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Balancing machine is a general equipment for dynamic balance verification of rotating parts, whether it breaks down or does not
determine the accuracy of dynamic balance verification. In order to solve the problem of insufficient fault diagnosis accuracy of
balancing machine, a fault diagnosis method of balancing machine based on the Improved Sparrow Search Algorithm (ISSA)
optimized Extreme Learning Machine (ELM) was proposed. Firstly, iterative chaos mapping and Fuch chaos mapping were
introduced to initialize the population and increase the population diversity. Secondly, the adaptive dynamic factor and Levy flight
strategy were also introduced to update the individual positions and improve the model convergence speed. Finally, the fault
feature vector was input to the ISSA-ELMmodel with the fault type as the output. &e experiment showed that the fault diagnosis
accuracy of ISSA-ELM is as high as 99.17%, which is 1.67%, 2.50%, 7.50%, and 17.50% higher than that of SSA-ELM, HHO-ELM,
PSO-ELM, and ELM, respectively, further improving the prediction accuracy of the operation state of the balancing machine.

1. Introduction

In the machinery manufacturing industry, unbalanced
centrifugal forces and centrifugal moments appear in ro-
tating parts (shafts, gears, etc.), which lightly lead to an
increase in the load of rotating parts and shorten their
service life and seriously cause the generation of fatigue
notches in rotating shafts and their mounting parts, causing
fractures and endangering personal safety. So, it is essential
to correct the dynamic balance of rotating parts. Balancing
machine is a common piece of equipment for dynamic
balancing calibration of rotating parts, whether its failure
occurs or does not determine the accuracy of dynamic
balancing calibration. &erefore, it is very meaningful to
carry out fault diagnosis for balancing machine.

Extreme learning machine (ELM) is a single hidden layer
feedforward neural network [1, 2], which is characterized by
simple structure and fast training speed compared with the
traditional BP neural network trained based on gradient
descent [3, 4]. &erefore, ELM is widely used in the field of
fault diagnosis. Lim and Ji [5] apply ELM to fault diagnosis of
PV systems. In [6], a new fault diagnosis model for rotating
machinery based on residual network (Reset) and ELM is
established. In [7], the cuckoo search algorithm (CSA) is

introduced to optimize the ELM to achieve the goal of fault
diagnosis for fans. In [8], finite element method (FEM)
simulation and ELM are combined to detect gear faults. In [9],
a multiscale fractal box dimension based on complementary
ensemble empirical modal decomposition (CEEMD) and
ELM is proposed for planetary gear fault diagnosis.

However, the randomly set weights and biases in ELM
affect the computational speed and accuracy of the algorithm,
so an optimization algorithm needs to be introduced to
optimize the weights and biases to improve the computational
efficiency of the algorithm [10]. With the development of
machine learning, a large number of swarm intelligence
optimization algorithms have been proposed and used. Yang
et al. [11] use PSO to optimize the parameters of DBNmodels
and use the optimized DBN models to identify faults. Abbas
et al. [12] apply the WOA algorithm to the diagnosis of breast
cancer. Han et al. [13] propose a power transformer fault
diagnosis model based on HHO optimized KELM. Zhang
et al. [14] proposed a fault-detection method based on
multiscale permutation entropy and SOA-SVM. &e sparrow
search algorithm (SSA) [15], as a novel optimization algo-
rithm, is characterized by strongmerit-seeking ability and fast
convergence compared with traditional swarm intelligence
optimization algorithms such as particle swarm algorithm
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(PSO), and has been applied in a large number of engineering
fields. In [16], a new fault diagnosis method based on elite
opponent Sparrow search algorithm (EOSEA) optimized
LightGBM is proposed. In [17], a deep belief network (DBN)
approach based on parameter optimization of SSA is pro-
posed in order to detect gear fault severity. In [18], the signal is
decomposed by variational modal decomposition (VMD),
and the signal features are extracted by RCMDE and input to
the support vector machine (SVM) model optimized by SSA
to achieve the fault diagnosis of rolling bearings. In [19], the
penalty factor and kernel function parameters of the SVM are
optimized using the SSA, and the SSA-SVM wind turbine
fault diagnosis model is constructed. In [20], an ELM arc fault
diagnosis model optimized by the SSA is developed. However,
the SSA algorithm also has the disadvantage of easily falling
into local optimum. &erefore, this study proposes an im-
proved SSA algorithm (ISSA) and introduces the ISSA al-
gorithm into the optimization process of weights and
thresholds of ELM to construct an ISSA-ELM fault diagnosis
model.

