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Biological molecules, like organisms themselves, are subject to genetic drift and may even become “extinct”.
Molecules that are no longer extant in living systems are of high interest for several reasons including insight
into how existing life forms evolved and the possibility that they may have new and useful properties no longer
available in currently functioningmolecules. Predicting the sequence/structure of suchmolecules and synthesiz-
ing them so that their properties can be tested is the basis of “molecular resurrection” andmay lead not only to a
deeper understanding of evolution, but also to the production of artificial proteinswith novel properties and even
to insight into how life itself began.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The idea that species may no longer exist, having become extinct
through catastrophic events, competition or simply evolution into
new species is a familiar one and also applies to biological molecules.
Trivially this is true – the genomes of extinct species, for example, clear-
ly no longer functionally exist. It is not necessarily true of all molecules
from extinct species of course: Some may continue to function as iden-
tical or near-identical versions in related organisms. In contrast, there
may be unique biological molecules that no longer form part of any liv-
ing system (some DNA/RNA sequences and proteins being of particular
interest) and their study could uncover new information regarding evo-
lutionary pathways as well as allowing us to discover novel molecules
with useful functions.

There are at least two approaches to resurrecting extinct biological
molecules: one is through their extraction from the environment, i.e.
the discovery of molecular fossils. Recovering ancient biological
molecules in this way (so-called “molecular palaeontology”) relies on
them being amenable to long-term preservation. Clearly, less stable
molecules (for example RNA in contrast to DNA) are less likely to be
preserved over long periods with the exact time depending on environ-
mental conditions: DNA itself has been estimated to have a half-life of
500 years in bone for a 30 bp fragment at 25 °C [1]. There are of course
rare exceptions where conditions such as consistent low temperatures
can preserve samples for longer periods, for instance, in permafrost.
This has allowed complete mitochondrial DNA over 100 k years old to
be recovered from a polar bear jawbone [2]. Even more impressively,
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ancient horse DNA from a bone over 500 k years old preserved in per-
mafrost has been recovered and the genome sequenced, resulting in a
wealth of insight into the evolution of modern horses [3]. The oldest au-
thenticated DNA, which has been extracted from the basal sections of
deep ice cores in Greenland, has been dated to be 450-800 k years of
age [4]. This may be close to the temporal limit of DNA recovery from
fossils. Although traces of the molecule have been detected in dinosaur
specimens millions of years old [5], it is unlikely that the samples can
yield information-bearing sequences [6].

In comparison to DNA, polypeptides within fossils have an even
lower degradation rate, which allows for their recovery from more
ancient samples and when shielded from weathering, have been pre-
served for millions of years.

Finally, themost persistent biomolecules able to providemeaningful
insights about the inhabitants of the ancient world, are simple biopoly-
mers such as the pigment melanin [6]. It has been demonstrated to be
capable of surviving in fossils originating even from the early Jurassic
era (older than 175 m years) [7].

The second approach to resurrection of biological molecules is to use
in silico methods to predict their identity and then produce them syn-
thetically. In the case of genomes, this could allow “genome transplan-
tation” to recover a functioning organism. Indeed a bacterial genome
has been completely synthesized and used to “reboot” a cell [8]. Such
a method may of course be open to inaccuracies but attempts to resur-
rect ancient proteins in thiswayhave led to interesting results including
the production of novel molecular structures, which may prove to be
useful tools in unexpected areas such as bionanoscience.

In this work, we will review both molecular palaeontology and bio-
informatics approaches to determining the identities of extinct DNA and
protein molecules and the proven and potential usefulness of such in-
formation including as a biotechnological tool.
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2. Molecular Palaeontology

2.1. Rescuing DNA Fossils

The relatively high stability of DNA means that under favourable
conditions it can be preserved for extended periods of time [1]. Recov-
ered DNA sequences allow insights into evolution, giving an un-
derstanding of how an extinct species fits into the tree of life. If
whole genomes are recovered it raises the prospect of “de-extinction”
[9] and, using recombinantDNA technology allows production, purifica-
tion and characterization of proteins encoded within the DNA (see
Section 3).

