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Inhibitory neurotransmission plays a fundamental role in the central nervous

system, with about 30–50% of synaptic connections being inhibitory.

The action of both inhibitory neurotransmitter, gamma-aminobutyric-acid

(GABA) and glycine, mainly relies on the intracellular Cl− concentration in

neurons. This is set by the interplay of the cation chloride cotransporters

NKCC1 (Na+, K+, Cl− cotransporter), a main Cl− uptake transporter, and

KCC2 (K+, Cl− cotransporter), the principle Cl− extruder in neurons.

Accordingly, their dysfunction is associated with severe neurological,

psychiatric, and neurodegenerative disorders. This has triggered great interest

in understanding their regulation, with a strong focus on phosphorylation.

Recent structural data by cryogenic electron microscopy provide the

unique possibility to gain insight into the action of these phosphorylations.

Interestingly, in KCC2, six out of ten (60%) known regulatory phospho-sites

reside within a region of 134 amino acid residues (12% of the total residues)

between helices α8 and α9 that lacks fixed or ordered three-dimensional

structures. It thus represents a so-called intrinsically disordered region. Two

further phospho-sites, Tyr903 and Thr906, are also located in a disordered

region between the ß8 strand and the α8 helix. We make the case that

especially the disordered region between helices α8 and α9 acts as a platform

to integrate different signaling pathways and simultaneously constitute a

flexible, highly dynamic linker that can survey a wide variety of distinct

conformations. As each conformation can have distinct binding affinities and

specificity properties, this enables regulation of [Cl−]i and thus the ionic driving

force in a history-dependent way. This region might thus act as a molecular

processor underlying the well described phenomenon of ionic plasticity that

has been ascribed to inhibitory neurotransmission. Finally, it might explain the

stunning long-range effects of mutations on phospho-sites in KCC2.
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CCC, structure, phosphorylation, conformational changes, synaptic inhibition,
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cotransporter, GABA, gamma-aminobutyric acid, TM, transmembrane domain.
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Introduction

Information transfer in the brain requires a homeostatic
control of neuronal firing rate (Turrigiano and Nelson, 2004;
Eichler and Meier, 2008). Therefore, a functional balance
between excitatory and inhibitory synapses (E-I balance) is
established during development and maintained throughout
life (Turrigiano and Nelson, 2004; Eichler and Meier, 2008).
Excitatory synaptic transmission is mainly mediated through
glutamatergic synapses and inhibitory synaptic transmission by
GABAergic and glycinergic signaling (Eichler and Meier, 2008).
The inhibitory neurotransmitters GABA (gamma aminobutyric
acid) and glycine mainly bind to ionotropic GABAA and glycine
receptors (GABAAR and GlyR), correspondingly (Bormann
et al., 1987). GABA is the main inhibitory neurotransmitter
in both the brain and spinal cord, since GABAAR are widely
expressed in these tissues [reviewed in Möhler (2006)]. Glycine
is mainly present in the brainstem and spinal cord, where it
acts on a variety of neurons involved in motor and sensory
function [reviewed in Rahmati et al. (2018)]. In mature neurons,
the binding of the inhibitory neurotransmitters results in Cl−

influx due to a low intracellular Cl− ([Cl−]i.) concentration
and thus to hyperpolarizing inhibitory post-synaptic potentials
(Figure 1). In contrast, in immature neurons, binding of
GABA and glycine to their respective ionotropic receptors
leads to an efflux of Cl− due to a high [Cl−]i (Cherubini
et al., 1990, 1991; Luhmann and Prince, 1991; Zhang et al.,
1991; Ehrlich et al., 1999; Ben-Ari et al., 2007; Rahmati et al.,
2018; Figure 1). This results in a depolarizing action. The
developmental shift from depolarization to hyperpolarization
(D/H shift) occurs during early postnatal life (Blaesse et al.,
2009; Kaila et al., 2014) and is present throughout the nervous
system (e.g., cortex, hippocampus, hypothalamus, brainstem,
and spinal cord) (Ben-Ari et al., 1983; Cherubini et al., 1990;
Luhmann and Prince, 1991; Wu et al., 1992; Kandler and Friauf,
1995; Owens et al., 1996; Rohrbough and Spitzer, 1996; Ehrlich
et al., 1999). However, the timing of the D/H shift can differ
between species such as precocial (e.g., guinea pig, prenatal
D/H shift) and altricial (e.g., rat and mice, postnatal D/H shift)
species (Rivera et al., 1999). Furthermore, even within a species,
timing differences exist between different neuronal populations
(Löhrke et al., 2005).

Important players to regulate the D/H shift are the
secondary active membrane transporters NKCC1 (sodium
potassium chloride cotransporter 1) and KCC2 (potassium
chloride cotransporter 2) (Delpire, 2000; Payne et al., 2003;
Moore et al., 2017; Virtanen et al., 2021). Both transporters
mediate the Cl− coupled transport of K+ with or without Na+

across the plasma membrane. In immature neurons, NKCC1
is one of the main Cl− uptake transporter, maintaining a
high [Cl−]i. (Figure 1; Sung et al., 2000; Ikeda et al., 2004;
Dzhala et al., 2005; Achilles et al., 2007). In mature neurons,
KCC2 is the essential Cl− extruder that lowers [Cl−]i and

thus enables fast hyperpolarizing post-synaptic inhibition due
to Cl− influx (Kaila, 1994; Rivera et al., 1999). NKCC1 is
also expressed in mature neurons, but the mRNA expression
developmentally changes from a neuronal pattern at birth to
a glial pattern (esp. oligodendrocytes and their precursors,
endothelial cells, astrocytes and microglia) in adult mouse brain
(Hübner et al., 2001a; Su et al., 2001; Wang et al., 2003; Zhang
et al., 2014; Henneberger et al., 2020; Virtanen et al., 2020; Tóth
et al., 2022). In glia cells, NKCC1 regulates for instance the
proliferation and maturation of oligodendrocyte precursor cells
in the adult mouse cerebellar white mater (Zonouzi et al., 2015)
and modulates the microglial phenotype and inflammatory
response (Tóth et al., 2022).