&e rest of this study is organized as follows. Section 2
focuses on the principles related to the algorithm. Section 3
introduces the ISSA-ELM model. Section 4 describes the
experiments. Finally, conclusions are given in Section 5.

2. Basic Algorithm Principles

For rotating mechanism such as balancing machine, ma-
chine learning is often used to construct fault diagnosis
model to analyse its fault. ELM, as a machine learning
model, is applied to fault diagnosis by its fast training speed
and high accuracy of operation, but the weights and bias in
the extreme learning machine are randomly generated,
which seriously affect the accuracy of its operation, so the
optimization algorithm needs to be introduced to improve
the accuracy of ELM, and the standard SSA has the dis-
advantage of easily falling into local optimum, so the im-
provement strategy needs to be introduced to improve it.

2.1. Sparrow Search Algorithm and Improvement

2.1.1. Sparrow Search Algorithm. &e SSA algorithm sim-
ulates sparrow foraging and anti-predation behaviors by
continuously updating individual positions for the purpose
of finding optimal values. In the SSA algorithm, all indi-
viduals can be divided into discoverers, followers, and
vigilantes.

&e update equation for the location of the discoverers is
as follows:

x
t+1
i,j �

x
t
i,j · exp −

i

α · itermax
􏼠 􏼡, if R2 < ST,

x
t
i,j + Q · L, if R2 ≥ ST,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where t represents the current iteration number, xt
i,j denotes

the position of the ith sparrow in the j th dimension in the
tth generation, α ∈ [0, 1], itermax is the maximum iteration
number, R2 denotes the alarm value, ST denotes the safety
threshold, Q is a random number obeying normal distri-
bution, L is a 1 × di m all-1 matrix, and di m denotes the
dimensionality. When R2 < ST, it means there are no
predators around the foraging area and the finders can
search for food extensively; when R2 ≥ ST, it means pred-
ators appear and all the finders need to fly to the safety area.

&e update equation for the location of the followers is as
follows:

x
t+1
i,j �

Q · exp
x

t
worst − x

t
i,j

i
2

⎛⎝ ⎞⎠, if i>
n

2
,
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P + x

t
i,j − x

t+1
P

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · A
+

· L, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where xt
worst denotes the position of the individual with the

worst fitness value in the tth generation, and xt+1
P denotes the

position of the individual with the best fitness value in the
t + 1 generation. A denotes a 1 × di m matrix with each
element in the matrix randomly predefined as -1 and 1, and
A+ � AT(AAT)− 1. When > n/2, it means that the i follower
has low fitness and needs to fly to other regions; when i≤ n/2,
the follower will forage near the optimal individual xP.

&e update equation for the location of the vigilantes is
as follows:

x
t+1
i,j �

x
t
best + β · x

t
i,j − x

t
best

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, if fi >fg,

x
t
i,j + k ·

x
t
i,j − x

t
worst

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

fi − fw( 􏼁 + ε
⎛⎝ ⎞⎠, if fi � fg,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

where xt
best denotes the global optimal position in the tth

generation, β is the control step and follows a normal
distribution with mean 0 and variance 1, k ∈ [−1, 1], ε is set
as a constant to avoid the denominator being 0, fi denotes
the fitness value of the current individual, and fg and fw

denote the fitness values of the current global optimal and
worst individuals. When fi >fg, it means that the indi-
vidual is at the periphery of the population and needs to
adopt anti-predatory behavior and keep changing its posi-
tion to obtain higher fitness; when fi � fg, it means that the
individual is at the center of the population and it will keep
approaching its nearby companions in order to stay away
from the danger area.