Recovering DNA from ancient samples of extinct species is a difficult
task due to potentially limited amounts of sample, problems of con-
tamination and the deterioration of the molecules over time. In addi-
tion, post-mortem DNA is subject to deterioration including fossil
weathering and degradation by microorganisms resulting in DNA frag-
mentation, while oxidative lesions can affect both the nucleotide bases
and the deoxyribose sugar residues. If unaccounted for, thesemay result
in spurious results and render the ancient DNAdifficult to sequence due
not least to contamination by present-day, damage-free samples that
yield stronger signals [10].

The first obstacle i.e. amount of sample, has been mitigated by the
development of the famous polymerase chain reaction [11], which al-
lows for the amplification of molecular content even from the smallest
amounts of specimen [12,13]. Next-generation sequencing techniques
can then provide high quality full coverage genome sequencing [14].
Problems of physical damage can be overcome by independent deep se-
quencing of short overlapping fragments from multiple sample clones
[15].

Another challenge is the formation of inter-strand and intermolecu-
lar DNA crosslinks through interactions between DNA strands or DNA
and other biomolecules (e.g. proteins). These are the products of alkyl-
ation orMaillard reactions respectively and can bemitigatedwith cross-
link breakers such as N-Phenacylthiazolium bromide [15,16]. However,
hydrolytic lesions (also referred to as type II damage) are the most im-
portant to account for, since they alter the genetic code in the specimen
with respect to the host's original DNA. The most commonly observed
artefact results from the deamination of cytosine to uracil, which
is chemically analogous to thymine. Depending on the DNA strand
(forward or reverse), this causes an apparent G/C to A/T single nucleo-
tide polymorphism [17]. Further lesions include the substitution of ade-
nine to hypoxanthine, 5-methyl-cytosine to thymine and guanine to
xanthine [15]. In second-generation sequencing technologies, such as
the Illumina and Solexa platforms, whole ensembles of DNA molecules
are ‘washed-and-scanned’ for using previously generated libraries of
molecules [18]. In order to achieve full coverage of the ancient genome
– and reduce the risk of contamination – the sequencing libraries need
to be prepared in linewith the expected chemical distribution of the an-
cient DNA [19]. Otherwise, the sequencingwill result in a lower (and bi-
ased) read yield [20]. Alternatively, the use of the so-called third-
generation single-molecule sequencing technologies [18], which do
not rely on library scanning, allows for a straightforward ancient genetic
data extraction. However, in contrast to second-generation sequencing,
the precious sample cannot be re-amplified, thus a combination of
second-generation and singe-molecule sequencing has been suggested
as the best solution [20]. The final noteworthy point is that the occur-
rence of such DNA degradation patterns is to be expected of ancient
specimens and can be used as evidence for genuine paleo-genomes
(in contrast to contaminants) [21,22].With this inmind, ancient genetic
data obtained with Next Generation Sequencing techniques can be
analysed using the mapDamage2.0 software package, which includes a
Bayesian statistical framework accounting for the basic expected types
of post-mortem DNA damage [23].

Despite the above-mentioned difficulties, significant progress in re-
covering and sequencing ancient DNA from extinct species has been
made; as early as 1984 small amounts of DNA from an extinct subspe-
cies of zebra (the quagga) were recovered from the dried muscle of a
museum specimen [24]. More recently, the genome sequence of the
woolly mammoth (Mammuthus primigenius) has been reported [25]
leading to the recreation of the animal's haemoglobin using a recombi-
nant approach [26]. Amino acid substitutions in the ancient protein
have been found to confer an adaptation for the harsh Pleistocene
environment providing a higher efficiency of oxygenation in lower tem-
peratures, as compared with the extant transcripts found in the
mammoth's currently living closest relative – theAsian elephant. A crys-
tal structure obtained for the protein elucidated themechanismof its al-
tered characteristics revealing small structural changes significantly
affecting the affinity for oxygen [27].

Closer to home, recovering DNA from ancient members of the
human lineage has enriched understanding of our own family tree
and patterns ofmigration [28]. DNA (mitochondrial) fromNeanderthals
wasfirst recovered and sequenced in 1987 [29]. Further DNA sequences
from Neanderthal remains were subsequently recovered [14,30–32]
leading recently to the full genome sequence reported for an over
50,000 years old toe bone from a female Neanderthal woman found in
Denisova cave, Siberia [33]. The same cave has also allowed recovery
of DNA from and identification of a new relative of modern humans,
the so-called “Denisovans” [22,34]. It is now known that Denisovan
DNA contributed significantly (up to 5%) of the DNA of current Oceanic
peoples [35].

