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MOTIVATION Proteases drive key biological processes, and their dysregulation underlies pathological
conditions like cancer and inflammatory diseases. Protease-activatable sensors and therapies are under
development, yet their design typically requires screening for peptide substrates specific to target prote-
ases, which becomes increasingly difficult with multiple target proteases because many peptides can be
promiscuously digested by multiple proteases. Drawing from a signal processing technique called com-
pressed sensing, we developed a computational method for selecting libraries of promiscuous substrates
that can classify distinct protease mixtures without relying on specific substrates. Using this method, we
showed that a panel as small as two substrates could accurately differentiate plasma samples that con-
tained different mixtures of 11 proteases.
SUMMARY
The development of protease-activatable drugs and diagnostics requires identifying substrates specific to
individual proteases. However, this process becomes increasingly difficult as the number of target proteases
increases because most substrates are promiscuously cleaved by multiple proteases. We introduce a
method—substrate libraries for compressed sensing of enzymes (SLICE)—for selecting libraries of promis-
cuous substrates that classify protease mixtures (1) without deconvolution of compressed signals and (2)
without highly specific substrates. SLICE ranks substrate libraries using a compression score (C), which
quantifies substrate orthogonality and protease coverage. This metric is predictive of classification accuracy
across 140 in silico (Pearson r = 0.71) and 55 in vitro libraries (r = 0.55). Using SLICE, we select a two-substrate
library to classify 28 samples containing 11 enzymes in plasma (area under the receiver operating character-
istic curve [AUROC] = 0.93). We envision that SLICEwill enable the selection of libraries that capture informa-
tion from hundreds of enzymes using fewer substrates for applications like activity-based sensors for imag-
ing and diagnostics.
INTRODUCTION

Proteases are a major class of enzymes; more than 600 en-

zymes, comprising �3% of the human genome,1 are classified

as proteases due to their ability to hydrolyze peptide bonds

and degrade proteins (i.e., proteolysis). Protease activity is a

driver of important biological processes, ranging from develop-
Cell Re
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ment and differentiation2 to pathological conditions such as can-

cer, neurodegenerative disorders, and inflammatory diseases.3

However, due to the irreversible nature of proteolysis, protease

activity is tightly regulated via mechanisms such as inhibitory

prodomains, cofactor binding, and protein inhibitors.4 Given

this degree of posttranslational regulation, quantifying protease

activity, rather than transcriptomic or proteomic analyses, is
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often required to understand the biological roles of proteases.5

This has motivated the development of activity-based sensors

that have been applied to early disease diagnostics—for

example with imaging probes6–8 and synthetic biomarkers in

urine9–11 and breath12—as well as therapies including protease

inhibitors13,14 and masked biologics.15–17 The two primary com-

positions of activity-based sensors are (1) substrates that pro-

duce a signal upon proteolysis and (2) probes that bind active

proteases.4,18 For the former approach, a major bottleneck

is substrate design, which involves screening for peptide

substrates that are specific to the target protease (Figure 1,

step 1). However, finding substrates with high specificity be-

comes increasingly difficult as the number of target enzymes in-

creases because most proteases are characterized by promis-

cuous activity.3,19

To accelerate the process of designing specific substrates,

methods to generate and screen libraries of peptide se-

quences have been developed, including positional scanning

libraries,20,21 peptide microarrays,22,23 fluorogenic peptides,24

other mixture-based peptide libraries,25,26 and multiplex mass

spectrometry assays.27 These libraries are either degenerate or

diversified at certain positions based on consensus cleavage

motifs from the literature28 or computational approaches to pre-

dict peptide sequences based on the structure of the active site

of a target protease29,30 (Figure 1, step 2). To generate potentially

novel specific substrates, high-throughput evolution-based

methods display and iteratively screen randomized peptide

sequences on the surface of bacteria (e.g., CLiPS)31,32 or bacte-

riophages (e.g., phage display)33 and have been extended

for screening endogenous protease activity34 (Figure 1, steps

3–4). To further increase substrate specificity, approaches

have been developed to broaden the chemical diversity of pep-

tide libraries, such as via the introduction of non-natural amino

acids35,36 or cyclic peptide libraries.37 In cases where prote-

ase-substrate kinetics are known, signal deconvolution algo-

rithms can infer the activity levels of individual enzymes in a com-

plex mixture24,38; this approach works well on controlled

reactions involving recombinant enzymes. With these methods,

libraries of up to 10–20 substrates, each of which have unique

molecular barcodes, have been constructed to sense dysregu-

lated protease activity for early detection of disease.9,11,39 How-

ever, the current paradigm in substrate design methods is to

favor specific substrates over promiscuous candidates.

Here, we embrace enzyme-substrate promiscuity by devel-

oping a substrate design method—substrate libraries for

compressed sensing of enzymes (SLICE)—for selecting comple-

mentary promiscuous substrates to compile libraries of activity-

based sensors that can classify distinct protease mixtures

without specific substrates or signal deconvolution (Figure 1,

step 5). Rather, SLICE, inspired by the signal processing tech-

nique compressed sensing,40–42 evaluates different combina-

tions of substrates to find the most complementary library that

maximally senses all target proteases. We accomplish this by

designing a compression score, C, which scores substrate li-

braries according to two features: (1) substrate orthogonality,

which measures the uniqueness of protease-substrate kinetics,

and (2) protease coverage, which measures the total fraction of

target proteases sampled. In a simulated disease-detection
2 Cell Reports Methods 3, 100372, January 23, 2023
challenge based on a melanoma gene microarray dataset,43 C

was predictive of classification accuracy across 140 in silico li-

braries (Pearson r = 0.71) and 55 in vitro libraries (Pearson r =

0.55). Further, we used SLICE to design a 2-substrate library

(C = 0.94) that classified 28 complex samples containing one

of two distinct 11-protease mixtures in the presence of murine

plasma with high accuracy (area under the receiver operating

characteristic curve [AUROC] = 0.93). Looking forward, produc-

ing smaller libraries will reduce the number of readouts, the over-

all cost, and the processing time, which is ideal for imaging- and

activity-based diagnostics. We envision that SLICE will enable

the selection of promiscuous substrate libraries that capture in-

formation from hundreds of enzymes using fewer activity-based

sensors than is currently possible.

