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Abstract

Background

Non-inferiority trials are performed when the main therapeutic effect of the new therapy is

expected to be not unacceptably worse than that of the standard therapy, and the new ther-

apy is expected to have advantages over the standard therapy in costs or other (health)

consequences. These advantages however are not included in the classic frequentist ap-

proach of sample size calculation for non-inferiority trials. In contrast, the decision theory

approach of sample size calculation does include these factors. The objective of this study

is to compare the conceptual and practical aspects of the frequentist approach and decision

theory approach of sample size calculation for non-inferiority trials, thereby demonstrating

that the decision theory approach is more appropriate for sample size calculation of non-

inferiority trials.

Methods

The frequentist approach and decision theory approach of sample size calculation for non-

inferiority trials are compared and applied to a case of a non-inferiority trial on individually

tailored duration of elastic compression stocking therapy compared to two years elastic

compression stocking therapy for the prevention of post thrombotic syndrome after deep

vein thrombosis.

Results

The two approaches differ substantially in conceptual background, analytical approach, and

input requirements. The sample size calculated according to the frequentist approach

yielded 788 patients, using a power of 80% and a one-sided significance level of 5%. The

decision theory approach indicated that the optimal sample size was 500 patients, with a

net value of €92 million.
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Conclusions

This study demonstrates and explains the differences between the classic frequentist ap-

proach and the decision theory approach of sample size calculation for non-inferiority trials.

We argue that the decision theory approach of sample size estimation is most suitable for

sample size calculation of non-inferiority trials.

Introduction
Non-inferiority trials that evaluate whether a new therapy is not inferior to the standard thera-
py, are becoming more common in the last two decades.[1,2] An important reason for con-
ducting a non-inferiority trial is when a new therapy is expected to have advantages over the
standard therapy, other than the main therapeutic effect.[3] For example, the new therapy is
expected to save costs or lead to less side effects or complications. In the traditional frequentist
approach of sample size calculation for non-inferiority trials, the costs and health conse-
quences, beyond the main therapeutic effect, are not taken into consideration.[4] In this paper
we argue and illustrate, using an exemplifying case study, that decision theory may provide a
more comprehensive, and hence more appropriate, approach to sample size calculation for
non-inferiority trials.

As described in literature by Schumi et al. and Laster et al. non-inferiority trials aim to show
that the new therapy is ‘not unacceptably worse’ or ‘at least as good as’ the standard therapy,
with respect to the main therapeutic outcome.[3,5] It is not possible to prove equivalence of
two therapies, as the null hypothesis of no difference is impossible to prove.[6] Blackwelder de-
veloped a one-sided significance test to assess whether the loss of therapeutic efficacy of the
new therapy compared to the standard therapy is not more than a prespecified clinically ac-
cepted amount (Fig 1, panel A). This prespecified maximal accepted loss of therapeutic effect is
called the non-inferiority margin (δ).[6] If the loss of therapeutic effect of the new therapy
compared to the standard therapy does not exceed the non-inferiority margin, the new therapy
is considered non-inferior to the standard therapy.[3] The sample size of a non-inferiority trial
is calculated based on the non-inferiority margin, the intended power, and the significance
level.[4,6] Conceptually, it is calculated what sample size is needed to prove, with statistical sig-
nificance and a certain power, that the loss of therapeutic effect of the new therapy compared
to the standard therapy is not larger than what is deemed maximally acceptable. An accepted
difference in main therapeutic effect, the non-inferiority margin, is introduced in order to

Fig 1. Formula Box 1.

doi:10.1371/journal.pone.0130531.g001
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enable testing for statistical significance. Although guidelines exist on the choice of the non-in-
feriority margin, the choice of the margin remains arbitrary.[3,7,8]