The physiological relevance of NKCC1 and KCC2 is
corroborated by the phenotypes present in knock-out mice.
Mice with disruption of the gene Slc12a2 encoding both NKCC1
splice variants (NKCC1a and NKCCb) are viable, but suffer from
deafness, pain perception, and male infertility (Randall et al.,
1997; Delpire et al., 1999; Delpire and Mount, 2002). Mice with
disruption of the gene Slc12a5 that encodes both splice variants
of KCC2 (KCC2a and KCC2b) die shortly after birth due to
severe motor deficits that also affect respiration (Hübner et al.,
2001b; Uvarov et al., 2007).

Several other plasma membrane Cl− channels and
transporters are present to regulate Cl− homeostasis in neurons
[see review: (Rahmati et al., 2018)]. These include the voltage-
gated Cl− channels (e.g., ClC-1 to 3), Ca2+ activated Cl−

channels (TMEM16 family, anoctamins), the pH sensitive
Cl− channels and transporters of the SLC4 family [Na+-
independent Cl−/HCO3− exchangers (e.g., AE3) and Na+-
dependent Cl−/HCO3− exchangers (e.g., NCBE and NDCBE)],
and SLC26 family [e.g., anion exchange transporter (SLC26A7)
and sodium independent sulfate anion transporter (SLC26A11)]
and glutamate-activated Cl− channels (EAAT4) (Blaesse et al.,
2009; Rahmati et al., 2018; Kilb, 2020). In this review, we will
focus on the secondary active transporters NKCC1 and KCC2.

Ionic plasticity

Inhibitory neurotransmission mediated by GABAA or
glycine receptors is somewhat unique in that its function can
be relatively easily modified via changes to the ionic driving
force. In mature neurons, a low [Cl−]i results in ECl being
slightly hyperpolarized with respect to the neuronal resting
membrane potential Vrest (Figure 1). In P12 auditory neurons
of the lateral superior olive, for instance, [Cl−]i is 8 ± 5 mM,
and in cortical pyramidal neurons cultured for 21 days, it is
7.3 ± 0.2 mM (Balakrishnan et al., 2003; Zhu et al., 2005). In
such conditions, GABAA or glycine receptor activation results
in an inward Cl− gradient that reduces excitability by pulling
the membrane potential away from threshold. This decreases
the probability of action potential generation. However, even
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FIGURE 1

Depolarization/Hyperpolarization shift in inhibitory neurons (Left). In immature neurons, high transport activity of NKCC1 results in increased
[Cl–]i. Binding of the inhibitory neurotransmitter GABA to GABAA receptors results in Cl– outward currents and thus depolarization. Here, the
ECl− is more depolarized than the AP threshold (Right). In mature neurons, KCC2 activity is increased resulting in decreased [Cl–]i. Binding of the
inhibitory neurotransmitter GABA to its receptor results in Cl– inward currents and thus hyperpolarization. ECl− is here hyperpolarized according
to the resting membrane potential. AP: action potential; RMP: resting membrane potential. Green dots: GABA; red dots: Na+; purple dots: K+;
blue dots: Cl–. Figure modified from Moore et al. (2017).

relatively small increases in [Cl−]i will depolarize ECl toward
Vrest (Currin et al., 2020). This significantly reduces or even
eliminates hyperpolarizing inhibition thus affecting the input-
out function of neurons and modify or even degenerate
neuronal function (Currin et al., 2020). Computational models
of a mature CA1 pyramidal neuron revealed that shifting the
reversal potential of GABA (EGABA) by only ∼2.5 mM (∼
to 5 mV from −75 to −70 mV) results in an increase in
action potential firing by 39% (Saraga et al., 2008). Further
increase in Cl−can even invert the polarity of GABAA or
glycine receptor mediated currents from hyperpolarizing to
depolarizing. On the other hand, extraordinary decreases in
neuronal Cl− with functional relevance have also been observed.
Auditory neurons of the superior paraolivary nucleus possess
an extremely negative ECl, which increases the magnitude
of hyperpolarizing currents. This is required to trigger
hyperpolarization-activated non-specific cationic and T-type
calcium currents to promote rebound spiking to signal when a
sound ceases (Kopp-Scheinpflug et al., 2011).

Changes in the ionic driving force for Cl− have been
observed on different time scales. The developmental D/H shift
occurs on the long term and results in the general observation
of hyperpolarizing action of GABA or glycine in the mature
brain. More dynamic, short-term alterations have also been
reported (Woodin et al., 2003; Khirug et al., 2005; Lamsa et al.,
2010; Chamma et al., 2012; Doyon et al., 2016). These changes
often occur in a way that relates to the history of synaptic
activity. Coincident pre- and post-synaptic spiking results in
mature hippocampal neurons in a shift of EGABA toward more
positive values (Woodin et al., 2003; Ormond and Woodin,
2009). This change in [Cl−]i in the post-synaptic neurons was
synapse specific and dependent on KCC2 activity, as revealed
by furosemide application (Woodin et al., 2003). In immature
hippocampal neurons, coincident activity was reported to result
in both a hyperpolarized EGABA (Balena and Woodin, 2008) or
a depolarized EGABA (Xu et al., 2008). This difference might be
attributed to differences in the system used (cultured neurons
vs. hippocampal slices) or in the protocols. In both studies,
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pharmacological approaches related the change in EGABA to
changes in the activity of NKCC1.