RESULTS

Computational pipeline for evaluating classification
performance of simulated substrate libraries
Given an initial pool of candidate substrates, our goal was to

develop a method for predicting which libraries of promiscuous

substrates should be selected to accurately classify distinct mix-

tures of proteases. Therefore, we sought to create a simulation

pipeline for evaluating the classification performance of sub-

strate libraries with known protease-substrate cleavage kinetics

(e.g., catalytic constants [kcat]). To simulate a disease detection

problem, we used a microarray gene expression dataset43 con-

taining data on 162 extracellular proteases in a murine mela-

noma model (Figure S1A). We calculated average protease

gene expression profiles for healthy (day 1) and disease (day 7)

samples and then generated Gaussian-distributed populations

of 200 simulated samples from healthy and disease conditions

(i.e., 100 simulated samples for each condition) (Figure 2, part

1a). These populationswere generated by adding up to two stan-

dard deviations of random noise to the average expression pro-

files, as this noise level is sufficient so that measuring a single

protease would be insufficient to accurately classify healthy

and disease, while measuring all proteases would lead to high

accuracy. After performing principal-component analysis on

the simulated samples, we observed that the first two principal

components represent >80% of variance and provide a clear

separation between the healthy and disease groups, meaning

that the two groups can be easily classified using all protease

measurements simultaneously. Given the challenge of sensing

the activity of all proteases simultaneously, we use libraries of

promiscuous substrates to measure combinations of proteases.

To simulate promiscuous substrate libraries, we randomly

generated kcat for all pairwise combinations of proteases and

substrates (Figure 2, part 1b). These values were generated by

randomly selecting 10 to 30 proteases to cut a given substrate

and then assigning Gaussian-distributed kcat values (normalized

between 0 and 1) to each of these proteases. We calculated a

vector of product formation rates, Vmax, for each substrate

across all simulated samples bymultiplying matrix P, which con-

tains the gene expression levels of all 162 proteases for every

simulated sample, by the vector kcat, which contains kcat
for each protease with a given substrate (Figure 2, part 2).

We used a random forest model for classifying the simulated
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Figure 1. Conceptual overview of protease substrate design using the SLICE method

(1) Identify which proteases in the system being probed are considered target proteases (blue Pacman) and which are off-target proteases (purple Pacman).

(2) Generate candidate peptide sequences that can be used as substrates for target proteases. Peptide sequences can be acquired from the literature (paper

icon) or computationally generated (computer icon). Computationally generated diversity includes degenerate libraries as well as predicted sequences derived

from computational modeling software.

(3) Screen candidate peptide sequences against all protease targets via chemically synthesized activity-based sensors (e.g., fluorogenic probes, peptide mi-

croarrays, etc.) or genetically encoded libraries (e.g., phage display, bacteria display, etc.).

(4) Heatmap of cleavage kinetics, quantified by the catalytic constant, kcat, for all protease-substrate pairs (rows = proteases, columns = substrates).

(5a) An example promiscuous substrate library that has fewer substrates (nsubstrates = 5) than proteases (nproteases = 10). The compression score,C, represents the

score assigned to the library by the SLICE method, with 1 being the highest score and 0 the lowest.

(5b) An example specific substrate library that has the same number of substrates as proteases (nsubstrates = nproteases = 10).
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Figure 2. Computational pipeline for evaluating classification performance of simulated substrate libraries

(1a) Plot of first two principal components from principal-component analysis on microarray gene expression data of 162 protease genes in day 1 (healthy, blue)

and 7 (disease, red) mouse tissue samples in a B16 melanoma model. To simulate, 100 samples and 100 disease samples are computationally generated as a

Gaussian distribution from a single biological sample.

(1b) Heatmap of simulated catalytic constatnts, kcat, for every pairwise combination between 162 proteases and 150 substrates (white = high, black = low).

(2) Visualization of how product formation rates, Vmax, are calculated using protease concentrations, P, and kcat. The result of this calculation is a product for-

mation rate per substrate per sample.

(3) Receiver operating characteristic (ROC) curves as ameasure of healthy versus disease classification performance using product formation rates as features of

observations used to train a random forest model. Blue trace is an ROC curve when using signals (i.e., product formation rates) from 11 substrates (green trace = 5

substrates, red trace = 1 substrate).
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samples (i.e., healthy versus disease) and used 5-fold cross-vali-

dation by aggregating predictions of an unseen fold (i.e., test set)

based on themodel trained by the other 4-folds (i.e., training set).

To quantify classification performance, we calculated the

AUROC resulting from applying the trained model to the test

set (Figures 2, part 3, and S1B). We observed a clear trend

that increasing the number of substrates in a library resulted in

increased classification power. With this pipeline, we can eval-

uate the classification performance for a substrate library with

known kcat in a simulated disease detection problem as a proxy

for true classification power.
A compression score for promiscuous substrate library
selection
Since a promiscuous substrate can be cleaved by multiple pro-

teases, the net signal of a substrate represents some weighted

combination of product formation rates frommultiple proteases.

