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ABSTRACT We present here the draft genome sequence of a Providencia stuartii
strain, derived from the salivary glands of larval Lucilia sericata, a common blow fly
important to forensic, medical, and veterinary science. The genome sequence will
help dissect coinfections involving P. stuartii and Proteus mirabilis, as well as blow
fly– bacteria interactions.

Providencia stuartii is a Gram-negative bacillus bacterium (1) that frequently causes
urinary tract infections in hospital patients and has intrinsic resistance to antibiotics

(2). Infections have been reported to progress to bacteremia (3), diarrhea (4), peritonitis
(5), meningitis (6), infective endocarditis (7), and often co-occur with Proteus infections
(8). Additionally, Providencia species were reported to associate with blow flies (9, 10),
stable flies (11), Mexican fruit flies (12), vinegar flies (13), as well as house flies (14).
Providencia can cause variable infections and different levels of mortality in their hosts
(13) and have been shown to impact blow fly attraction to resources (15).

The P. stuartii strain Crippen was isolated from Lucilia sericata, a green bottle fly,
which is of importance to decomposition ecology (18) as related to the medical and
forensic sciences (16, 17). Our strain was coisolated along with Proteus mirabilis strain
WOOD (19), which can affect L. sericata attraction to, and colonization of, resources (20,
21). Mixed microbial communities, including Proteus-Providencia coinfections, which
increase the incidence of bacteremia and urolithiasis (8), can have properties distinct
from those of their individual components (22, 23). This property of mixed cultures has
also been shown to impact fly behavior and life history (24). Therefore, knowledge of
this genome will help elucidate fly–microbe interactions that are important to forensic
science and ecology, as well as coinfections relevant to medicine.

Here, we present a draft genome of P. stuartii strain Crippen. The genomic sequence
was isolated from a colony derived from maggot salivary glands of L. sericata third
instars raised on beef liver. DNA sequencing was performed using an Ion Torrent
personal genome machine (Life Technologies, Inc., Carlsbad, CA, USA) after preparation
with a NEBNext fast DNA fragmentation library prep set. The sequencing data comprise
1,383,989 reads, with an average length of 212 bp, totaling 294 Mb. Sequence assembly
using the PATRIC full assembly service (25) produced 243 contigs, with an N50 of
191,375 bp and a total of 4.72 million nucleotides, resulting in approximately 62-fold
coverage. This strain is comparably similar to three previously sequenced P. stuartii
strains: MRSN 2154 (GenBank accession no. CP003488.1), ATCC 33672 (GenBank acces-
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sion no. CP008920.1), and FDAARGOS_145 (GenBank accession no. CP014024.1). Fur-
ther genome assemblies based on CONTIGuator (26) indicate that the longest 37
contigs were mapped to the reference strain, with 93.8% of the assembled nucleotides
aligned to the P. stuartii MRSN 2154 genome. No evidence of plasmids was found based
on analysis with the PlasmidFinder version 1.3 server (27).

Whole-genome annotation was generated using the NCBI Prokaryotic Genome
Annotation Pipeline (28) using the PATRIC assembly draft genome. The annotated
genome contains 4,534 genes, including 4,428 protein-coding regions, eight 5S rRNAs,
14 16S rRNAs, 15 23S rRNAs, 60 tRNAs, and nine ncRNAs. There were also 600
pseudogenes annotated. A total of eight prophage regions were identified with PHAST
(29), of which five regions predicted to be intact, two regions incomplete, and one
region that is of questionable functionality. Strain-specific gene functions and phage
insertions will be useful in elucidating the interactions among L. sericata, P. mirabilis,
and P. stuartii.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number LVIE00000000. The version described
in this paper is the first version, LVIE01000000.
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