These examples of short-term plasticity that involves
changes in the ionic driving force for post-synaptic ionotropic
receptors have been referred to as ionic plasticity (Rivera
et al., 2005) or ionic shift plasticity (Lamsa et al., 2010).
These changes are directly related to the history of activity at
inhibitory synapses and likely include rapid post-translational
modifications of NKCC1 and KCC2.

Perturbed [Cl−]i related diseases

The easy modification of the effect of GABA and
glycine via changes in the ionic driving force for Cl−

makes inhibitory neurotransmission prone to disease causing
alterations. Indeed, perturbation of [Cl−]i is associated with
a long and still growing list of neurological, psychiatric, and
neurodegenerative disorders including epilepsy, neuropathic
pain, spasticity, schizophrenia, autism spectrum disorder, brain
trauma, ischemic insults, Rett Syndrome and Parkinson‘s disease
(Rivera et al., 2002; Coull et al., 2003; Huberfeld et al., 2007;
Papp et al., 2008; Shulga et al., 2008; Boulenguez et al.,
2010; Kim et al., 2012; Kahle et al., 2014; Puskarjov et al.,
2014; Tyzio et al., 2014; Merner et al., 2015; Ben-Ari, 2017;
Pisella et al., 2019; Savardi et al., 2021). These disorders are
often associated with increased activity of NKCC1 and/or
decreased activity of KCC2 promoting GABAAR mediated
membrane depolarization and excitation (Figure 1; Kaila et al.,
2014; Mahadevan and Woodin, 2016; Ben-Ari, 2017; Moore
et al., 2017; Fukuda and Watanabe, 2019; Tillman and Zhang,
2019; Liu et al., 2020; Savardi et al., 2021). In patients with
temporal lobe epilepsy, a subset of neurons in the subiculum
in the hippocampus displayed depolarizing up to excitatory
GABAergic response that correlated with decreased KCC2
expression and upregulation of NKCC1 (Cohen et al., 2002;
Palma et al., 2006; Huberfeld et al., 2007; Muñoz et al., 2007;
Moore et al., 2017). Contradictory, recent finding in NKCC1
knock out mice showed that deletion of NKCC1 results in more
severe epileptic phenotype in the intrahippocampal kainate
mouse model of temporal lobe epilepsy (Hampel et al., 2021).
Thus, NKCC1 role in epilepsy is still not completely understood.

Concerning KCC2, several human pathogenic variants are
associated with epilepsy, schizophrenia, and autism spectrum
disorder (Figure 2). These include the heterozygous missense
mutations of Arg to His at positions 952 (Arg952His; numbering
according to KCC2b) and 1049 (Arg1049His) that are associated
with febrile seizures and/or idiopathic generalized seizure
and decreased KCC2 activity (Kahle et al., 2014; Puskarjov
et al., 2014; Merner et al., 2015). Substitution of Arg952His

was also found to be associated with schizophrenia (Merner
et al., 2015, 2016). In addition, three autosomal recessive
heterozygous mutations (Leu288His, Leu403Pro, and Gly528Asp)

were identified in children of two unrelated families, which
are associated with epilepsy of infancy with migrating focal
seizures (Stödberg et al., 2015). Two children had compound
heterozygous mutations of Leu403Pro and Gly528Asp and the
other child had a homozygous Leu288His mutation (Stödberg
et al., 2015). Leu403Pro and Gly528Asp both result in loss-of-
function and Leu288His decreases KCC2 activity (Stödberg et al.,
2015). Saitsu et al. (2016) also discovered six heterozygous
compound KCC2 variants (E50_Q93del, Ala191Val, Ser323Pro,
Met415Val, Trp318Ser, and Ser748del) that are associated with
this disorder (Saitsu et al., 2016). Analysis of E50_Q93del and
Met415Val revealed that each of the mutations strongly decreases
KCC2 activity, whereas Ala191Val and Ser323Pro moderately
impair KCC2 function. Co-transfection of E50_Q93del with
Ala191Val or Met415Val with Ser323Pro significantly decreases
KCC2 activity (Saitsu et al., 2016).

In schizophrenia, an enhanced NKCC1/KCC2 expression
ratio was shown to increase [Cl−]i (Arion and Lewis, 2011;
Hyde et al., 2011; Ben-Ari, 2017). Substitution of Arg952His is
associated with schizophrenia and results in decreased KCC2
activity (Figure 2; Merner et al., 2015). Additionally, the
human pathogenic NKCC1 variant Tyr199Cys, which enhances
its activity, is associated with this disorder (Figure 3; Merner
et al., 2016).

In autism spectrum disorder, downregulation of KCC2 and
upregulation of NKCC1 were observed in several brain regions
(Savardi et al., 2021). Application of bumetanide, a specific
NKCC inhibitor, markedly improves visual contact, sensory
behavior, rigidity and memory performance in preclinical trials
(Lemonnier and Ben-Ari, 2010; Lemonnier et al., 2012, 2017;
Hadjikhani et al., 2015, 2018). This suggests an association
of NKCC1 with autism spectrum disorder. This is supported
by two human pathogenic variants (Ala379Leu and Arg410Gln)
that are linked to this disorder and intellectual disabilities
(McNeill et al., 2020; Adadey et al., 2021). Both mutations
impair NKCC1 function (McNeill et al., 2020), indicating a
developmental defect. Unfortunately, bumetanide has a poor
blood-brain barrier permeability and two recent phase 3 clinical
trials using bumetanide in the treatment of ASD in children
and adults showed no effectiveness (Löscher and Kaila, 2021).
Concerning KCC2, three human pathogenic variants (Arg952His,
Arg1048Trp, and Arg1049Cys) have also been linked to it (Merner
et al., 2016). Both Arg952His and Arg1049Cys impair KCC2
function; functional data for Arg1048Trp are not yet available
(Kahle et al., 2014).