Therefore, measuring the signal of a promiscuous substrate

compresses the product formation rates (i.e., activity) from mul-

tiple proteases into one feature. We sought to design a compres-

sion score, C, that selects for the most complementary set of

promiscuous substrates that maximally senses the proteases

of interest. To account for this, C is a weighted sum of two met-

rics—substrate orthogonality, Sorth:, and protease coverage,

Pcov: (Figure 3A; Equation 1).
4 Cell Reports Methods 3, 100372, January 23, 2023
C = uSorth: + ð1 � uÞPcov: (Equation 1)

C operates on a 2Dmatrix of kinetic constants (e.g., kcat, prod-

uct formation rates, etc.) for all pairwise combinations of prote-

ase (rows) and substrate (columns); the score outputs one value

ranging between 0 and 1, with 1 being the optimal score (Fig-

ure 3B). Sorth:, which is the cosine distance metric (Figure S2),

quantifies the orthogonality of the columns, or how unique

each of the substrates are from one another in the protease

space. For example, substrate libraries with high Sorth: will have

columns that are different from one another, whereas the col-

umns will be more similar in libraries with low Sorth: (Figure 3B,

y axis). Conversely, Pcov: quantifies howmany rows have at least

one element with a high value, or how many proteases are

collectively sampled by a library. For example, substrate libraries

with high Pcov: will have a high value in all rows, whereas libraries

with low Pcov: will include rows of only low values (Figure 3B,

x axis). To verify that C is predictive of classification perfor-

mance, we used the computational pipeline described in Figure 2

to evaluate the classification performance of 140 simulated sub-

strate libraries. We found that C demonstrated a strong correla-

tion with classification performance (Pearson’s r = 0.71) with

substrate libraries whereC< 0.2 provided little useful information

(i.e., 0.5 < AUROC < 0.6) and libraries where C > 0.9 demon-

strated strong classification performance (i.e., AUROC > 0.85)
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Figure 3. A compression score for promiscuous substrate selection

(A) Equation used to calculate the compression score,C. Substrate orthogonality,Sorth., which is quantified by the cosine distancemetric, and protease coverage,

Pcov., which quantifies the fraction of proteases that are sampled by a substrate library, are combined according to the weight of summation,u. All variables range

from 0 to 1.

(B) Schematic showing four example substrate libraries and their relative magnitude in Sorth. (y axis) and Pcov. (x axis) space. Each substrate library is represented

with a heatmap of catalytic constats, kcat, (white = high, black = low) for all protease (rows) and substrate (columns) combinations.

(C) (Top) Schematic showing pipeline for calculatingC and classification performance for 140 simulated substrate libraries. (Bottom) Plot of correlation betweenC

(x axis) and classification performance (AUROC, y axis). Black line is line of best fit. Each dot represents the performance of one substrate library averaged over 5

repeats.

(D and E) Plots showing classification performance (AUROC, y axis) versus substrate library size (number of substrates, x axis) for changing value of Sorth. (D) and

Pcov. (E). Each dot represents the performance of one substrate library.
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(Figure 3C). To verify that both Sorth: and Pcov: contribute to C

independently, we independently fixed each variable and

observed the change in classification performance across vary-

ing substrate library sizes (i.e., 1 < nsubstrates < 150). We found

that increasing both Sorth: (Figure 3D) and Pcov: (Figure 3E) inde-

pendently increased classification performance from 0.5–0.6 to

>0.9 across all substrate library sizes tested. With C, we can

rank-order and select the optimal set of promiscuous substrates

where the kinetic constants toward the relevant protease targets

are known.

Exhaustive scoring of substrate libraries in vitro with
SLICE
To demonstrate the process of constructing a substrate library

with SLICE experimentally, we selected a candidate pool of 11

substrates compiled from commercial products or published

sequences28,44,45 with known cleavage activity from matrix

metalloproteases (MMPs), cathepsins, or complement proteases

(Table S1). We focused on these protease classes as they have

been shown to be dysregulated in pathologies like cancer46 and

organ transplant rejection47 and have been targets of activity-

based sensors.6,9,11,39 We designed fluorogenic probes for these

substrate sequences by flanking each with a fluorophore and
quencher such that peptide cleavagewould result in ameasurable

increase in fluorescence (Figure 4A, part 1). We performed cleav-

age assays for all 11 substrates with 11 proteases (121 unique

protease-substrate pairs), including the target protease classes

and other proteases (e.g., KLK2, thrombin, etc.), which were

included to account for promiscuity of protease substrates. We

then extracted the product formation rates (i.e., initial velocity)

as representative kinetic parameters (Figures 4A, part 2, and

S3). All substrates showed increasing signals with at least one

protease (>2-fold increase in fluorescence after 60min), indicating

cleavage activity, while some protease-substrate pairs with negli-

gible activity showed slightly decreased signals (<25%) due to

photobleaching of uncleaved substrates. We observed that

although the substrate sequences were known to target MMPs,

cathepsins, and complement proteases, the off-target proteases

used in these experiments also showed a propensity to cleave

these sequences, which can be attributed to substrate promiscu-

ity. To visualize the distribution of scores for these libraries, we

exhaustively enumerated all libraries with sizes ranging from 2 to

10 and computed the Sorth:, Pcov:, and C scores for all those li-

braries (Figure 4B, part 1). We found that this candidate pool of

substrates produced libraries high in Pcov: but low in Sorth: (Fig-

ure 4B, part 2). We found that the mean C score of 0.66 (n =
Cell Reports Methods 3, 100372, January 23, 2023 5
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Figure 4. Exhaustive scoring of substrate libraries in vitro with SLICE

(A) (1, left) Schematic of activity sensor or fluorogenic probe. Activity sensor comprises a peptide substrate (blue and red bar) flanked with a fluorophore (yellow

star = 5-FAM, red star = EDANS) and a quencher (black circle = Dabcyl). Upon cleavage, the fluorophore and quencher separate, which results in an increase in

fluorescent signal. (1, right) Cleavage assay of thrombin and substrate-1 showing the increase in number of substrates cleaved (y axis) over time (x axis). Black

dots are raw data. The slope (triangle) of the line of best fit (black line) is calculated as the product formation rate. Relative fluorescence unit (RFU)/min is used as

RFU correlates with the number of substrates cleaved. (2) Heatmap showing all pairwise combinations of product formation rates asmeasured from independent

cleavage assays. Proteases are in rows, and substrates are in columns. Data are natural log transformed.