2.1.2. Improved Population Initialization Method. &e dis-
tribution of the initial solution in the solution space largely
affects the convergence speed and the search accuracy of the
algorithm. &e SSA algorithm uses random generation to
generate the initialized population, and such a way will
destroy the diversity of the population. Chaotic sequences
have the characteristics of randomness, ergodicity, and
regularity [21], which can increase the population diversity
and enhance the ability of the algorithm to search globally.
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In this study, we introduce iterative chaos mapping [22] and
Fuch chaos mapping [23] to improve the population ini-
tialization. &e expressions of iterative chaos mapping and
Fuch chaos mapping are shown in formulae (4) and (5):

ti+1 � sin
bπ
ti

􏼠 􏼡, (4)

fi+1 � cos
1

f
2
i

􏼠 􏼡, (5)

where b ∈ [0, 1].
&e steps of the improved population initialization

method are as follows:

(1) randomly generate the population
X � [x1, x2, · · · , xn], where i � 1, 2, · · · , n and d

represents the dimensionality.
(2) Let the range of values of the global solution be

[lb, ub], and we generate iterative population Xt and
Fuch population Xf according to the following
formulae:

Xt � lb +
T + 1
2

· (ub − lb), (6)

Xf � lb +
F + 1
2

· (ub − lb), (7)

where lb is the upper bound of the search space, ub is
the lower bound of the search space, and T is the
chaotic sequence generated by using formulae (4). F

is the chaotic sequence generated with formulae (5).
(3) combine the populations X, Xt and Xf into a new

population with the new population
Xnew � [X, Xt, Xf], find the fitness value of Xnew,
rank the fitness values of the new population indi-
viduals in order from smallest to largest, and take the
first N optimal initial solutions as the new initial
population of sparrows.

2.1.3. Dynamic Adaptive Factor. Like other swarm intelli-
gence algorithms, the SSA algorithm suffers from disad-
vantages such as poor global search capability and the
tendency to fall into local optimality, resulting in insufficient
algorithm development. &erefore, the dynamic adaptive
weights are therefore improved for the discoverers’ position
update equations.

&e update equation for the location of the discoverers
has been improved as follows:

x
t+1
i,j �

λ · x
t
i,j · exp −

i

α · itermax
􏼠 􏼡, R2 < ST,

λ · x
t
i,j + Q · L, R2 ≥ ST,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where the equation of dynamic adaptive weights λ is as
follows:

λ � 1 −
t

itermax
􏼠 􏼡

3

, (9)

where t is the number of current iterations and itermax
denotes the maximum number of iterations.

&e variation curves of dynamic adaptive factors λ are
shown in Figure 1.

As can be seen from Figure 1, λ has larger values at the
beginning of the iteration, and the algorithm has stronger
global search ability, larger search range and faster con-
vergence, smaller values at the end of the iteration, and
stronger local search ability, which can accurately find the
global optimal solution.

2.1.4. Levy Flight Strategy. As with other optimization al-
gorithms, standard SSA may fall into local optimal solutions
and thus fail to find the global optimal solution. In this study,
we introduce the Levy flight strategy [24] to update the
position of the vigilantes in the SSA algorithm. &e Levy
flight strategy is characterized by a long time of small-step
random wandering with occasional large steps. &e im-
proved SSA algorithm reduces the risk of falling into local
optimal solutions. &e improved update equation for the
location of the vigilantes is shown below:

x
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Levy · x
t
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t
i,j − x

t
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t
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􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

fi − fw( 􏼁 + ε
⎛⎝ ⎞⎠, if fi � fg,

⎧⎪⎪⎪⎪⎪⎪⎨
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(10)

where the equation of Levy flight strategy is as follows:

Levy � 0.01 ·
r1 · σ

r2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1/β ,

σ �
Γ(1 + β) · sin (πβ/2)

Γ[(1 + β/2)]β · 2(β−1)/2􏼨 􏼩

1/β

,

(11)

where Γ is a gamma function, β is a constant, taken as 1.5,
and r1 and r2 are random numbers from 0 to 1.

2.2. Extreme Learning Machine. ELM is a fast learning al-
gorithm, which obtains the corresponding output weights by
randomly initializing the input weights and offsets [25, 26].
&e ELM network structure is shown in Figure 2. &e
mathematical expression of elm can be expressed as follow:

β · g(W · X + b) � T, (12)

where g(x) is the activation function, W is the input weight,
β is the output weight, b is the hidden layer offset, X is the
input vector, and T is the output vector. Let
g(W · X + b) � H. &en, formulae (13) can be obtained:

Hβ � T, (13)
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where H is the output matrix of the hidden layer, β is the
output weight, and T is the desired output. &e learning
process of ELM has the following main steps.