The availability of full genome sequences of extinct species raises the
prospect that some could be subject to “de-extinction” [9] an idea that
has most often been discussed in relation to large animals (typically
mammals). Most simply this would require not only the relevant DNA
sequences but also intact nuclei to allow somatic cell nuclear transfer
(SCNT) [36] into the egg cell of a close living relative. SCNT is now a rel-
atively common technique in cloning and has been carried out using nu-
clear material from extinct animals including an attempt to resurrect
the Pyrenean ibex [37]. This was partially successful: the resulting off-
spring was born alive but only survived for a fewminutes. For more an-
cient extinct species, where an intact nucleus may not be recoverable,
the process will be more challenging: Without whole nuclei, SCNT is
not feasible and genomesmay have to be produced purely synthetically
and introduced into recipient cells. The first challenge – production of
synthetic genomes is developing rapidly [38]: synthesis of a whole eu-
karyotic chromosome has been reported [39] and work is underway
to produce a whole synthetic yeast genome [38] with the final design
recently reported [40]. The second challenge, provision of a suitable re-
cipient cell, seems amore distant prospect as such cells may not exist or
if they do, their use may raise ethical questions (such as when the do-
nors of the cells are themselves endangered) [41]. Overall, using geno-
mic DNA from extinct animals for the purposes of de-extinction still
has significant scientific challenges before it can be considered generally
useful.

2.2. Rescuing Protein Fossils

Ancient protein has been recovered from extinct species on several
occasions. This may be less attractive than recovering DNA sequences
as DNA can be amplified, sequenced and then used to produce large
quantities of protein via a recombinant approach. Nevertheless in very
old samples, recovery of full genomes is not expected and so direct re-
covery of proteins, which exhibit lower degradation rates than DNA,
has merit [42]. Advancements in the field of mass-spectrometry, tai-
lored towards the recovery of protein sequence from even the smallest
amounts of ancient specimens have opened new opportunities [43].
Knowledge of protein sequence can, for example, be used to infer evolu-
tionary relatedness between organisms and using protein sidesteps
contamination issues that may be problematic when recovered DNA
samples are amplified. The virtues and challenges of ancient protein re-
covery are numerous [44], but evidence of the potential of proteins to be
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preserved for extreme lengths of time has been shown in work where
peptide sequences were extracted from ostrich shells dated to be
3.8 m years old [45], and sequences of collagen have been recovered
from 3.4 m years old camel bones, allowing comparison with other an-
cient and existing species [46]. Even partial sequences of bone matrix
and vessel proteins from 60 to 80 m years old dinosaur specimens
have been reported [5,47–50] and while, the validity of the results has
been questioned [45], recently, some of them have been reproduced
using an independent experimental procedure [51].

The recovery of proteins is not limited to the extraction of single
peptides, but allows entire proteomes to be obtained, providing good
evidence that DNA sequences were actually transcribed and translated
into functional proteins that built an ancient organism, such as the ob-
tained proteome from the woolly mammoth's femur [52]. More impor-
tantly however, proteomes can provide richer information than DNA
sequence alone. In particular, they offer a tissue-specific snapshot of
the transcriptome [42] i.e. gene expression levels at the time of death,
providing insight into the circumstances of the host's death such as
the presence of a severe bacterial infection indicated by the immune re-
sponse detected in the proteome of a 500 years old Incan mummy [53].

3. Bioinformatics Approaches to DNA and Protein Resurrection

Discovering the sequence of ancient genes does not necessarily re-
quire rescuing actual ancient molecules of DNA: Bioinformatics tech-
niques can be used to calculate the likely sequence of ancient genes
based on existing sequences. Knowledge of the types of genes present
in ancient organisms can give information not just about the organism
itself but the kind of environment it lived in. Such an approach is neces-
sary in most cases as access to ancient specimens is often limited. Doing
so relies on knowledge of the molecular content of extant species (fully
sequenced genomes) and their classification in order to reconstruct
phylogenetic relationships in the form of an evolutionary tree.