(B) (1) Schematic showing that all unique combinations of substrates, with library sizes ranging from 2 to 10, are scored with SLICE. (2) Histogram showing the

distribution of Sorth. (red distribution) and Pcov. (blue distribution) scores. (3) Histogram showing the distribution of the compression score, C (light blue distri-

bution). Vertical dashed lines depict the score of various controls. ‘‘No sensing’’ depicts the score of a library where kinetic constant = 0 for all protease-substrate

pairs. ‘‘Randomly generated’’ depicts the score of a library where kinetic constants are randomly generated. ‘‘Perfect orthog. & coverage’ depicts the score of a

library where all proteases are sampled, and each substrate has no overlapping kinetic constants.

(C) (1) Principal-component analysis of 11 proteases selected from 162 found in original B16 study. Proteases selected as either exact match or as member of

same family as 11 proteases used in our study (A, part 2). Each dot represents one simulated sample (red = disease, blue = healthy). (2) Histogram showing the

distribution of Cs (light blue distribution) for all substrate libraries of size 2 (i.e., 2 substrates). (3) Plot showing correlation between C (x axis) and classification

performance (y axis, AUROC). Black line shows line of best fit.
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Figure 5. Experimental validation of substrate library design with SLICE

(A) Schematic of experimental workflow: (1) Twomixtures (A = blue, B = red) of 11 proteases are randomly generated. Eachmixture is representedwith a test tube

containing 11 proteases (Pacman shape). Relative size of protease roughly represents the relative concentration. Actual relative concentrations are plotted in bar

graph below (A = blue bars, B = red bars). (2) Schematic of experimental well plate containing samples of protease mixtures (1 circle = 1 well). Both mixtures are

independently pipetted 10 times each (blue well =mix A, redwell =mix B) to create a population with variance due to pipetting error. One library is introduced to all

20 samples (10 of mixture A, 10 of mixture B), and the product formation rates of both activity-based sensors in the library are measured. (3) Schematic graph (not

(legend continued on next page)
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2,035 libraries) was higher than the benchmark score of randomly

generated libraries (C = 0.6), meaning that real substrates tended

to be more promiscuous than randomly generated substrates

(Figure 4B, part 3). To validate that C is predictive of substrate li-

brary performance using empirically derived kinetic constants

(i.e., product formation rates), we repeated the pipeline described

in Figure 2 using the product formation rates found in Figure 4A.

We trimmed down the list from 162 to 11 protease genes that

were either from the same family or an exact match to the 11 pro-

teases used in our experiments and simulated 100 healthy and

100 disease samples (Figure 4C, part 1). To fix library size, we

calculated the distribution of Cs of all libraries comprising only

two substrates (Figure 4C, part 2) and found that this distribution

closely matched the score distribution for all library sizes (Fig-

ure 4B, part 3). We evaluated the classification performance for

all 55 libraries of size 2 and found that C correlated with the

AUROC (Figure 4C, part 3; Pearson’s r = 0.55). Here, we demon-

strated that constructing a library with SLICE involves (1) selecting

a candidate pool of substrates that broadly recognize known pro-

tease targets, (2) measuring a kinetic parameter for each prote-

ase-substrate pair, and (3) identifying the optimal library/libraries

by evaluating C.

Experimental demonstration and validation of substrate
library design with SLICE
To validate the efficacy of a promiscuous substrate library de-

signed with SLICE, we created an in vitro classification challenge

for detecting dysregulated protease activity. To represent the two

classification groups (i.e., protease mixture A versus protease

mixture B; Figure 5A, part 1), we randomly generated two distinct

mixtures of the same 11 target proteases from previous experi-

ments (Figures 3 and 4). We incubated the library separately

with 10 hand-pipetted repeats of both mixtures to introduce vari-

ance in the protease concentrations within the same group (Fig-

ure 5A, part 2). To evaluate the classification performance, we

used the product formation rates of each substrate as the obser-

vations used to train a random forest model and calculated the

AUROC for all test set samples in all 5-fold cross-validation iter-

ations (Figure 5A, part 3). As a negative control, we tested a li-

brary with a low C (C < 0.5) to benchmark the performance of

the SLICE library (C > 0.9) (Figure 5A). The kinetic parameter heat-

map for the SLICE library (C = 0.95) showed that there is at least

one substrate that can sense each protease, and the substrates

only overlapped on one protease target (i.e., MMP8). Conversely,

the negative control library (C = 0.49) does not sense 3 proteases
real data) showing that the library with a high compression score,C, (C > 0.9) shoul

(C < 0.5) should have low classification performance (orange line).

(B) Heatmaps showing the product formation rates for the library with the highestC

product formation rate, black = low product formation rate).

(C) Plot of the resulting product formation rates for each activity sensor after incub

mixture B). The product formation rates from activity-based sensors using 5-FAM

on the y axis. The top plot shows the results when using the C = 0.49 library, and

normalized from 0 to 1 for visualization.

(D) AUROC plot showing the results of classifying mixture A from mixture B whe

(E) Schematic of workflow to test classification in citrated plasma.

(F) Plot of product formation rates for each activity sensor after incubation with pr

from 5 mice, and assay was performed with 2–3 technical replicates each, for to

(G) AUROC plot showing classification results in plasma.
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(i.e., MMP1, MMP7, MMP13), and the substrates overlap on 4

protease targets (i.e., KLK2, CTSS, plasmin, factor XIa) (Fig-

ure 5B). These results validate that the scoring system (i.e., C)

used in the SLICE method accurately represents Pcov: and Sorth:

(Figure S4). We first assessed whether both cleavage signals of

a two-substrate library could be monitored simultaneously using

5-FAM and EDANS fluorophores. Cleavage of 5-FAM- and

EDANS-labeled substrates resulted in signal only in the expected

fluorescence channel with no detectable crosstalk. Furthermore,

the presence of an EDANS substrate had no significant effect on

the cleavage fluorescence of a 5-FAM substrate, nor did a 5-FAM

substrate affect cleavage signals of an EDANS substrate (Fig-

ure S5). Therefore, we proceeded to incubate each library with

all 20 protease mixtures (i.e., 10 repeats of mixture A, 10 repeats

ofmixtureB), andwe plotted the results fromeachmixture in sub-

strate space (i.e., x axis = product formation rate of 5-FAM sub-

strate, y axis = EDANS substrate) (Figure S6). We observed that

the SLICE library (C = 0.95) provided strong separation between

mixture A and mixture B when compared with the negative con-

trol (C = 0.49) (Figure 5C). These results were confirmed by

AUROC analysis, where the SLICE library (C = 0.95) classified

all twenty mixtures with perfect accuracy (AUROC = 1) while

compressing the dimensionality from 11 proteases to 2 sub-

strates. By comparison, the negative control library (C = 0.49)

showedworse classification performance (AUROC=0.58), which

held true across all temporal endpoints tested (Figures 5D and

S7). Further, we found that the same substrate signal (i.e.,

substrate-8) that resulted in a negative feature importance score

in the negative control (C = 0.49) library produced a positive

feature importance score in the SLICE (C = 0.95) library (Fig-

ure S8). This demonstrates that while promiscuous substrates

can be detrimental to certain libraries, pairing them with comple-

mentary substrates can improve the overall classification perfor-

mance of the library. Finally, we testedwhether classification per-

formance is retained in a complex biological sample containing

plasma isolated from mice (n = 5; Figure 5E). Plasma contains

endogenous proteases (e.g., coagulation and complement pro-

teases) and protease inhibitors that may contribute background

noise and increase the challenge of classification.48,49 The

SLICE (C = 0.95) and negative control (C = 0.49) libraries were

incubated with 28 protease mixtures consisting of 14 repeats of

either mixture A or Bmixed with plasma. Plasma from five biolog-

ical replicates was used as opposed to a single mouse in order to

further introduce variance across the samples. The SLICE library

again classified the two mixtures with higher accuracy than the
d have high classification performance (blue line), whereas the library with lowC

(C = 0.95 library) and the library with the lowestC (C = 0.49 library) (white = high

ation with protease mixtures (1 dot = 1 mixture; blue dot = mixture A, red dot =

are plotted on the x axis, and product formation rates from EDANS are plotted

the bottom plot shows the results when using the C = 0.95 library. Rates were

n using the C = 0.95 library (blue trace) or the C = 0.49 library (orange trace).

otease mixture A or B in the presence of citrated plasma (plasma was isolated

tal of n = 14).
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negative control library (Figures 5F and 5G; AUROC=0.93 versus

0.47). Here, we demonstrated that the SLICE method can select

for substrate libraries and assign C that accurately predicts

their classification performance when differentiating complex

protease activity.

DISCUSSION

Here, we develop amethod, SLICE, for compiling libraries of pro-

miscuous substrates that sense protease activity for classifica-

tion or diagnostic applications. This method involves (1) select-

ing a candidate pool of substrates that sense the target

proteases, (2) measuring a kinetic parameter (e.g., kcat, Vmax,

etc.) for each protease-substrate pair, and (3) identifying the

optimal library of a fixed size by evaluating the C. The advan-

tages of this method are that it enables the use of fewer promis-

cuous substrates (i.e., specific substrates not required) than the

number of target proteases. By comparison, the current para-

digm is to search for substrates that are specific to one protease

and use approximately the same number of substrates as prote-

ases. With these methods, all off-target protease activity is

considered background noise, which is traditionally filtered out

via chemical50 or computational methods.24,38 As the number

of enzyme targets increases, it becomes increasingly difficult

to maintain specificity across all substrates. Further, since

each substrate requires a unique reporter, the number of simul-

taneous readouts becomes limited by cost (e.g., mass barco-

des9) or physical restrictions (e.g., fluorescence13).

It is suggested that protease promiscuity bolsters fitness by

(1) providing alternative evolutionary starting points and (2)

increasing biological efficiency (i.e., multiple functions per

enzyme).19 We proposed that embracing protease promiscuity

could leverage the ubiquity of substrates that recognize multiple

targets. Serving as inspiration for the SLICE method, com-

pressed sensing (CS) is a signal processing technique that uti-

lizes measurements of a mixture of multiple target signals to

recover information of individual signals.51 A well-known appli-

cation of CS is the single-pixel camera, which demonstrated

the ability to efficiently handle high-dimensional datasets (e.g.,

hyperspectral imaging, video, etc.) and inspired the use

of CS in magnetic resonance imaging40 and imaging transcrip-

tomics.41,42 CS utilizes compressed signals, which are a com-

posite of multiple different signals; this mirrors how the total

number of cleaved copies of a promiscuous substrate results

from a weighted combination of different proteases. However,

amajor difference is that ourmethod does not require the decon-

volution of compressed signals (i.e., cleaved substrate signals)

as, unlike conventional CS, our approach aims to achieve high

classification performance and not to reconstruct the original

signal (i.e., individual protease activities). One consequence of

this is while CS requires that the original signal is sparse, our

approach may apply to cases where protease expression is

not sparse. Future iterations of SLICE could incorporate (1) CS

features (e.g., sparsity, incoherence) for substrate selectionmet-

rics (i.e., C) and (2) deconvolution of the compressed signals.

However, we found that compressed signals are often sufficient

for achieving high classification accuracy and would be

preferable for applications such as point-of-care52 or imaging di-
agnostics,42 where fewer signals reduces the overall cost and

processing time.

We envision that SLICE will be useful for applications where

obtaining precise activity values per protease is less important

than detecting systems-level changes, such as disease staging,

classification, and diagnosis. Measuring protease activity at a

systems level accounts for activation, deactivation, and inhibi-

tion by other proteases and proteinase inhibitors in native biolog-

ical systems, which can occur in serum and in pathological

settings like cancer and coagulation.48,49,53,54 The ultimate appli-

cation of SLICE would be a universal substrate library that is

constructed by running all candidate substrates through a stan-

dardized test, which measures kcat against all >600 recombinant

human proteases. From this library, various sublibraries target-

ing different groups of proteases could be extracted on a per-

application basis. For example, a diagnostic activity-sensor

library could be extracted from the universal library by defining

disease-specific target proteases ideally in pathologies that

can be diagnosed using blood or plasma samples, such as coag-

ulation disorders55 or cancer.56,57 While in vitro protease activity

measurements may not fully account for the dynamic states of

proteases in vivo,58 future work could improve this by creating

more robust in vitro tests that sample proteases under multiple

states (e.g., redox, fluid dynamics, etc.) or developing in vivo

tests that isolate the activity from individual proteases.