(1) We determine the number of neurons in the hidden
layer and randomly set the connection weights ω
between the input layer and the hidden layer and the
bias b of the neurons in the hidden layer

(2) We select an infinitely differentiable function as the
activation function of the hidden layer neurons and
then calculate the hidden layer output matrix H

(3) We calculate the output layer weights β � H+T,
where H+ is the Moore–Penrose generalized inverse
matrix of H

3. ISSA-ELM Modeling

&e weights ω and bias b of ELM are set randomly [27],
which seriously affects the accuracy and speed of the al-
gorithm’s operation. In this study, an ISSA algorithm is
introduced into the process of selecting the ELM weights ω
and bias b, and an ISSA-ELM model is proposed. &e

method uses the ISSA algorithm to optimize the weights ω
and bias b of ELM, and the weights ω and bias b in ELM are
used as the population individuals in the ISSA algorithm,
and the classification error rate of ELM is used as the fitness
function to globally search for the optimal value. &e ISSA-
ELM fault diagnosis flowchart is shown in Figure 3, and the
modeling steps are as follows:

(1) We set ELM-related parameters.
(2) We set the ISSA-related parameters as well as the

fitness function. &e relevant parameters of ISSA to
be set include the maximum number of iterations,
the ratio of discoverers, followers and vigilantes, and
the population size according to the weights and
deviations of ELM. &e classification error rate is
chosen as the fitness function.

(3) We initialize the population. A modified population
initialization method is used to generate
populations.

(4) We calculate initial fitness values and rank them and
the fitness value of each individual in the population
and rank the individuals in order from smallest to
largest fitness value.

(5) Sparrow individual position update: we update the
discoverers, followers, and vigilantes’ positions
according to formulae (8), (2), and (10).

(6) We calculate the fitness value of the individual after
updating the position and determine whether the
termination condition is satisfied or the maximum
number of iterations is reached; if it is satisfied, the
optimal weight and bias are output, if not, we iterate
through the loop until the termination condition is
met or the maximum number of iterations is
reached.

(7) &e ISSA-ELM model is constructed using the ob-
tained optimal weights and biases.

(8) We evaluate the performance of the ISSA-ELM
model.

4. Experiments
4.1. Sample Selection and Feature Extraction. In this study,
the fault diagnosis experiment is carried out by using
Dewesoft data acquisition system and HY40WUB type hard
support balancing machine. As shown in Figure 4, the ex-
periment installs single-phase vibration sensors in the X-axis
and Y-axis directions of the support frame of HY40WUB
hard support balancing machine and collects vibration
signals through Dewesoft acquisition instrument with a
frequency of 2560HZ. We separate acquisition of fault
signals under eight operating conditions of balancing
machines.

We extract the fault feature quantity that can reflect
the working state of the balancing machine from the x-
axis and y-axis, as shown in Table 1. To remove the in-
fluence of different magnitudes, the fault data are nor-
malized according to formulae (14). &e feature vectors
are obtained, and each group of feature vectors is 44-
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Figure 2: ELM network structure.
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dimensional. Each class of sample data is 50 groups, to-
taling 400 sets of fault data, of which 280 groups are used
as the training set and 120 groups are used as the test set.
&e fault types of balancing machine are numbered as 1–8,
which are divided into 8 types: normal, belt deterioration,
universal coupling wearing, universal coupling rusting,
journal abrasion, roller outer diameter wearing, roller
outer diameter breakage, and roller rusting. &e

distribution of sample capacity of training set and test set
is shown in Table 2:

x
∗

�
x − xmin

xmax − xmin
, (14)

where x∗ is the normalized data, x is the original data, xmax is
the maximum value in the original data set, and xmin is the
minimum value in the original dataset.

Start

Setting ELM parameters

Obtaining the optimal
weights and biases

Constructing ISSA-ELM
model

Evaluating the model
classification performance
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Setting ISSA related parameters
and the fitness function

Initializing the population

Calculating initial fitness values
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Y

Figure 3: Flowchart of the ISSA-ELM fault diagnosis model.
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From Table 1, N is the number of sampling points, xi is
the ith element of any sample in the vibration data set, fi is
the frequency instantaneous value at moment i, and F(fi) is
the Fourier spectrum instantaneous value at moment i.

