’Angola et al. 2004; Sharp et al. 1992).

The frequency and severity of DMD has fueled interest

in the development of gene therapies for patients. Signifi-

cant advancements have come from a murine model, but

greater similarities in disease progression make the dog a

more attractive model (Foster et al. 2006; Tanabe et al.

1986). Initial gene therapy studies in the dog focused on

the dystrophin gene and were promising (Howell et al.

1997). An alternative approach involved upregulation of

utrophin, a gene functionally and structurally similar to

dystrophin, but not foreign to DMD patients (Cerletti et al.

2003). Delivery of mini-utrophin transcripts via an aden-

oviral vector mitigated the dystrophic phenotype in the

muscles of GRMD dogs; however, slight immunologic

reactions to the vector and transgene occurred (Cerletti

et al. 2003). An additional method involved modified

antisense oligonucleotides (AOs) that cause exon-skipping.

By changing the splicing pattern, AOs can cause a mutated

exon to be removed from the pre-mRNA, leading to a

functional protein. McClorey et al. (2006) successfully

used AOs to restore dystrophin expression in dogs.

Human gene therapy studies have been successful as

well, with several types of vectors used to deliver dystro-

phin to dystrophic muscles. AAV vectors have been

problematic because of their limited carrying capacity and

the large size of the dystrophin gene. The use of micro-

dystrophin (a truncated but functional version of the dys-

trophin gene) has shown promise and initial trials are

underway (Foster et al. 2006). In addition, with the success

of AO treatment in the dog, human phase 1 clinical trials

have been initiated (Foster et al. 2006; http://www.mus-

cular-dystrophy.org, http://www.ppuk.org).

In an effort to eliminate immune reactions against vec-

tors and/or the dystrophin gene itself, researchers investi-

gated the use of stem cells to treat GRMD. Hematopoetic

stem cells have proven to be effective in muscle regenera-

tion in the murine mdx model (Gussoni et al. 1999).

Unfortunately, hematopoetic stem cells from normal lit-

termates did not cause muscle regeneration in affected dogs

(Dell’Angola et al. 2004). Vessel-associated stem cells,
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called mesoangioblasts, were also studied. Mesoangioblasts

were successfully transplanted and expressed dystrophin,

allowing recovery of muscle use (Sampaolesi et al. 2006).

Donor wild-type mesoangioblasts were found to be more

effective than genetically corrected autologous mesoan-

gioblast cells (Sampaolesi et al. 2006). All dogs treated with

wild-type cells displayed initial mobility improvements and

one dog was still walking five months after cessation of

treatments (Sampaolesi et al. 2006).

Summary

Presented here are examples of studies that were critical to

identification and treatment of genetically simple diseases

that affect the human and dog. However, the genetics of

complex diseases are more difficult to assess—in the dog

and human. Nevertheless, with new genomic tools/re-

sources now available for study of the dog, workers have

now begun analyses of complex diseases such as cancers,

cardiovascular diseases (e.g., cardiomyopathy), and neu-

rologic diseases (e.g., epilepsy). In addition, the dog is

being used to assess the genetics of morphologic devel-

opment and behavior due to the unique physical and

behavioral traits that characterize individual breeds. The

hypothesis for such lines of investigation is simple: while

there likely are additional factors that influence behavior,

morphology, and progression of diseases in the dog and

human, the major genes influencing these may very well be

the same.

One complex disease for which data are available from

the dog is canine hip dysplasia (CHD) or degenerative joint

disease, the major orthopedic disease of the dog. This is a

painful and crippling disease that has a counterpart in the

human termed developmental dislocation of the hip.

Researchers are exploiting the natural occurrence of CHD

in both pet populations and designed outcrossed pedigrees

in an attempt to delimit contributory genetic components to

this disease (Chase et al. 2004; Todhunter et al. 1999; Tsai

and Murphy 2006). To date, two QTLs have been identified

in the Portuguese water dog (PWD) on CFA01 that are

associated with joint laxity as measured by the Norberg

angle. Interestingly, one of the QTLs is associated with

joint laxity in the right hip while the other is associated

with the left hip (Chase et al. 2004). The same PWD

population was used recently to identify the insulin-like

growth factor 1 gene (IGF1) as a determinant for skeletal

size in dogs (Sutter et al. 2007). This is an important

finding because understanding the genetics of growth and

regulation may provide insight into complex diseases such

as cancer and hip dysplasia.

The diseases discussed in this article highlight the

importance of the dog to biomedical research, particularly

the study of hereditary diseases. Perhaps most unique about

the use of the dog as a model is this: study of those

hereditary diseases common to the dog and human allows

both to benefit as opposed to one serving merely as a model

for the other. A paucity of genetic tools with which to study

the canine genome previously prohibited researchers from

exploiting the canine model. Thus, the majority of research

in the dog was guided by our knowledge of the disease in

the human. With the necessary resources now available,

discoveries in the dog are being used to define causative

genes and pathways and, importantly, develop new treat-

ment regimens for the human.
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