Further, other classes of enzymes also exhibit promiscuity,59

which means that the design rules presented in this work can

likely be extended to other promiscuous enzymes such as ki-

nases or phosphatases and their activity-based sensors.60,61

For example, candidate substrates would be mapped onto sen-

sors that exhibit phosphorylation- or dephosphorylation-depen-

dent changes in signals (e.g., fluorescence).60 These sensors

would be used to measure enzyme-substrate kinetics and

generate an activity matrix, which could be processed using

the SLICEmethod. In conclusion, we present SLICE as amethod

for embracing the use of promiscuous substrates for detecting

changes in protease activity, as an alternative approach to the

use of specific substrates. Given the ubiquity of promiscuous

substrates and the motivation to sense biological activity, we

anticipate that the ideas presented here will have broad applica-

bility to the field of enzyme sensing at large.

Limitations of the study
This study focused on a set of 11 proteases to demonstrate se-

lection of promiscuous substrates using the SLICE method.

Extension to larger panels of proteases, especially those dysre-

gulated in the context of disease, is warranted in future studies.
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3. López-Otı́n, C., and Bond, J.S. (2008). Proteases: multifunctional enzymes

in life and disease. J. Biol. Chem. 283, 30433–30437.

4. Sanman, L.E., and Bogyo, M. (2014). Activity-based profiling of proteases.

Annu. Rev. Biochem. 83, 249–273.

5. Turk, B. (2006). Targeting proteases: successes, failures and future pros-

pects. Nat. Rev. Drug Discov. 5, 785–799.
10 Cell Reports Methods 3, 100372, January 23, 2023
6. Yim, J.J., Harmsen, S., Flisikowski, K., Flisikowska, T., Namkoong, H.,

Garland, M., van den Berg, N.S., Vilches-Moure, J.G., Schnieke, A.,

Saur, D., et al. (2021). A protease-activated, near-infrared fluorescent

probe for early endoscopic detection of premalignant gastrointestinal le-

sions. Proc. Natl. Acad. Sci. USA 118. e2008072118.

7. Edgington, L.E., Berger, A.B., Blum, G., Albrow, V.E., Paulick, M.G., Line-

berry, N., and Bogyo, M. (2009). Noninvasive optical imaging of apoptosis

by caspase-targeted activity-based probes. Nat. Med. 15, 967–973.

8. Jiang, T., Olson, E.S., Nguyen, Q.T., Roy, M., Jennings, P.A., and Tsien,

R.Y. (2004). Tumor imaging by means of proteolytic activation of cell-

penetrating peptides. Proc. Natl. Acad. Sci. USA 101, 17867–17872.

9. Kwong, G.A., von Maltzahn, G., Murugappan, G., Abudayyeh, O., Mo, S.,

Papayannopoulos, I.A., Sverdlov, D.Y., Liu, S.B., Warren, A.D., Popov, Y.,

et al. (2013). Mass-encoded synthetic biomarkers for multiplexed urinary

monitoring of disease. Nat. Biotechnol. 31, 63–70.

10. Kwong, G.A., Ghosh, S., Gamboa, L., Patriotis, C., Srivastava, S., and

Bhatia, S.N. (2021). Synthetic biomarkers: a twenty-first century path to

early cancer detection. Nat. Rev. Cancer 21, 655–668.

11. Kirkpatrick, J.D., Warren, A.D., Soleimany, A.P., Westcott, P.M.K., Voog,

J.C., Martin-Alonso, C., Fleming, H.E., Tammela, T., Jacks, T., and Bhatia,

S.N. (2020). Urinary detection of lung cancer in mice via noninvasive pul-

monary protease profiling. Sci. Transl. Med. 12. eaaw0262.

12. Chan, L.W., Anahtar, M.N., Ong, T.-H., Hern, K.E., Kunz, R.R., and Bhatia,

S.N. (2020). Engineering synthetic breath biomarkers for respiratory dis-

ease. Nat. Nanotechnol. 15, 792–800.

13. Neefjes, J., and Dantuma, N.P. (2004). Fluorescent probes for proteolysis:

tools for drug discovery. Nat. Rev. Drug Discov. 3, 58–69.

14. Bachovchin, D.A., and Cravatt, B.F. (2012). The pharmacological land-

scape and therapeutic potential of serine hydrolases. Nat. Rev. Drug Dis-

cov. 11, 52–68.

15. Desnoyers, L.R., Vasiljeva, O., Richardson, J.H., Yang, A., Menendez,

E.E.M., Liang, T.W., Wong, C., Bessette, P.H., Kamath, K., Moore, S.J.,

et al. (2013). Tumor-specific activation of an EGFR-targeting probody en-

hances therapeutic index. Sci. Transl. Med. 5. 207ra144.

16. Holt, B.A., Tuttle, M., Xu, Y., Su, M., Røise, J.J., Wang, X., Murthy, N., and

Kwong, G.A. (2022). Dimensionless parameter predicts bacterial prodrug

success. Mol. Syst. Biol. 18. e10495.

17. Mansurov, A., Hosseinchi, P., Chang, K., Lauterbach, A.L., Gray, L.T., Al-

par, A.T., Budina, E., Slezak, A.J., Kang, S., Cao, S., et al. (2022). Masking

the immunotoxicity of interleukin-12 by fusing it with a domain of its recep-

tor via a tumour-protease-cleavable linker. Nat. Biomed. Eng. 6, 819–829.