Another approach of sample size calculation finds its origin in decision theory. In health care
decision making two distinct but related decisions are made: whether or not to adopt a new ther-
apy, and whether or not to do further research to obtain additional information.[9] In these de-
cisions not only the main therapeutic effect, but also costs and other health consequences (such
as complications, side effects and the quality of life impact associated with these health out-
comes) are taken into account. The health outcomes are usually summarized in quality adjusted
life years (QALYs). The expected costs and QALYs of each therapy are expressed in net mone-
tary benefits (NMB). The therapy with the highest expected NMB should be adopted. Uncer-
tainty surrounding the expected NMB can result in wrongful decisions and, thus, benefits
forgone. Obtaining additional information can reduce uncertainty, increasing the probability of
making the right decision on adoption of the new therapy.[10] The maximum value that can be
ascribed to the additional information (i.e. value of information) can be compared to the costs
of acquiring additional information, for example trial costs. This information can be used to es-
timate the optimal sample size of a trial (expected value of sampling information; EVSI).[9] The
costs of acquiring additional information can be subtracted from the EVSI to obtain the value of
a trial (i.e. expected net benefit of sampling; ENBS). Hence, the EVSI and ENBS analyses can be
performed to determine the optimal sample size. Conceptually, it is calculated at what sample
size the difference between the costs of acquiring additional information and the value of the ad-
ditional information is maximum.[11–14] Several studies applied the decision theory approach
to a health care decision problem.[15–23] These studies all focused on superiority trails. In our
opinion, the decision theory approach of sample size estimation will be even more valuable for
non-inferiority trials, because in the decision theory approach not only the main therapeutic ef-
fect, but also costs and other health consequences are taken into account. In non-inferiority tri-
als, it often is the latter in which the new therapy is supposed to make a difference, as the main
therapeutic effect is expected to be at least as good as or not unacceptably worse.

The aim of this study is to demonstrate that the decision theory approach of sample size cal-
culation is more appropriate for non-inferiority trials than the frequentist approach of sample
size calculation. To this end, the conceptual as well as the practical aspects of both approaches
are compared and both approaches are applied to a case. Furthermore, we aim to initiate dis-
cussion on this topic of sample size calculation for clinical trials, because there is need
for innovation.

Materials and Methods

Frequentist approach
The sample size needed to prove non-inferiority of a new therapy was calculated using the for-
mula shown in Fig 1, panel B. The non-inferiority margin, success proportion of the standard
therapy and the new therapy, and the intended significance level (α) and power (1 - β) of the
trial were specified, subsequently the sample size was calculated.[4,6]

Decision theory approach
Health economic decision modeling can be used to assess the relevant effects and costs of a
new therapy against its comparator over time. Whether or not to adopt a new therapy depends
on the health effects and the costs of the new therapy. A health care decision model can be used
to estimate the costs and health effects of the therapy alternatives j, given uncertain parameters
represented as vector θ (Fig 2, panel A).[24] Every value of the uncertain parameters θ, gives
different costs (C(j, θ)) and health outcomes (H(j, θ)). The expected NMB is the difference in
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health outcomes of the different therapy alternatives times the threshold (amount of money so-
ciety is willing to pay for additional health outcomes λ), minus the difference in costs (Fig 2,
panel B). The therapy with the highest NMB, is the therapy of choice (j�). Obtaining new infor-
mation can reduce the uncertainty on some or all uncertain parameters θnew. When perfect in-
formation would be available (no uncertainty) on all parameters, the right decision would
always be made and the therapy with the highest NMB would always be chosen. Thus, the
value of having perfect information on θnew, is the amount of money that could be saved if the
therapy with the highest NMB is always chosen. This is called the expected value of perfect in-
formation per patient (EVPI) (Fig 2, panel C).[10] The number of patients that is affected by
the decision to adopt the new therapy over the lifetime of the new therapy is called the effective
population, represented as p. The effective population is used to calculate the EVPI for the
whole population involved (Fig 2, panel D). Further research usually cannot address all uncer-
tainty as studies obtain information on only one or a few uncertain parameters. Therefore, it is
useful to calculate the expected value of perfect information on a certain parameter or a certain

Fig 2. Formula Box 2.