Phylogenetic tree reconstruction has been the topic of a number of
comprehensive reviews in its own right [54–57]. The basic principles
are that the input to any algorithm is sequence data for each species.
In order not to introduce biases, only completely sequenced genomes
should be considered. Despite the often-dramatic sequence divergence,
protein structure is conserved and distant homology may be detected
using profile Hidden MarkovModels, which outperform other methods
[58,59]. Therefore, for the purpose of phylogenetic reconstruction,
amino acid sequences are preferentially used over gene sequences
[60]. It is important to note that various species have been sequenced
to different levels of quality due to the application of different sequenc-
ing technologies, read depths and data analysis techniques. Only high
quality datasets should be included; the Proteome Quality Index pro-
vides a means of filtering and downloading proteomes from all com-
plete sequencing projects [61].

Furthermore, within proteins, conserved structural units, referred
to as domains, have been identified. The Structural Classification of
Proteins (SCOP) provides a hierarchical classification of protein domains
into families and superfamilies [62]. The family classification approxi-
mates traditional sequence-only phylogenetic reconstruction tech-
niques [63], while domains within a superfamily are thought to share
evolutionary descent and are regarded as basic units of evolution [64].
Most full-length proteins are built up of a linear combination of struc-
tural domains - referred to as domain architectures – that are capable
of performing highly specialized functions in concert and each domain
can be a building block of a variety of different proteins [65]. For the pur-
pose of phylogenetic reconstructions, themost important feature of do-
mains (as well as domain architectures) is that they are less likely to be
the result of homoplasy than their counterpart full-length protein tran-
scripts [66]. Therefore, they are considered more reliable in detecting
distant homology and have been advocated for use as input into tree
phylogenetic building algorithms [67]. Protein domain annotations for
any amino acid sequence can be obtained from the SUPERFAMILY
database for SCOP domain definitions [68] and alternative domain def-
initions are provided by the CATH database [69].

Annotated proteomes from complete sequencing projects provide
binary ‘presence’ or ‘absence’ flags for clusters of homologousmolecular
features, such as protein domain families and superfamilies, domain ar-
chitectures or orthologous transcripts, for use as the input for the phylo-
genetic tree inference algorithm of choice. The most widely used
algorithm is Randomized Accelerated Maximum Likelihood (RAxML),
which applies the optimality criterion of maximum likelihood, but
features speed optimizations (most importantly, the initialization of
several starting trees to avoid being trapped in local maxima) and com-
putational parallelization in order to allow computing the most likely
tree topology (a problem classified as NP-hard) even for large datasets
[70].

A daily-updated (after the addition of new proteomes from com-
plete sequencing projects) sequenced Tree of Life (sTOL) [67] has been
implemented using the procedure outlined above with the addition of
a likelihood weight calibration algorithm that consolidates the
SUPERFAMILY annotated molecular content of all completely se-
quenced organisms [68] with their respective NCBI taxonomic informa-
tion [71].

A similar approach, although relying on full-length proteins
(grouped by Markov Chain Clustering [72] of reciprocal BLAST hits
[73]), rather than domain annotations, has been applied recently to
infer themolecular content of LUCA (the Last Universal CommonAnces-
tor of extant organisms), which resides at the very root of the phyloge-
netic tree, wherefrom bacteria and archaea descend (recent research
suggests the existence of only two primary domains of life [74]).
Under the selected assumptions (amino acid sequence cluster mono-
phyly and the presence of a cluster member in at least two representa-
tives of both bacteria and archaea) 355 protein sequence clusters have
been identified as key molecules stemming from LUCA. This contrasts
with a demonstrated minimal bacterial genome of 473 genes [75],
highlighting the fact that computational inferences are capable of ro-
bustly identifying only themost highly conserved features of the ances-
tor state. The established conserved proteins of LUCA place it closest to
the extant clostridia and methanogens amongst bacteria and archaea
respectively and their distribution gives hints about LUCA's physiology
and habitat [76].