18. Edgington, L.E., Verdoes, M., and Bogyo, M. (2011). Functional imaging of

proteases: recent advances in the design and application of substrate-

based and activity-based probes. Curr. Opin. Chem. Biol. 15, 798–805.

19. Khersonsky, O., and Tawfik, D.S. (2010). Enzyme promiscuity: a mecha-

nistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505.

20. Schneider, E.L., and Craik, C.S. (2009). Positional scanning synthetic

combinatorial libraries for substrate profiling. Methods Mol. Biol.

539, 59–78.

21. Backes, B.J., Harris, J.L., Leonetti, F., Craik, C.S., and Ellman, J.A. (2000).

Synthesis of positional-scanning libraries of fluorogenic peptide sub-

strates to define the extended substrate specificity of plasmin and

thrombin. Nat. Biotechnol. 18, 187–193.

22. Salisbury, C.M., Maly, D.J., and Ellman, J.A. (2002). Peptide microarrays

for the determination of protease substrate specificity. J. Am. Chem.

Soc. 124, 14868–14870.

23. Szymczak, L.C., Kuo, H.-Y., andMrksich, M. (2018). Peptide arrays: devel-

opment and application. Anal. Chem. 90, 266–282.

24. Miller, M.A., Barkal, L., Jeng, K., Herrlich, A., Moss, M., Griffith, L.G., and

Lauffenburger, D.A. (2011). Proteolytic Activity Matrix Analysis (PrAMA) for

simultaneous determination of multiple protease activities. Integr. Biol. 3,

422–438.

https://doi.org/10.1016/j.crmeth.2022.100372
https://doi.org/10.1016/j.crmeth.2022.100372
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref1
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref1
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref2
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref2
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref2
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref3
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref3
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref4
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref4
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref5
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref5
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref6
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref6
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref6
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref6
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref6
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref7
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref7
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref7
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref8
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref8
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref8
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref9
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref9
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref9
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref9
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref10
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref10
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref10
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref11
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref11
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref11
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref11
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref12
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref12
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref12
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref13
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref13
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref14
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref14
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref14
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref15
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref15
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref15
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref15
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref16
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref16
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref16
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref17
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref17
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref17
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref17
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref18
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref18
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref18
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref19
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref19
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref20
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref20
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref20
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref21
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref21
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref21
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref21
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref22
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref22
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref22
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref23
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref23
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref24
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref24
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref24
http://refhub.elsevier.com/S2667-2375(22)00274-0/sref24


Article
ll

OPEN ACCESS
25. Schilling, O., and Overall, C.M. (2008). Proteome-derived, database-

searchable peptide libraries for identifying protease cleavage sites. Nat.

Biotechnol. 26, 685–694.

26. Klein, T., Eckhard, U., Dufour, A., Solis, N., and Overall, C.M. (2018). Pro-

teolytic cleavage—mechanisms, function, and ‘‘omic’’ approaches for

a near-ubiquitous posttranslational modification. Chem. Rev. 118,

1137–1168.

27. O’Donoghue, A.J., Eroy-Reveles, A.A., Knudsen, G.M., Ingram, J., Zhou,

M., Statnekov, J.B., Greninger, A.L., Hostetter, D.R., Qu, G., Maltby,

D.A., et al. (2012). Global identification of peptidase specificity by multi-

plex substrate profiling. Nat. Methods 9, 1095–1100.

28. Rawlings, N.D., Barrett, A.J., and Bateman, A. (2012). MEROPS: the data-

base of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids

Res. 40, D343–D350.

29. Ochoa, R., Magnitov, M., Laskowski, R.A., Cossio, P., and Thornton, J.M.

(2020). An automated protocol for modelling peptide substrates to prote-

ases. BMC Bioinf. 21, 586.

30. Boyd, S.E., Pike, R.N., Rudy, G.B., Whisstock, J.C., and Garcia de la

Banda, M. (2005). PoPS: a computational tool for modeling and predicting

protease specificity. J. Bioinform. Comput. Biol. 3, 551–585.

31. Rice, J.J., Schohn, A., Bessette, P.H., Boulware, K.T., and Daugherty, P.S.

(2006). Bacterial display using circularly permuted outer membrane pro-

tein OmpX yields high affinity peptide ligands. Protein Sci. 15, 825–836.

32. Stach, N., Kalinska,M., Zdzalik, M., Kitel, R., Karim, A., Serwin, K., Rut, W.,

Larsen, K., Jabaiah, A., Firlej, M., et al. (2018). Unique substrate specificity

of SplE serine protease from Staphylococcus aureus. Structure 26, 572–

579.e4.

33. Whitney, M., Crisp, J.L., Olson, E.S., Aguilera, T.A., Gross, L.A., Ellies,

L.G., and Tsien, R.Y. (2010). Parallel in vivo and in vitro selection using

phage display identifies protease-dependent tumor-targeting peptides.

J. Biol. Chem. 285, 22532–22541.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Custom peptide library Genscript; this manuscript Table S1

Human recombinant kallikrein 2 Prospec Cat#:ENZ-719

Human recombinant cathepsin S R&D Systems Cat#1183-CY-010

Human recombinant ADAMTS1 R&D Systems Cat#2197-AD-020

Human plasmin Prolytix Cat#HCPM-0140

Human alpha-thrombin Prolytix Cat#HCT-0020

Human factor Xia Prolytix Cat#HCXIA-0160

Human recombinant MMP11 Enzo Life Sciences Cat#BML-SE282

Human recombinant MMP8 Enzo Life Sciences Cat#BML-SE255

Human recombinant MMP7 Enzo Life Sciences Cat#BML-SE181

Human recombinant MMP1 Enzo Life Sciences Cat#BML-SE180

Human recombinant MMP13 Enzo Life Sciences Cat#BML-SE246

Experimental models: Organisms/strains

Mouse: C57BL6/J The Jackson Laboratory RRID:IMSR_JAX:000664

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

GraphPad Prism GraphPad Software https://www.graphpad.com/scientific-software/prism/

Custom code for SLICE and other analysis This paper Open Science Framework: https://doi.org/10.17605/OSF.IO/D36EV
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be addressed by the lead contact, Gabriel

Kwong (gkwong@gatech.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The data supporting the findings of this study are available within the paper and its supplemental information files. Raw data in

this paper is available from the lead contact upon request.

d The code supporting the findings of this study is publicly available at Open Science Framework: https://doi.org/10.17605/OSF.