doi:10.1371/journal.pone.0130531.g002
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group of parameters (θnew = (φ,ψ)), the expected value of perfect parameter information
(EVPPI) (Fig 2, panel E and F). Studies will have to be performed to obtain additional informa-
tion, represented as X, on a parameter or a group of parameters. After obtaining additional in-
formation X on parameters θ, the posterior probability distribution of θ will have smaller
confidence intervals. The more the reduction in uncertainty is, the higher the value of the addi-
tional information. It is possible to calculate the expected value of information for different
samples sizes of a study. This is called the expected value of sampling information (EVSI) (Fig
2, panel G and H).[10] Performing studies costs money: C(X). Therefore, the net gain of ob-
taining additional information is the expected value of sampling information minus the costs
made. This is called the expected net benefit of sampling (ENBS) (Fig 2, panel I).[12]

To estimate the optimal sample size according to the decision theory approach, a health eco-
nomic decision model was build and EVSI analyses were performed. For different sample sizes,
possible trial results were simulated multiple times, using Monte Carlo simulation. According
to Bayesian methods, model parameters were updated with the simulated trial results, and an
updated EVPI per patient was calculated. To calculate the updated population EVPI, the sam-
ple size of the trial was subtracted from the effective population, because the patients partici-
pating in the trial do not benefit from the additional information obtained in the trial. The
EVSI is the prior population EVPI (before update with simulated trial results) minus the up-
dated population EVPI. The EVSI was calculated for different sample sizes.[9] Costs of the trial
were defined and subsequently the ENBS was calculated to assess for which sample size the net
gain was optimal. Sensitivity analyses were performed to explore the effect of changes in the
size of the effective population on the EVSI and ENBS results.

In Table 1 the most essential differences between the frequentist approach and the decision
theory approach of sample size calculation for non-inferiority trials are described.

Case description
Twenty to fifty percent of the patients who suffer from a DVT of the leg, develop PTS.[25,26]
Patients with PTS have complaints of the leg that was affected by the DVT; for example pain,
heaviness, cramps, tingling, itching, and in severe cases ulceration of the leg.[25,26] Patients
with mild to moderate PTS report a quality of life that is lower than contemporaries with ar-
thritis, chronic lung disease, hearing impairment, or diabetes. Patients with severe PTS report a
quality of life that is comparable to patients with angina, cancer, or congestive heart failure.
[27] The healthcare costs of PTS were found to be $7000 per patient per year, in a retrospective
study in the USA on administrative claim data of patients after DVT.[28] There is no effective
treatment for PTS, and prevention remains the cornerstone for disease management. Two
large randomized controlled trials (RCT) showed a relative risk reduction in PTS of approxi-
mately 50% when patients wore elastic compression stockings (ECS) for a period of two years
after DVT.[25,26] ECS are not very costly, roughly 100 euro per patient per year. However, the
incidence of DVT is substantial. Every year, 25.000 patients develop PTS in the Netherlands
[29], and around 7.5% [30] of the patients need home care to apply and take off the stockings
(€ 10.000 euro per patient per year [31]). As a result, in the Netherlands the total annual impact
on the health care budget amounts to approximately 23.5 million euro. Besides the cost issue,
compliance is a major problem of ECS therapy. Patients do not wear the stocking because it is
warm, itching, and pinching. Elderly patients are restricted in their freedom of movement be-
cause they have to wait at home until the nurse arrives to apply or take off their stocking. In the
end, more than 50% of patients do not develop PTS.[32] A new strategy of ECS therapy is to
tailor the duration of therapy on the signs and symptoms of PTS of the individual patient, after
the first six months of therapy. In a management study including 125 patients, this approach
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Table 1. Conceptual and practical aspects of the frequentist and the decision theory approach of sample size estimation for non-inferiority trials.

Characteristics Frequentist approach Decision theory approach

Aim Determine what the sample size of a
future trial should be to prove, with
statistical significance and a certain
power, that the loss of therapeutic

effect of the new therapy compared to
the standard therapy is less than the

non-inferiority margin.