Several NKCC1 human pathogenic variants are furthermore
associated with multisystem dysfunction (Val1026F fs∗2), spastic
quadriparesis (His186fs17 frameshift mutant), spastic paraparesis
(Asn376Ile) and minor developmental delay (W892∗) (Delpire
et al., 2016; McNeill et al., 2020; Adadey et al., 2021). Finally,
NKCC1 exon 21 variants are linked to hearing impairment
(Glu979Lys, Glu980Val, Glu980Lys) and hearing loss (Asp981Tyr,
Pro988Ser, Pro988Thr, and 2930-2A > G) (Morgan et al., 2020;
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FIGURE 2

Structural organization of human KCC2. 2-dimensional (left) and 3-dimensional (right) organization of human KCC2 according to Chi X. et al.
(2020) (PDB: 6m23). KCC2 consists of 12 transmembrane domains (TMs) and two intracellular termini. A large extracellular loop is located
between transmembrane domains 5 and 6 (EL3) and five N-glycosylation sites (blue cubes, left). Phosphorylation sites that increase KCC2
activity upon dephosphorylation are marked as green stars (Thr6 in KCC2a, Thr906, Tyr903, Thr1007, Thr1009, and Tyr1087). Phosphorylation sites
that increase KCC2 activity upon phosphorylation are marked as blue stars (Ser932, Thr934, Ser937, Ser940). Human pathogenic variants of KCC2
associated with epilepsy, autism-spectrum disorder, and schizophrenia are depicted as red dots (Ala191Val, Leu311His, Trp318Ser, Ser323Pro,
Leu403Pro, Met415Val, Gly528Asp, Arg952His, Arg1048Trp, Arg1049C, Ser748del). Annotation of amino acid residues is according to human KCC2b. The
3D reconstruction of KCC2 was generated using cryo-EM (Chi X. et al., 2020). 3D visualization was performed using Mol* Viewer in PDB (Sehnal
et al., 2021).

Mutai et al., 2020; Adadey et al., 2021; Koumangoye et al., 2021;
Vanniya et al., 2022). The mutation 2930-2A > G has an effect
on splicing leading to loss of exon 21 (Mutai et al., 2020). All of
these mutations impair NKCC1 function (Delpire et al., 2016;
McNeill et al., 2020; Mutai et al., 2020; Adadey et al., 2021). The
human pathogenic variants Ala327Val and Thr1144Asn outside
exon 21 are also associated with hearing impairment (McNeill
et al., 2020; Adadey et al., 2021). These sensory impairments,
however, rather reflects perturbed K+ recycling in the inner ear
than an imbalance in neurotransmission.

To sum up, dysregulation of NKCC1 and KCC2 result in an
imbalance of excitation/inhibition that is associated with several
neurological and psychiatric disorders.

Phospho-regulation of NKCCs and
KCCs

Modulation of Cl− extrusion constitute promising
new strategies for treating these debilitating diseases.
Phosphorylation has emerged as the major means to rapidly
and reversibly modulate intrinsic transport activity, cell surface

stability, and plasma membrane trafficking of NKCC1 and
KCC2 (Kahle et al., 2013). So far, four to five phospho-sites
with a regulatory effect on transport activity have been
identified in the N-terminus of NKCC1 (Thr203, Thr207,
Thr212, and Thr217 in human NKCC1; Thr175, Thr179, Thr184,
Thr189, and Thr202 in shark NKCC1) (Muzyamba et al., 1999;
Flemmer et al., 2002; Gagnon et al., 2006; Vitari et al., 2006;
Hartmann and Nothwang, 2014). For KCC2, the number of
regulatory phospho-sites that affect transport activity due
to (de)phosphorylation is even higher with one regulatory
phospho-site in the N-terminus (Thr6 in KCC2a) and nine
phospho-sites in the C-terminus (Tyr903, Thr906, Ser932, Thr934,
Ser937, Ser940, Thr1007, Thr1009, and Tyr1087) (Lee et al., 2007,
2010; Rinehart et al., 2009; Weber et al., 2014; Titz et al.,
2015; Markkanen et al., 2017; Cordshagen et al., 2018; Zhang
et al., 2020b). In addition, there are phospho-sites with no
detectable effect so far on KCC2 activity (N-terminus: Ser25,
Ser26, Ser31, Thr34 and C-terminus: Ser728, Thr787, Thr999,
Ser1022, Ser1025, Ser1026, Ser1034) or which have not yet been
functionally investigated (N-terminus: Thr32, Ser55, Ser60,
Thr69, and C-terminus: Ser913, Ser988) (Lee et al., 2007; de
Los Heros et al., 2014; Weber et al., 2014; Cordshagen et al.,
2018; Zhang et al., 2020b). The difference in the location of
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FIGURE 3

Structural organization of human NKCC1. 2-dimensional (left) and 3-dimensional (right) organization of human NKCC1 (A) according to Zhao
et al. (2022) (PDB: 7S1X). NKCC1 consists of 12 transmembrane domains (TMs) and two intracellular termini. A large extracellular loop is located
between transmembrane domains 7 and 8 (EL4). Phosphorylation sites that increase NKCC1 activity upon phosphorylation are marked as blue
stars (Thr203, Thr207, Thr212, and Thr217). Human pathogenic variants of NKCC1 associated with autism spectrum disorder, schizophrenia,
multisystem dysfunction, spastic quadriparesis, and hearing impairment are depicted as red dots in human NKCC1 (His186fs17, Tyr199Cys, Ala327Val,
Asn376Leu, Ala379Leu, Arg410Glu, Trp892∗, Gln979Lys, Asn981Tyr, Pro988Ser, Pro988Thr, Thr411Asn, 2930.2A > G, Val1026Ffs∗2). The 3D reconstruction of
NKCC1 was generated using cryo-EM (Zhao et al., 2022). 3D visualization was performed using Mol* Viewer in PDB (Sehnal et al., 2021).