IO/D36EV.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

For mouse plasma used in in vitro cleavage assays, plasma was isolated from wild-type C57BL/6J mice (Jackson Labs, female,

�8 weeks). These mice display a healthy phenotype and require normal animal maintenance and care. All animal procedures

were approved by the Georgia Tech Institutional Animal Care and Use Committee (protocol no. KWONG-A100193).

METHOD DETAILS

Cleavage assays
All protease cleavage assays were performed with a BioTek Cytation 5 Imaging Plate Reader, taking fluorescent measurements at

485/528 nm (excitation/emission) for read-outs measuring peptide substrates terminated with fluorophore 5FAM (5-
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Carboxyfluorescein) with quencher Dabcyl. Substrate sequences were identified from previous literature (e.g., substrate-244 and

substrate-445) or commercial products (e.g., substrate-7 (AnaSpec) and substrate-9 (Enzo Life Sciences)), or were generated

from consensus sequences compiled by the MEROPS peptidase database.28 In all conditions, substrate (20 mM) was added to pro-

tease (250 nM) in PBS for each well of a 384-well microplate immediately before reading began. For the in vitro classification chal-

lenge, two substrates (20 mM) were mixed and added to a mixture of 11 proteases in PBS. For the classification challenge in plasma,

citrated plasma was isolated from C57BL/6J mice and added to the mixture of substrates and proteases to 25% of the reaction vol-

ume. Plasmawas used to generate amore complex biological condition as plasma contains serum proteases and protease inhibitors

that could contribute to noise in the classification. Kinetic measurements were taken every minute over the course of 60–120 min at

37 C. Activity RFUmeasurements were normalized to time 0measurement, and as such later time points (after time-0) represent fold

change in signal. Initial velocity, V0, or product formation rate (RFU/min) is calculated through the line of best fit on the changes in RFU

in the first 7min after the time adjustment. For the classification challenges, product formation rates were normalized between 0 and 1

for each probe solely for data visualization, and unnormalized rates were used for classification. All fluorogenic peptide substrates

were purchased from Genscript.

Simulation pipeline for evaluating classification performance of simulated libraries
The simulated disease detection challenge is generated based on a melanoma gene microarray dataset [Matsushita, H. et al.]. This

mouse microarray gene expression dataset contains two conditions, healthy(day1) and disease(day7), providing a few samples per

condition. Among all known proteases and their corresponding genes, there were 162 proteases genes present in this dataset, which

is why the simulated disease detection challenge focused on 162 proteases. For each of the two conditions, an average protease

gene expression profile across the samples was calculated, which served as a proxy for the protease activity profile for each con-

dition in this simulated classification challenge.

The average protease gene expression profiles of the two conditions (healthy and disease) were used to generate simulated

healthy and disease data points. More specifically, 100 samples are randomly generated where each sample is simulated by adding

randomGaussian noise (centered around 0 with a SD of 2) to the average protease expression data. We generated 100 healthy sam-

ple based on the protease gene expression profile of day 1, and another 100 disease samples based on the protease gene expression

profile of Day 7. So, a total of 200 samples are simulated, half healthy and half diseased.

The noise level (SD2 mentioned above) was chosen such that the multi-variate machine learning classifier Random Forest per-

formed well (i.e., correctly classify healthy vs disease), while uni-variate classifier based on individual protease profiles does not

perform well. This choice of noise level represents a situation where we can classify well if we can accurately measure all protease,

but cannot classify well if we can only measure one protease. Such noise level would allow us to test whether measuring a few sub-

strates could achieve good classification close to the scenario where we measure all proteases.

For each simulated substrate, the number of proteases that can cleave the substrate is randomly generated between 10–30, and

the set of proteases that can cleave the substrate is randomly chosen among the 162 proteases. We create a vector with a length of

162, where each element(protease) is assigned either 0 if not chosen, or 1 if chosen. A set of random values are then assigned to the

chosen proteases, which represent the cleavage activity of the chose proteases with respect to the substrate. These random values

are generated from Gaussian distributions, and then normalized so that they sum up to 1. These values serve as simulated Kcat

values.

Panel number 2 of Figure 2 shows amatrix multiplication of two matrices. The first (leftmost) matrix contains the simulated expres-

sion levels for all 162 proteases in the dataset (columns) for the 200 simulated healthy or diseased samples (rows). The expression of

any given protease appears similar across healthy and diseased samples due to the Gaussian noise, so that a library of substrates

measuringmany proteases would likely be necessary for accurate classification. The second (middle) matrix is a simulated substrate

vector of Kcat values that describes which proteases can cleave this substrate with what efficiency. This matrix multiplication pro-

duces 200 values, which represent the simulatedmeasurements of the 200 simulated samples, if we apply one simulated substrate to

sense/measure the 200 samples. When we compare these 200 values against the ground truth label of healthy vs disease, we can

draw ROC and compute AUROC, which quantifies the classification power for an individual substrate, as shown in panel number 3 of

Figure 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using custom MATLAB code (Open Science Framework: https://doi.org/10.17605/OSF.IO/

D36EV) and/or using GraphPad Prism. Statistical tests and sample sizes are stated in the figure caption. Unless otherwise stated

in the caption, center is defined as mean and error bars depict mean ± SEM, and significance is defined based on p-value <0.05.
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