Inferring a phylogenetic tree based on extant proteomes allows es-
tablishment of the most likely evolutionary relatedness between spe-
cies and the set of conserved proteins originating from each ancestral
node, without determining their true identity in the past. Sequence in-
formation is generally available only for extant transcripts, located at
the leaves of the phylogenetic tree. Despite an overall conservation, all
sequences diverge from their ancestor states due to evolutionary drift.
With the rare exceptions of species where specimens have been pre-
served, allowing for the recovery of their ancient biomolecules – such
as the woolly mammoth's haemoglobin [27], resurrected from its re-
spective gene [26] (see above) - ancient polypeptide sequences need
to be inferred at each ancestral node [77]. Although this can be straight-
forwardly obtained from the consensus sequence of extant domain rep-
resentatives descending from the clade node [78], such inference is
highly sensitive to the number of species accounted for in the calcula-
tion.More accuratemethods rely on the topology of the associated phy-
logenetic tree, which can be inferred from the multiple sequence
alignment of extant versions of the protein sequence by themselves,
or provided as input for the algorithm if the tree has already been deter-
mined otherwise, for example by considering the full proteome of the
hosts. The maximum-parsimony approach assigns the residues at the
ancestral nodes so as to minimize the number of amino acid substitu-
tions. It allows correct determination of the true ancestral state provid-
ed that there is sufficient sequence similarity between proteins located
at the leaf nodes. However, in the case of high sequence divergence, the
maximum likelihood approach has been repeatedly shown to be the
most reliable method [79,80]. Taking into account tree branch lengths
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as well as an evolutionary model characterizing mutagenesis, it yields
the most likely ancestral sequence unambiguously. Furthermore, the
Bayesian framework can be invoked to calculate the probability
of each possible ancestral state providing confidence values for the re-
sults [81]. The task is now easily achievable for non-experts, as largely
automated platforms for protein phylogenetic inference have been im-
plemented [82–86]. Such reconstructed relatedness of myoglobin se-
quences is presented in Fig. 1 [87,88].

4. Hybrid Approaches

Hybrid approaches fuse together bioinformatics and molecular biol-
ogy to predict ancient protein sequences and then produce them:
Amino acid residues can be reverse translated into nucleotide codon
triplets (subject to codon optimization for the organismused for expres-
sion) to arrive at the gene sequence, which can be synthesized and
cloned into a plasmid for high level expression [60]. Such an approach
has been applied to resurrect ancient bacterial elongation Tu-factors
and establish from their properties the palaeo-environment from over
a billion years ago [89] as well as to analyse the evolution of currently
functionally distinct steroid hormone receptor proteins, determining
their ancestor as the estrogen receptor [90]. It has even been applied
to dinosaur rhodopsin visual pigment suggesting adaptation to low
light levels [91].

Furthermore, in addition to sequence analysis, conserved structural
and functional features, i.e. protein domain superfamilies [62] - taken
as the unit of evolution, as well as short linear motifs (SLiMs) that act
as links in molecular pathways [92], can also provide insight into the
identity of ancientmolecules. In the light of evolution, structural homol-
ogy of functional molecules across species is unsurprising. However,
Fig. 1. Phylogenetic reconstruction based on myoglobin sequences: evolutionary relatedness
show differences to the human transcript, which is used as reference; pink residues indicate i
different side-chains are white. The heme is shown in bright red. PDB structures depicted: hum
tuna (2nrl [119]). This image was originally generated by David S. Goodsell for the RSCB PDB
interpretation of the references to colour in this figure legend, the reader is referred to the we
counter-intuitively, related structures often have a very low sequence
identity, for example the broad family of globins has an average se-
quence identity of 17% [93], despite that, their tertiary structures differ
only in minor details (Fig. 1). The core of the protein determines how
the protein folds and usually serves the role of the functional active
site. It is the part of the sequence that remains best conserved, often
forming an easily identifiable motif (or a linear combination thereof).
On the other hand, the particular side chains of the remaining sequence
residues across members of a superfamily are usually less specific; the
conservation of their physio-chemical properties, such as electric charge
or hydrophobicity is generally sufficient to preserve the domain's struc-
ture [94]. The creation of new domains is rare. Biological complexity is
driven by domain duplication and rearrangement (through gene dupli-
cation and the emergence of new splice variants) as well as the special-
ization of particular units through selecting for motifs formed after the
accumulation of benign mutations [95]. SLiMs on their own, although
less extensively studied than domains and less reliable as evidence
for functionality [96], can be nevertheless identified within a transcript
(especially within eukaryotes [97]) and serve the role of a definition for
a functional feature traceable through evolution. A phylogenetic recon-
struction of features within a protein, which over the course of time has
altered its domain content or accumulated new functional motifs, can
allow tracing evolution backwards and recovering the key structural
and functional characteristics of the ancestral molecule, despite not
knowing its exact amino acid sequence.