the phospho-sites between NKCC1 (N-terminus) and KCC2
(C-terminus) might relate to the presence of an autoinhibitory
loop present in KCC2 (Chew et al., 2021; Zhang et al., 2021).
This loop occludes the translocation pathway and thus locks
the transporter in the inactive state (Zhang et al., 2021).
The outward-open conformation of the human NKCC1
displays no autoinhibitory loop (Figure 3; Zhao et al., 2022).
Although the presence of an auto-inhibitory loop in other
conformations cannot be excluded, the current data suggests
two distinct regulatory mechanisms in the N-terminus of CCC
subfamilies: post-translational modification in NKCC1 and an
autoinhibitory loop in KCC2 (Chew et al., 2021).

The high number of regulatory phospho-sites enables the
transporters to sample across a multitude of signaling pathways,
including with-no-lysine kinase (WNK) with their downstream
kinase targets STE20/SP1-related proline/alanine rich kinase
(SPAK) and oxidative stress response kinase (OSR1), protein
kinase C (PKC), Src-tyrosine kinases, brain type creatine kinases
and protein phosphatases (Liedtke et al., 2003; Korkhov et al.,
2004; Inoue et al., 2006; Gagnon and Delpire, 2013; de Los Heros
et al., 2014; Medina et al., 2014). The high number of phospho-
sites might reflect the multi-compartmental organization of
a neuron (e.g., soma vs. proximal vs. distal dendrites) and
the different states a neuron or a synapse can adopt (see
ionic plasticity). Future work should therefore aim to relate
individual phospho-sites to specific forms of ionic plasticity.

The increasing availability of mice with mutated phospho-sites
(Silayeva et al., 2015; Moore et al., 2018, 2019; Pisella et al., 2019)
will pave the avenue for such analyses.

WNK-SPAK/OSR1 mediated
phosphorylation of NKCC1 and
KCC2

Generally, phosphorylation of NKCC1 and
dephosphorylation of KCC2 increase transport activity.
The main mechanism that ensures reciprocal regulation is
WNK-SPAK/OSR1 dependent phosphorylation of specific
NKCC1 and KCC2 phospho-sites, thus activating NKCCs and
inactivating KCCs (Darman and Forbush, 2002; Vitari et al.,
2006; Richardson et al., 2008; Rinehart et al., 2009; Kahle et al.,
2013; Alessi et al., 2014a; Titz et al., 2015; Markkanen et al., 2017;
Zhang et al., 2020b). SPAK/OSR1, which is activated via WNK1,
phosphorylates Thr6 and Thr1007 of KCC2 (Rinehart et al., 2009;
de Los Heros et al., 2014; Conway et al., 2017; Heubl et al., 2017;
Markkanen et al., 2017; Moore et al., 2018). WNKs also interact
with a yet unknown kinase to phosphorylate Thr906 in the KCC2
C-terminus (de Los Heros et al., 2014; Conway et al., 2017). Site
directed mutagenesis of Thr6 of KCC2a or Thr906 and Thr1007

of KCC2 to alanine (mimicking the dephosphorylated state)
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FIGURE 4

Detailed view on the 3D structure of the KCC2 C-terminus (Left). Overall 3-dimensional organization of human KCC2 (Right). Detailed view of
the localization of phosphorylated Thr1007 and Thr1009. Dashed lines indicate missing density and thus lack of structural information. The 3D
reconstruction of KCC2 was generated using cryo-EM (Chi X. et al., 2020). 3D visualization was performed using Mol* Viewer in PDB (Sehnal
et al., 2021).

results in activation of KCC2 as shown in cultured hippocampal
neurons, cultured cortical neurons and slices, and HEK293 cells
(Rinehart et al., 2009; Inoue et al., 2012; Weber et al., 2014;
Friedel et al., 2015; Titz et al., 2015). The enhanced activation
via dephosphorylation of Thr906 and Thr1007 is accompanied by
an increase in cell surface expression in cultured hippocampal
neurons (Friedel et al., 2015). Enhanced phosphorylation
of Thr906 and Thr1007 increases in mature hippocampal
neurons membrane diffusion resulting in cluster dispersion and
enhanced membrane turnover (Heubl et al., 2017; Côme et al.,
2019). This indicates that dephosphorylation of these residues
increases KCC2 activity. WNK-SPAK/OSR1 mediates also the
phosphorylation of human NKCC1 Thr203, Thr207, Thr212,
and Thr217 resulting in enhanced NKCC1 activity (Darman
and Forbush, 2002; Dowd and Forbush, 2003; Moriguchi et al.,
2005; Vitari et al., 2006; Gagnon et al., 2007; Richardson and
Alessi, 2008; Geng et al., 2009; Thastrup et al., 2012; Alessi
et al., 2014b; Hartmann and Nothwang, 2014; Heubl et al., 2017;
Shekarabi et al., 2017). Thus, dephosphorylation (KCC2) and
phosphorylation (NKCC1) reciprocally decrease the activity of
the two Cl− cotransporters (Zhang et al., 2020b).