Determine at what sample size of a future trial the difference between
the costs of acquiring additional information and the societal value of

the additional information is maximum.

Analytical approach Formula EVSI and ENBS analyses using a probabilistic health economic
decision model

Parameters In? Parameter estimate REF In? Parameter estimate REF

Main therapeutic outcome

Success proportion standard
therapy

Yes 23.3%* [26] Yes 21.1% (SE 0.0429), 22.2% (SE 0.0431), 24.5% (SE
0.0454)#

[26]

Success proportion new
therapy

Yes Equal to success
proportion standard
therapy

[33] Yes Success proportion standard therapy x Relative risk
parameter

[33]

One-sided significance level Yes 5% No

Power Yes 80% No

Difference main therapeutic
effect

Non-inferiority margin Yes 7.5% [26,33]
e.o.

No

Relative risk parameter No Yes 1.000 (95% CI 1.000–3.316) [26,33]
e.o.

Costs and other health
consequences

Resource use associated with
treatment and consequences

No Yes Estimates of resource use (stockings, homecare for
application of stockings, treatment of PTS)&

[30,46–
48]

Unit prices No Yes Unit prices of resource use & [49]

Quality of life consequences No Yes Post DVT no PTS: age dependent norm utility, disutility
mild to moderate PTS: 0.117 (SE 0.050), disutility severe
PTS: 0.218 (SE 0.040)&

[50,51]

Time horizon Yes 2 years [26] Yes Lifetime [52]

Discount rate No Yes Costs: 0.04, effects: 0.015 [38]

Threshold for a unit of effect No Yes € 20,000 per QALY [39]

Value for society

Costs of research No Yes € 10,000 fixed, € 5000 per included patient e.o.

Lifetime new therapy No Yes 10 years e.o.

Annual incidence No Yes 25,000 patients [29]

Sample size 788 500

*ARR PTS after 2 years,
#Cumulative incidence PTS after 6, 12, and 24 months respectively,
&For details see appendix.

ARR, absolute risk reduction; ENBS, expected net benefit of sampling; e.o., expert opinion; EVSI, expected value of sampling information; PTS, post

thrombotic syndrome; QALY, quality adjusted life year.

doi:10.1371/journal.pone.0130531.t001
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was safe and effective, as the incidence of PTS was comparable to the PTS incidence in the ac-
tive arm of the two previous RCTs.[33] In addition, approximately 50% of patients could safely
take off the stocking after 6 months.[33] This strategy appears to be safe and potentially cost
saving. However, to confirm the results of the management study, a randomized non-inferiori-
ty trial should be performed to assess whether individually tailored ECS therapy is not inferior
to two years ECS therapy, in preventing PTS.[34]

Results

Frequentist approach
The non-inferiority margin was based on the proportion of therapeutic effect of the active con-
trol that should be retained.[8] In this case the active control was two years ECS therapy. The
therapeutic effect of the active control was derived from an RCT comparing two years ECS
therapy versus no ECS therapy, for the prevention of PTS, performed by Prandoni et al. This
study found an absolute risk reduction of 23.3% of PTS at two years after DVT.[26] The non-
inferiority margin was set at 7,5% in order for individually tailored ECS therapy (the new thera-
py) to preserve approximately 70% of the therapeutic effect of the active control. It is customar-
ily accepted in non-inferiority trials to preserve at least 50–70% of the therapeutic effect of the
active control.[35–37] Based on the management study, it was hypothesized that individually
tailored ECS therapy would have an equal success proportion as two years ECS therapy.[33] At
a one sided significance level of 5% and a power of 80%, a sample size of 788 needed to test the
hypothesis was calculated. (Fig 3, Table 1).