4.2. Define the ELM Network Structure. According to the
dimension of the input and output quantities, the number of
nodes at the input of ELM can be determined as 44 and the
number of nodes at the output as 1. &e selection of the
number of nodes in the hidden layer affects the accuracy of
ELM classification, and this study calculates the train ac-
curacy of ELM for the cases of the number of nodes in the
hidden layer from 1 to 200, respectively, and the graph of the
number of nodes in the hidden layer and the train accuracy
is shown in Figure 5.

From Figure 5, it can be seen that the train accuracy of
the activation function “sigmod” is higher than that of “sin”
and “hardlim”. &erefore, the “sigmod” type function is

chosen as the activation function in this study. When the
number of nodes in the implied layer is 90∼140, the train
accuracy is higher than other ranges.&e number of nodes in
the implied layer is set to 90, 100, 110, 120, 130, and 140,
respectively, and 10 tests are conducted, and the results are
shown in Figure 6.

It can be seen from Figure 6 that when the number of
ELM nodes is 100, the accuracy rates are all higher than the
other node numbers. &erefore, the number of nodes in this
study is set to 100.

4.3. Analysis of Experimental Results

4.3.1. Performance Comparison of Optimization Algorithms.
&e adaptation curves of ISSA, SSA, HHO, and PSO to the
ELM optimization parameters are shown in Figure 7. &e
parameters of the four algorithms are set as follows: the
maximum number of iterations of ISSA is set to 50, the
population size is 20, the proportion of discoverers is 0.2, the

Table 1: Fault features.

Description Features
Maximum xmax � max (xi)

Minimum xmin � min(xi)

Mean x � 1
N

􏽐
N
i�1 xi

Absolute mean x′ � 1
N

􏽐
N
i�1 |xi|

Square root amplitude xs � (1/N 􏽐
N
i�1

���
|xi|

􏽰
)2

Peak-peak value xp−p � max(xi) − min (xi)

Variance δ � 1/N 􏽐
N
i�1 (xi − x)2

Standard deviation σx �

������������������

1/N − 1􏽐
N
i�1 (xi − x)2

􏽱

Kurtosis β � 1/N 􏽐
N
i�1 x4

i

Skewness α � 1/N 􏽐
N
i�1 x3

i

Mean square xms � 1/N 􏽐
N
i�1 x2

i

Root mean square xrms �

����������

1/N 􏽐
N
i�1 x2

i

􏽱

Waveform factor W � xrms/x′
Peak factor C � xmax/xrms

Pulse factor I � xmax/x′
Margin factor L � xrms/x
Kurtosis factor K � β/x4

rms

Frequency of center of gravity xfc � 􏽐
N
i�1 fiF(fi)/􏽐

N
i�1 F(fi)

Mean square frequency Xmsf � 􏽐
N
i�1 f2

i F(fi)/􏽐
N
i�1 F(fi)

Root mean square frequency Xrmsf �

���������������������

􏽐
N
i�1 f2

i F(fi)/􏽐
N
i�1 F(fi)

􏽱

Frequency variance Xvf � 􏽐
N
i�1 (fi − Xfc)

2F(fi)/􏽐
N
i�1 F(fi)

Frequency standard deviation Xrvf �
����������������������������
􏽐

N
i�1 (fi − Xfc)

2F(fi)/􏽐
N
i�1 F(fi)

􏽱

Table 2: Sample size distribution.

Fault number Fault type Training samples Test samples
1 Normal 35 15
2 Belt deterioration 35 15
3 Universal coupling wearing 35 15
4 Universal coupling rusting 35 15
5 Journal abrasion 35 15
6 Roller outer diameter wearing 35 15
7 Roller outer diameter breakage 35 15
8 Roller rusting 35 15
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proportion of joiners is 0.8, the proportion of vigilantes is
0.1, and the early warning value is set to 0.6; the maximum
number of iterations of SSA is set to 50, the population size is
20, the proportion of discoverers is 0.2, the proportion of
joiners is 0.8, the proportion of vigilantes is 0.1, and the early
warning value is set to 0.6; the maximum number of iter-
ations of HHO is set to 50, the population size is 20; the
maximum number of iterations of PSO is set to 50, the
particle population size is 20, the inertia factor is set to 0.9,
and the acceleration constants c1 and c2 are both 2.