The reciprocal phosphorylation of NKCC1 and KCC2 by
the WNK-SPAK/OSR1-mediated pathway is involved in the

regulation of the development-dependent D/H shift. In neurons,
WNK1 phosphorylates SPAK at Ser373 and of OSR1 at Ser325,
thereby activating these kinases. This results in phosphorylation
of NKCC1 (activation) and KCC2 (inactivation) and thus their
reciprocal regulation (Vitari et al., 2005; Richardson and Alessi,
2008; de Los Heros et al., 2014; Moore et al., 2017; Zhang et al.,
2020a). The action of WNK1 developmentally decreases, since
phosphorylation of Ser382 in WNK1, and consequently of its
targets Ser373 in SPAK and Ser325 in OSR1, decreases over time
in cortical and hippocampal cultures (Friedel et al., 2015). This
causes reduced phosphorylation of Thr906 and Thr1007 in KCC2
(Rinehart et al., 2009; Friedel et al., 2015; Moore et al., 2017).
The developmental dependent dephosphorylation of Thr906

and Thr1007 activates KCC2 function, shifting EGABA to more
negative values (Friedel et al., 2015; Moore et al., 2017). This
was corroborated by a dominant-negative WNK1 mutant or by
genetic depletion of the kinase in immature neurons, as both
manipulations cause an early hyperpolarizing action of GABA
due to decreased phosphorylation of KCC2 Thr906 and Thr1007

(Friedel et al., 2015). Moreover, cultured hippocampal neurons
derived from a mouse model, in which Thr906 and Thr1007

were mutated to alanine (mimicking the dephosphorylated
state) show an accelerated D/H shift due to increased KCC2
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FIGURE 5

Putative conformational states of the intrinsically disordered regions between α8 and α9 helices in KCC2. Intrinsically disordered regions can
adopt a variety of conformational states. Beginning with the ground state 0, different physiological conditions (activity, pH, temperature) can
induce different conformational states (states 1 or 2). These conformational changes can result in occlusion (state 1) or deocclusion (state 2) of
phospho-sites to signaling pathways. Phosphorylation in the deoccluded state results subsequently in altered transport activity.

function (Moore et al., 2019). In contrast, Thr906E/Thr1007E

mice (mimicking phosphorylated states) showed a delayed
D/H shift in CA3 pyramidal neurons and hippocampal slices
(Pisella et al., 2019). These mice showed in addition long-
term abnormalities in social behavior, memory retention and
increased seizure susceptibility (Moore et al., 2019; Pisella et al.,
2019). These data support the notion that post-translational
regulation of KCC2 plays a central role in development-
dependent regulation in the D/H shift in the central nervous
system and that impairment of this regulatory mechanism
entails neurodevelopmental disorders (Pisella et al., 2019).

Reciprocal regulation of NKCC1 and KCC2 is important
not only in neuronal development but also in adult neurons.
Inhibition of GABAAR via gabazine in mature neurons increases

[Cl−]i. This activates WNK1 leading to phosphorylation of
Thr906/Thr1007 in KCC2 (inactivation) and phosphorylation
of Thr203/Thr207/Thr212 in NKCC1 (activation) (Heubl
et al., 2017). This is important for “auto-tuning” GABAergic
signaling via rapid regulation of KCC2-mediated Cl− extrusion
(Heubl et al., 2017).

Additional phosphorylation sites in
KCC2

The principle that phosphorylation increases the activity
of N(K)CCs and dephosphorylation that of KCCs is true
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for N(K)CCs and KCC1, KCC3, and KCC4. Phospho-
regulation in KCC2 is more complex since phosphorylation
and dephosphorylation can both enhance its activity.
Dephosphorylation of the following phospho-sites increases
KCC2 activity: Thr6 (present only in KCC2a) and Thr906,
Thr1007, Thr1009, and Tyr1087 (present in both splice variants)
(Figure 2). The mechanism leading to phosphorylated Thr6,
Thr906, and Thr1007 by WNK1 mediated signaling was already
described above. Dephosphorylation of the highly conserved
Tyr1087 residue increases cell surface stability (Lee et al., 2010)
and mutation of Tyr1087 to phenylalanine (mimicking the
dephosphorylated state) does not alter KCC2 activity (Strange
et al., 2000). In contrast, mutation of Tyr1087 into aspartate
(mimicking the phosphorylated state) abolishes KCC2 activity
(Strange et al., 2000; Akerman and Cline, 2006; Watanabe
et al., 2009; Pellegrino et al., 2011). This indicates that KCC2
is dephosphorylated at Tyr1087 under basal conditions and
that phosphorylation of this site decreases KCC2 activity. The
highly conserved Thr1009 is another site that results in increased
activity when dephosphorylated. Mutating this residue into
alanine (mimicking the dephosphorylated state) intrinsically
increases KCC2 activity without affecting cell surface expression
(Cordshagen et al., 2018). The Thr1009 phosphorylating kinase
has yet to be identified. Thus, several sites have been identified
where dephosphorylation increases KCC2 activity.

In contrast, phosphorylation of the following residues
activates KCC2: Ser932, Thr934, Ser937, and Ser940 (Figure 2).
These residues are all encoded by exon 22, which is only
present in KCC2 and non-therian KCC4 (Hartmann and
Nothwang, 2014). The most in-depth analyzed residue is Ser940,
which is phosphorylated via protein kinase C (PKC) and
dephosphorylated via protein phosphatase 1 (PP1) (Lee et al.,
2007, 2011). Phosphorylation of Ser940 increases cell surface
expression, transport activity, and membrane clustering of
KCC2 (Lee et al., 2007; Chamma et al., 2012), with most clusters
found at both excitatory and inhibitory synapses in hippocampal
cultures (Chamma et al., 2013; Côme et al., 2019). Accordingly,
dephosphorylation of Ser940 increases membrane diffusion
resulting in cluster dispersion and enhanced membrane
turnover of KCC2 (Chamma et al., 2013; Côme et al., 2019).
Consequently, its dephosphorylation inactivates KCC2 (Lee
et al., 2011). Mutation of Ser940 to alanine results in transport
activity that is equal or decreased compared to KCC2 wild type
activity (Lee et al., 2007; Silayeva et al., 2015; Titz et al., 2015).
These different outcomes likely reflect the different cellular
systems used for the analyses (HEK293 cells, neuronal cell
cultures, or knock-in mice) (Lee et al., 2007; Silayeva et al., 2015;
Titz et al., 2015).