Decision theory approach
A probabilistic state transition health economic decision model was developed to assess the
lifetime costs and health consequences (the main therapeutic effect, complications, side effects,
and the quality of life impact associated with these health outcomes) of individually tailored
ECS therapy versus two years ECS therapy in patients after DVT. The decision model consisted
of four health states: No PTS, Mild to moderate PTS, Severe PTS, and Death. The difference be-
tween the two therapies was modeled by taking into account the differential impact on the
probability of developing PTS, the costs of ECS therapy (for stockings and home care for stock-
ing application), and the disutility of ECS therapy. Cycle length was 6 months for the first two
cycles, and 1 year for the cycles thereafter. Cohort simulation was used to evaluate the decision
model. Future costs and effects were discounted using a discount rate of 4% for costs and 1.5%
for (quality adjusted) life years, in concordance with Dutch guidelines.[38]

Fig 3. Calculations Box 1.

doi:10.1371/journal.pone.0130531.g003
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In the decision model, PTS incidence was hypothesized to be equal for both therapies. This
assumption was based on the management study.[33] The transition probabilities for develop-
ing PTS in the two years after DVT were derived from the RCT by Prandoni et al. for both ther-
apies.[26]

A relative risk (RR) parameter was incorporated in the decision model to represent the un-
certainty of the development of PTS with individually tailored ECS therapy. A log normal dis-
tribution, with a mean of 1.000 and 95% confidence intervals (CI) ranging between 1.000 and
3.316 (the standard error of the LN(RR) is 0.612) is used. The RR parameter is multiplied with
the probabilities of developing PTS after six months with individually tailored ECS therapy.
The upper limit of the 95% CI corresponds with a 7.5% increase in the two year PTS incidence,
representing the expected maximal increase in PTS incidence with individually tailored ECS
therapy. Values of the parameter below 1 are rounded up to 1, because we assume that individ-
ually tailored ECS therapy does not lead to a decrease in PTS incidence. The RR parameter is
based on the same evidence as the non-inferiority margin of the frequentist approach. Howev-
er, it represents the uncertainty of developing PTS with individually tailored ECS therapy,
which is conceptually different from the non-inferiority margin. The decision model was built
in Microsoft Excel 2010. (For more details on the decision model construction, see the
Appendix.)

EVPI and EVPPI were calculated for an effective population of 25,000 patients, the yearly
incidence of DVT in the Netherlands [29], and a lifetime of individually tailored ECS therapy
of 10 years. The threshold was set at € 20,000 per QALY.[39] The EVSI of a non-inferiority
trial comparing individually tailored ECS therapy with two years ECS therapy for the preven-
tion of PTS, was calculated for different sample sizes (n = 25, n = 100, n = 400, n = 500,
n = 700, n = 1000, n = 1500, n = 5000). The model parameters concerning the development of
PTS with both individually tailored ECS therapy and two years ECS therapy, and the relative
risk parameter were updated with the simulated trial results. Two hundred possible trial results
were simulated using Monte Carlo simulation with 1000 iterations. For the trial we assumed a
fixed cost of € 10.000,- and a variable cost of € 5000,- per included patient.

Based on current evidence the total expected lifetime costs were € 14,400 (95%CI 5,700–
28,100) for two years ECS therapy and € 14,300 (95%CI 5,500–28,100) for individually tailored
ECS therapy. The lifetime health outcomes yielded 12.50 (95%CI 11.70–13.29) QALY and
12.49 (95%CI 11.63–13.30) QALY, respectively. The differences in health outcomes and costs
are small according to these analyses. Since there is a large amount of uncertainty it is worth-
while to perform a trial. The uncertainty surrounding the cost-effectiveness of individually tai-
lored ECS therapy versus two years ECS therapy resulted in an EVPI of € 600 per patient, and
the population EVPI was found to be € 122 million (Fig 4). The partial EVPI was highest for
the uncertainty of the parameters concerning the incidence of PTS when applying individually
tailored ECS therapy, EVPPI of € 117 million (Fig 4). The EVSI increased with an increasing
sample size. However, from a sample size of 500 patients the EVSI was found to remain stable
around € 94.5 million (Fig 4). The optimal sample size was found to be 500 patients (Table 1),
as the ENBS reached its maximum (€ 92 million) for 500 patients (Fig 4). The sensitivity analy-
sis revealed that the optimal sample size remained to be 500 patients for effective populations
of 10,000 and 40,000, with ENBS of € 35,5 million and € 150,- million, respectively.