An intriguing example of a hybrid approach comes from thework of
Voet et al. [98], summarised in Fig. 2. They took a domain of protein ki-
nase fromMycobacterium tuberculosis (NHL repeat structure, PDB entry
1RWL [99]) which forms a β-propeller domain made from six highly
similar but not identical “blades”. The number of blades in a β-
between species was reconstructed using the Phylogenics.fr web server [87]. The colours
dentical amino acids; residues similar in physio-chemical properties are light pink; vastly
an (3rgk [115]), horse (1ymb [116]), sperm whale (1mbo [117]), sea turtle (1lhs [118]),
Molecule of the Month, February 2017 [88] and is available at the RCSB PDB [120]. (For
b version of this article.)

Image of Fig. 1


Fig. 2. Resurrected proteins in protein engineering: a), b) and c) show the crystal structures of an extant β-propeller protein (1rwl [99]) and two engineered versions (3ww7 and 3ww9
[98]) respectively. In each case the structures are shown in cartoon format with each continuous polypeptide chain in a single colour. The N- and C-termini of one peptide chain in each
structure are shown in red and yellow sphere depiction respectively. In a), each of the six blades is numbered, b) and c) are constructed of an identical “ancestral” blade with c) being
formed from 3 copies of a single polypeptide “dimer” of blades and c) being constructed from a single polypeptide consisting of 6 copies of the blade and d) shows a nanocrystal of
CdCl2 shown as spheres (blue = Cd, yellow = Cl) between two copies of a designed Pizza2 protein (nvPizza2-S16H58, pdb 5chb) [107]. The Pizza protein rings are shown in an
orthogonal view and at a smaller scale than a-c. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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propeller protein varies depending on the protein but all blades are sim-
ilar, consisting of a short sequence forming a β-sheet [100,101] with
1RWL consisting of six such blades. The similarity of each blade in any
given propeller protein suggests that they evolved by gene duplication
and fusion from an original gene corresponding to a single blade. Voet
et al. used a bioinformatics approach to approximate several putative
sequences of this “ancestor” blade protein [102]. These sequences
were next evaluated utilizing a Rosetta [103] based computational pro-
tein design algorithm to identify the sequence most compatible with a
perfect symmetrical β-propeller architecture. This resurrected protein
shows that six identical repeats fused into a single protein can fold
into the 6-bladed propeller. This protein (referred to as Pizza due to
its appearance) proved to be highly thermostable and it is interesting
to note that the apparent trend for ancient proteins to exhibit increased
stability has been recently reviewed [104]. Variations with different
number (2–10) of repeats were observed to self-assemble into larger
complexeswith a total number of repeats equalling the lowest common
multiple of 6 and the number of tandem repeats, showing the high ten-
dency to assemble into the 6-bladed architecture.

The work demonstrated a mix of techniques [102]: Bioinformatics
was used to search structural databases for all known six-bladed β-
propeller proteins, which were manually assessed to find an attractive
candidate. The sequences of the six blades of 1RWL were submitted to
the FastML webserver for ancestral protein sequence prediction [83],
which suggested that blade three was the closest match to the original
ancestral protein. This blade was used to model a perfectly 6-fold
symmetrical propeller protein using RosettaDock [105] and potential
ancestor sequences were modelled onto this scaffold using a PyRosetta
[106] based procedure and the lowest energy structures were identified
[102]. Molecular biology techniques were used to synthesize the gene
encoding Pizza protein and the recombinant protein was produced
and purified and the crystal structure determined, which confirmed
that its structure matched that predicted. The high stability and
symmetrical nature of the protein have made it amenable to further
engineering: It was subsequently modified into a variant able to
biomineralise nanocrystals of cadmium chloride [107]. It has even
been speculated that Pizza proteinmay be a suitable platform for design
of synthetic enzymes [107].