During development, phosphorylation of Ser940 increases
concomitantly with KCC2 activity (Moore et al., 2019). Ser940Ala

knock-in mice show a delayed D/H shift, demonstrating
that not only dephosphorylation of Thr906 and Thr1007 is
important for the D/H shift, but also phosphorylation of

Ser940 (Moore et al., 2019). Notably, these mice suffer from
profound social interaction abnormalities (Moore et al., 2017,
2019). Furthermore, (de)phosphorylation of Ser940 is associated
with epilepsy. Induction of status epilepticus using kainate
causes dephosphorylation of Ser940 and internalization of KCC2
(Silayeva et al., 2015). This observation is supported by an
analysis of the two human KCC2 pathogenic variants Arg952His

and Arg1049Cys. Both variants are associated with idiopathic
generalized seizure and decreased Ser940 phosphorylation
(Kahle et al., 2014; Puskarjov et al., 2014; Silayeva et al., 2015).
Phosphorylation of Ser940 therefore could provide an approach
to limit the progress of status epilepticus (Silayeva et al., 2015).

In addition to Ser940, exon 22 encodes the phosphorylation
sites Ser932, Thr934, and Ser937. Mutation of any of these residues
to aspartate (mimicking the phosphorylated state) intrinsically
increases KCC2 activity in HEK293 cells without affecting cell
surface expression (Weber et al., 2014; Cordshagen et al., 2018).
Mutation into alanine (mimicking the dephosphorylated state)
has no effect in HEK293 cells (Weber et al., 2014; Cordshagen
et al., 2018). Thus, both dephosphorylation and phosphorylation
of specific phospho-sites can increase KCC2 activity. This
peculiarity provides KCC2 with a rich regulatory tool-box for
graded activity and integration of different signaling pathways
(Cordshagen et al., 2018).

Phosphorylation affects
conformation of NKCCs and KCCs

3D structure of the outward-open conformation of human
NKCC1 (Figure 3) reveals that the dimeric interface is formed
between the C-terminus and the N-terminal phosphoregulatory
element and the C-terminus and the TMs (Zhao et al., 2022).
These two domains define an allosteric interface that may
transmit the impact of (de)phosphorylation of N-terminal
phospho-sites, via the intervening C-terminal tail and the
intracellular loop 1 (ICL1) to affect ion translocation (Zhao
et al., 2022). Binding of kinases or phosphatases may form or
disrupt these domain interactions (Zhao et al., 2022). However,
FRET experiments in NKCC1 revealed that phosphorylation
within the N-terminus affects movement of the C-terminus
leading to a dissociation of the two monomers within the
dimer (Monette and Forbush, 2012). Cross-linking studies
support this conclusion. They showed that phosphorylation
of residues within the N-terminus affects the localization of
TM10 relative to TM12 thereby inducing movement of the
C-terminus and disruption of dimerization (Monette et al.,
2014; Zhang et al., 2021). Thus, phosphorylation of N-terminal
phospho-sites in NKCC1 may induce long-range distance effects
involving movement of the C-terminus. It is therefore an open
question whether (de)phosphorylation of N-terminal NKCC1
phospho-sites cause disengagement of the TMs as described in
the outward-facing cryo-EM of NKCC1 (Zhao et al., 2022) or
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dissociation of the C-terminal domains (Monette and Forbush,
2012; Monette et al., 2014; Zhang et al., 2021).

(De)phosphorylation dependent conformational differences
were also reported for KCC3. To examine the effect of
phosphorylation on structural organization, two different
KCC3 mutants were generated with triple substitutions of
Ser45, Thr940, and Thr997 by either aspartate (KCC3-PM)
or by alanine (KCC3-PKO). Analysis by cryo-EM revealed
that the “dephosphorylated” KCC3-PKO is more dynamic
in the scissor helix region and exhibits a greater rotational
flexibility of the C-terminal dimer (Chi G. et al., 2021). The
KCC3-PM mutant demonstrated more dynamic conformational
changes within the ß7 strand and in the α8 and α10
helices (Chi G. et al., 2021). Multiple conformations for
α7 were observed, in which the end of α7 moves 21◦

outward entailing conformational changes in the α7/ß6
loop (Chi G. et al., 2021). Cryo-EM identified also two
conformational states in KCC1, as α8 was observed either
above or below α10 (Chi G. et al., 2021). The first state
matches the structures of KCC3wt and KCC3-PM (Chi
G. et al., 2021). The second state is stabilized by polar
interactions with glutamate residues in α11 (Chi G. et al.,
2021). Thus, (de)phosphorylation of C-terminal phospho-sites
results in substantial conformational reorganizations within the
C-terminus in KCCs.

Notably, KCC2 Thr906 and Thr1007 correspond to the
investigated Thr940, and Thr997 amino acid residues in KCC3.
Both amino acid residues are bona fide phospho-sites of KCC2
and targets of the WNK-SPAK/OSR1 signaling pathway with
dephosphorylation resulting in increased transport activity
(Rinehart et al., 2009; Inoue et al., 2012; de Los Heros et al., 2014;
Titz et al., 2015; Markkanen et al., 2017). It is therefore tempting
to speculate that changes in their phosphorylation pattern alter
the C-terminal conformation of KCC2.