Discussion
The aim of this study was to compare the conceptual and practical aspects of the frequentist ap-
proach and decision theory approach of sample size calculation for non-inferiority trials, there-
by demonstrating that the decision theory approach is more appropriate for sample size
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calculation of non-inferiority trials. The approaches differ with respect to conceptual back-
ground, analytical approach, and input requirements. The application to the case revealed that
the sample size of a non-inferiority trial comparing individually tailored ECS therapy with two
years ECS therapy for the prevention of PTS after DVT was 788 patients according to the fre-
quentist approach and 500 patients according to the decision theory approach.

With regard to the conceptual background, the two approaches take a distinctly different
point of view. While according to the frequentist approach the sample size that is necessary to
prove non-inferiority with statistical significance is calculated, in the decision theory approach
it is calculated for what sample size value of information is optimal. A number of differences in
analytical approach and input requirements result from this difference in
conceptual background.

There are several differences in the analytical approach. Firstly, there is a difference in the
type of statistics employed to analyse the trial data. As the sample size calculation according to
the frequentist approach is based on frequentist statistics; after completion of the trial the data
will be analysed using frequentist statistics. In the decision theory approach a probabilistic
health economic decision model is used for the sample size calculation, and consequently after
completion of the trial the data will need to be analysed with a probabilistic health economic
decision model. Although outcomes in health economic decision modelling are mainly com-
posite outcomes, it is also possible to derive singular outcomes, such as the main therapeutic ef-
fect, from the analyses. Furthermore, it is also possible to exclude costs from the analyses of
composite outcomes.[40] However, analyses of composite outcomes including all relevant pa-
rameters are usually more informative. Secondly, the two approaches include the (difference
in) main therapeutic effect between the two therapies in a different manner. In the frequentist
approach, a pre-specified maximal accepted therapeutic effect loss is introduced to enable sta-
tistical testing. In the decision theory approach, a parameter indicating the uncertainty on the

Fig 4. Results Value of information analyses. A)EVPI, B)EVPPI, C)EVSI and ENBS.

doi:10.1371/journal.pone.0130531.g004

Sample Size Estimation for Non-Inferiority Trials

PLOS ONE | DOI:10.1371/journal.pone.0130531 June 15, 2015 9 / 14



difference in main therapeutic outcome between the two therapies is applied. In our opinion,
the method used in the decision theory approach is the better way of taking into account the
expected difference in main therapeutic effect. Rather than a fixed difference, an estimate with
assigned distribution is used, which yields a more accurate reflection of the uncertainty associ-
ated with the difference in main therapeutic outcome between the two therapies. Thirdly, the
approaches deal differently with the uncertainty present. The frequentist approach includes the
point estimate of the main therapeutic outcome, and uncertainty is reflected by the one-sided
significance level and power. In order to reflect uncertainty in the decision theory approach,
distributions are assigned to all estimates of the parameter to model the main therapeutic out-
come. We feel estimates with accompanying distributions give a more genuine representation
of the uncertainty, as they describe the boundaries within which the true value lies based on all
current evidence.

Input requirements differ distinctively between the two approaches. Firstly, costs and health
consequences, other than the main therapeutic effect, are typically not included in the frequen-
tist approach of sample size calculation. Consequently, the frequentist sample size of non-infe-
riority trials can be underpowered to show a difference in the costs and other health
consequences. In the decision theory approach of sample size calculation these costs and other
health consequences are taken into account. Secondly, aspects of patient preferences are in-
cluded in the decision theory approach of sample size calculation by inclusion of quality of life
consequences associated with health states and therapies.[41] It is increasingly advocated to in-
corporate patient preferences in clinical guidelines and healthcare policy decisions.[41,42] In
the frequentist approach of sample size estimation, aspects of patient preferences can only be
included to the extent that this is reflected in the main therapeutic outcome. Therefore, only if
a patient reported outcome (for example generic quality of life) is the main therapeutic out-
come measure, patient preferences are involved. However, most clinical trials have clinical ef-
fect estimates (survival, recurrence) as the main therapeutic outcome.