From the fitness curves in Figure 7, it can be seen that the
fitness values of all four algorithms start to decrease and
converge as the number of iterations increases, so as to
obtain the best weights and biases. &e initial fitness values
are sorted from lowest to highest as ISSA, SSA, HHO, PSO,

and ISSA has the lowest initial fitness value; ISSA converges at
about the 8th generation, SSA converges at about the 21st
generation, HHO converges at about the 26th generation, and
PSO converges at about the 29th generation; ISSA finds the
optimal solution in the shortest time and converges the fastest;
the final convergence fitness values of the four algorithms are
ISSA, SSA,HHO, and PSO in the order from smallest to largest,
and ISSA has the smallest final fitness value. &erefore, ISSA
has the most obvious optimization for ELM.

4.3.2. Comparison of Fault Diagnosis Models. &e fault
characteristic quantities are input to the ISSA-ELM, SSA-
ELM, HHO-ELM, PSO-ELM, and ELM diagnostic models,
and the diagnostic time and accuracy are shown in Table 3;
the diagnostic results are shown in Figure 8.
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Figure 8: Continued.
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In Figure 8, the blue circles represent the actual fault
types, the red diamonds represent the fault categories pre-
dicted by different models, the horizontal coordinates are the
diagnostic sample numbers, and the vertical coordinates are
the fault category labels. From Table 3 and Figure 8, it can be
seen that ISSA-ELM correctly predicts 119 balancing ma-
chine faults with 99.17% fault diagnosis accuracy, which has
the highest fault diagnosis accuracy compared with the other
four diagnostic models. &e results show that the com-
prehensive fault diagnosis model established by the ISSA
algorithm by seeking the weights and biases of ELM can
effectively improve the fault diagnosis accuracy of balancing
machine.

5. Conclusion

To address the problem that the fault diagnosis accuracy of
balancing machine needs to be improved, this study pro-
poses a fault diagnosis method based on ISSA-ELM and

compares it with SSA-ELM, HHO-ELM, PSO-ELM, and
ELM, and the following conclusions can be drawn:

(1) &e introduction of the iterative chaos mapping and
the Fuch chaos mapping to improve the population
initialization method can increase the population
diversity and enhance the algorithm’s global opti-
mization seeking ability

(2) &e use of dynamic adaptive factor and Levy flight
strategy to improve the position update formula of SSA
algorithm can effectively improve the disadvantage
that SSA algorithm is easy to fall into local optimum

(3) Using ISSA algorithm to find the optimal values of
weights and thresholds of ELM, the results show that
the diagnostic accuracy of ISSA-ELM is higher
compared with SSA-ELM, HHO-ELM, PSO-ELM,
and ELM, reaching 99.17%, which obviously im-
proves the diagnostic efficiency

In fault diagnosis, multisource information fusion can
take into account multiple signals, which can further

Table 3: Calculation results of different algorithms.

Fault number Fault type
Fault recognition number

ISSA-ELM SSA-ELM HHO-ELM PSO-ELM ELM
1 Normal 15 15 14 15 14
2 Belt deterioration 14 12 12 11 8
3 Universal coupling wearing 15 15 15 15 13
4 Universal coupling rusting 15 15 15 15 10
5 Journal abrasion 15 15 15 13 13
6 Roller outer diameter wearing 15 15 15 13 13
7 Roller outer diameter breakage 15 15 15 13 12
8 Roller rusting 15 15 15 15 15

Accuracy 99.17% 97.50% 96.67% 91.67% 81.67%
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Figure 8: Results of fault diagnosis. (a) Results based on ISSA-ELM. (b) Results based on SSA-ELM. (c) Results based on HHO-ELM.
(d) Results based on PSO-ELM. (e) Results based on ELM.
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improve the accuracy of fault diagnosis; therefore, multi-
source information fusion of balancing machines will be
further investigated in future work.
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