Intrinsically disordered regions of
KCC2 as processors for ionic
plasticity

The six KCC2 phosphorylation sites Ser932, Thr934, Ser937,
Ser940, Thr1007, and Thr1009, which form a tight cluster, all reside
in an intrinsically disordered region (IDR) between α8 and α9
helices according to the cryo-EM reconstruction of KCC2 (Chi
G. et al., 2021; Chi X. et al., 2021). The presence of six out
of ten (60%) known regulatory KCC2 phospho-sites within a
stretch of 134 amino acid residues (12% of the total residues,
Met919 to Ala1053 in hsKCC2b) (Figure 2) agrees well with
the general enrichment of post-translational modification sites
in such regions due to their increased surface area (Oldfield
et al., 2008; Forman-Kay and Mittag, 2013; Hsu et al., 2013). In
line with this, two further phospho-sites, Tyr903 and Thr906 are

also located in a disordered region between ß8 strand and α8
helix (Figure 2).

Intrinsically disordered regions do not have a well-defined
tertiary structure, instead they are in a dynamic equilibrium
between different sets of conformational states (Boehr et al.,
2009; Flock et al., 2014). It is thus likely that (de)phosphorylation
of the amino acid residues within these regions will induce
structural transitions with impact on the conformation of the
entire C-terminus (and likely other regions as well). Indeed,
phosphorylated Thr1007 forms main chain hydrogen bonds with
Trp1008, that itself has side chain interactions with His1051 (pi
stacking), and Tyr903 forms a main chain hydrogen bond with
Ser899 (Figure 4). Alterations in phosphorylation might affect
these interactions thereby altering the organization and thus
conformation of the C-terminus.

The clusters of phospho-sites might not only enable the
transporters to integrate multiple signaling pathways but also
to regulate activity in a history-dependent manner. Intrinsically
disordered regions can adopt a variety of conformations
each with distinct binding affinities and specificity properties
(Oldfield et al., 2008; Forman-Kay and Mittag, 2013; Hsu et al.,
2013; Flock et al., 2014). Thus, starting from a ground state
0, slightly different conformations named states 1 and 2 can
be induced by two different physiological states, upon which a
signaling pathway will act in different, history-dependent ways.
This will induce in one instance a further conformational change
resulting in state 3 whereas in the other instance, no further
conformational change occurs (Figure 5).

Experiments with the kinase inhibitor staurosporine provide
evidence for such different conformational states in KCC2.
Mutation of the regulatory phospho-sites Ser932 and Thr1009

to either alanine or aspartate abrogates stimulation by
staurosporine. In contrast, Ser31, Thr34, and Thr999 represent
regulatory phospho-sites where only mutation into alanine
or aspartate (Ser31Asp, Thr34Ala, and Thr999Ala) abrogates
stimulation, whereas substitution by the other amino acid
residue (Ser31Ala, Thr34Asp, and Thr999Asp) maintains sensitivity
to staurosporine (Cordshagen et al., 2018; Zhang et al., 2020b).
The change in phosphorylation of either of the three sites likely
impacts the accessibility of other phospho-sites such as Ser932

and Thr1009 to the action of staurosporine (Cordshagen et al.,
2018). One conformational state (state 1) might occlude hidden
sites that are final targets of the action of staurosporine, resulting
in no further activation of KCC2. The other conformational
state (state 2) provides access to phospho-sites that are targeted
by the action of this reagent, leading to state 3 (Figure 5).
This can result in distinct Cl− transport activities, reflecting
the past history, and ultimately in different transformations
of the neuronal input-output function (Currin et al., 2020),
which relate to phenomena as important and diverse as synaptic
integration, the flow of information through neuronal circuits,
learning and memory, neural circuit development and diseases.
The phospho-site enriched unstructured regions are therefore
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ideally suited to act as a processor to regulate the output of
the transporters by computing signaling from ongoing and past
physiological states. This inherent feature of an intrinsically
disordered region thus might provide a molecular basis for
ionic plasticity.

Furthermore, the properties of intrinsically disordered
regions might explain the surprising observation of decreased
Ser940 phosphorylation in the presence of the two human
pathogenic variants Arg952His and Arg1049Cys (Kahle et al., 2014;
Puskarjov et al., 2014; Silayeva et al., 2015; Figure 2). Both
variants may cause altered conformation of the unstructured
area, resulting in different binding affinities for PKC and PP1
that determine together the amount of Ser940 phosphorylation
(Lee et al., 2007, 2011; Kahle et al., 2014). Finally, environmental
factors, like changes in temperature, redox-potential and pH
can induce conformational changes of intrinsically disordered
regions (Kjaergaard et al., 2010; Flock et al., 2014; Jephthah
et al., 2019). This might explain the temperature-dependency
of KCC2, since increasing the temperature to 37◦C decreases
KCC2 activity (Hartmann and Nothwang, 2011).

Conclusion

(De)phosphorylation of phospho-sites most likely results
in conformational reorganization as observed for other CCC
family members. Many of the phospho-sites in the C-terminus
of KCC2 are localized in an unstructured area. Due to
biophysical properties of such areas, this part of KCC2 might
serve a dual role. It might represent a platform for integrating
different signaling pathways and simultaneously constitute a
flexible, highly dynamic linker that can survey a wide variety of
distinct conformations (Forman-Kay and Mittag, 2013). As each
conformation can have distinct binding affinities and specificity
properties, this may enable regulation of [Cl−]i and thus the
ionic driving force in a history-dependent way and explain
long-range effects of mutations on phospho-sites.
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