5. Summary and Outlook

Advances in technology have allowed us to locate and recover pro-
teins and DNA from ancient specimens and determine their sequences.
Genomic data has given us a glimpse of extinct species, ancient environ-
ments and the tree of life. Ultimately there are limits to the quantity,
quality and age of molecules that we can expect to recover and here
computational approaches will be important. Already, bioinformatics
has enabled prediction of a possible proteome of LUCA, as described
above. This points to a complex entity comprising all three basic types
of bio-molecules (DNA, RNA and proteins) as well as lipid membranes
providing themolecularmachinery required for an efficientmetabolism
and cellular compartmentalization [76,108]. Given the spontaneous
emergence of life, primordial molecules must have been much simpler.
For example, short polypeptide sequences have been demonstrated to
have functional capabilities relevant to the prebiotic world [109].

Is it possible to trace evolution even further back and “discover” the
molecules that predate LUCA and cellular life itself? Despite the colossal
molecular innovation between LUCA and the very first self-replicating
system – the “Initial DarwinianAncestor” (IDA) [110], its crucial replica-
tive functionality must have been preserved to ensure a continuous lin-
eage. It may be that current replisomes still harbour remnants of the
primordial IDA, which can be identified by selecting for parts of se-
quences that satisfy maximum parsimony, working down to the root
of the phylogenetic tree (Fig. 3). The discovery of such a replicator sys-
tem through analysis of extant sequenceswould be of great scientific in-
terest as the presence of the molecule within living species would be
direct evidence of its identity as the precursor to life.

At the other end of the complexity scale, a knowledge of whole ge-
nome sequences from extinct species inevitably leads to the question
of whether whole organisms can be subject to de-extinction. Synthesis
of whole genomes is fast becoming a reality, but the lack of close rela-
tives able to bear young means that for this to be generally applicable,
artificial cells and artificial wombs may be necessary and this seems to
be a more distant scientific possibility as well as an ethically question-
able undertaking [111]. Nevertheless, a project dubbed “Woolly Mam-
moth Revival” is already underway and for the time being, instead of
synthesizing a completemammoth genome, the geneswithin fibroblast
cell cultures of the closely related Asian elephant species are being
edited using the CRISPR-Cas9 technology [112] to introduce mutations
believed to yield selected mammoth phenotypes such as long hair,
large ears, altered haemoglobin and subcutaneous fat [113]. With
the advent of direct cell-reprogramming techniques [114], trans-
differentiation of fibroblasts into embryonic cells of such genetically
engineered hybrids may be feasible though this is likely still a distant
prospect even if challenges are satisfactorily addressed.

However, research at themolecular level is a more realistic possibil-
ity and indeed resurrection of long-lost proteins featuring differences to
extant transcripts,which cater for the chemical characteristics of archaic
habitats has been achieved. In some cases, this could have utility in the
present; enzymes able to catalyse reactions in ancient earth conditions
different from our own could conceivably have industrial or medical
utility. For example, understanding how plants and animals in the

Image of Fig. 2


Fig. 3. Resurrection of the Initial Darwinian Ancestor: a) representatives of extant
replisome complexes [121] at the leaves of the phylogenetic tree allow tracing evolution
backwards to identify the key replicative molecules conserved from the age of LUCA and
infer their maximum likelihood sequences. b) The replicative proteins of LUCA may
harbour within their sequences, motifs stemming from the primordial “Initial Darwinian
Ancestor”, the self-replicating precursor to life. Here the “conserved replicative
sequence” is represented for illustrative purposes only, by a DNA polymerase (1tau
[122]); the “Initial Darwinian Ancestor” peptide is represented by a helical sequence
extracted from a larger protein structure (2ZP8 [123]) and is used for illustrative
purposes only. Replisome cartoon shown in a) is courtesy of the Brookhaven National
Laboratory.
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past dealt with different oxygen and carbon dioxide levels may help us
to discover new solutions to challenges arising from climate change. As
technology advances further, it is likely that we will be able to recover
ever more ancient molecules and genome sequence data, which may
allow such insights.
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