Thirdly, the value of research for society is incorporated in the decision theory approach
and not in the frequentist approach. Performing a clinical trial is a large investment of, usually,
limited public financial resources. Researchers are obliged to use these financial resources sen-
sibly, by prioritizing research activities and designing clinical trials conscientiously. The deci-
sion theory approach of sample size calculation is based on the economic principles of resource
allocation, and therefore forms a framework of decision making based on the costs and conse-
quences of all factors and consequences involved. Moreover, it appears unethical to expose pa-
tients to randomisation in a clinical trial that has not clearly assessed its future value for society
a priori.

The decision theory approach of sample size calculation is far from implemented regularly
in clinical research. The frequentist approach remains the most used and therefore most ac-
cepted method of sample size calculation for non-inferiority trials. A true paradigm shift is
needed to allow for the universal implementation of the decision theory approach. The reality
is that scientists today are condemned to participate in competitive grant writing rounds and
are judged by citation rates and impact factors, and are thereby chained to adhere to what is
most accepted, in order to get their work funded or published. This hampers innovation
and progress.

Besides a change in mind-set, some more practical issues demand attention before universal
implementation of the decision theory approach can occur. The presumed lack of acceptability
of the decision theory approach may result from a number of factors. Firstly, a probabilistic
health economic decision model needs to be developed and comprehensive analyses need to be
performed for the sample size calculation according to the decision theory approach. This is far
more time-consuming than the frequentist sample size calculation. However, the time used to
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consult the existing literature to estimate all model parameters (i.e. treatment effects, costs of
treatment, health consequences, trial costs) and their distributions seems an appropriate in-
vestment in the planning of, often very costly, RCTs. Moreover, the decision model built can be
used for (cost-effectiveness) analyses at a later stage. Secondly, the technical quality of the
model, as well as the appropriateness of the model structure, data sources, assumptions, and
uncertainty incorporated in the model, influence the validity of the model, and hence the sam-
ple size calculation.[43] It is crucial that the decision model is transparent and thoroughly vali-
dated. For a thorough validation of the model, several forms of validation should be addressed.
1) Face validity: clinical experts in the field should judge whether the model structure, data
sources, problem formulation, and results fit in with the current science and evidence. 2) Inter-
nal validity: the mathematical calculations and consistency of the model should be checked and
assessed, by i.e. elaborate verifications and sensitivity analyses. 3) Cross-validation: whenever
possible the model should be compared to other models which are designed to answer the
same question. 4&5) External validation and predictive validity: if feasible the results of the
model should be compared to real-world data, for example the results of a clinical trial.[43]
The field made efforts to harmonize the methods used in cost-effectiveness modelling by mak-
ing guidelines for validation.[43,44] Of course, assumptions regarding for instance the non-in-
feriority margin, also influence the sample size estimation in the frequentist approach.
However, as the decision theory approach uses much more inputs, the validity may be more
easily violated, if only in perception. If so-called reference models for distinct disease areas
would become freely available to researchers, this could eliminate these drawbacks. Finally, a
disadvantage of the decision theory approach is that it is necessary to define a threshold: the
maximum amount society is willing to pay for additional health outcomes, usually expressed in
QALYs. Such a threshold is much-debated, and defining this threshold is not straightforward.
[45] It does however assist transparent health care policy decision making.

Despite these practical drawbacks, we argue that for non-inferiority trials the decision theo-
ry approach of sample size estimation is more appropriate than the classic frequentist ap-
proach, and we hope to initiate discussion on this important topic.
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