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Abstract: Vulnerability mining technology is used for protecting the security of industrial control
systems and their network protocols. Traditionally, vulnerability mining methods have the
shortcomings of poor vulnerability mining ability and low reception rate. In this study, a test
case generation model for vulnerability mining of the Modbus TCP based on an anti-sample algorithm
is proposed. Firstly, a recurrent neural network is trained to learn the semantics of the protocol data
unit. The softmax function is used to express the probability distribution of data values. Next, the
random variable threshold and the maximum probability are compared in the algorithm to determine
whether to replace the current data value with the minimum probability data value. Finally, the
Modbus application protocol (MBAP) header is completed according to the protocol specification.
Experiments using the anti-sample fuzzer show that it not only improves the reception rate of test
cases and the ability to exploit vulnerabilities, but also detects vulnerabilities of industrial control
protocols more quickly.

Keywords: industrial control system; Modbus TCP; probability distribution; recurrent neural network;
vulnerability mining

1. Introduction

In the era of “Internet +”, the impact of AI, IOT, 5G, cloud computing, and other technologies on
industrial activities has become increasingly significant [1]. These technologies have greatly improved
productivity and have expanded creativity in the use of industrial control systems (ICS) [2–4], but
these benefits also bring additional network security risks. For example, there have been a number of
security vulnerabilities associated with the MicroLogix 1400 series programmable logic controller (PLC)
developed by Rockwell Automation [5], resulting in denial of service attacks, equipment configuration
tampering, and other security breaches. In another cybersecurity incident, the website of the Ministry
of Energy and Industry of Ukraine was attacked by hackers [6], encrypting the files on the host and
causing the website to become inaccessible. These attacks demonstrate the need to protect ICS from
network attacks and to maintain their stability [7].

The ICS is composed of three parts: the management layer, the PLC control layer, and the
sensing device layer. The industrial control network protocol is a communication protocol between the
management layer and the PLC control layer. In the management layer, the operator gives control
instructions in the form of a network message. The PLC receives the instruction from the management,
updates the PLC data according to the internal control algorithm, and monitors the running status of
the sensors in real time. The sensing device layer includes a variety of sensors, which are used to collect
data from the industrial site and transmit them to the PLC. In the environment of water tower water
level ICS, sensors include water level sensors and valve sensors. The Modbus TCP [8–10] is the most
widely used industrial control network protocol, which uses a master/slave configuration protocol to
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communicate requests and responses between equipment. As shown in Figure 1, the application data
unit (ADU) of Modbus TCP consists of two parts: the Modbus application protocol (MBAP) header
and the protocol data unit (PDU). In the MBAP header, Transaction ID is the identifier of the request
and response transaction. Protocol ID is used to identify the Modbus TCP. Unit ID is the identifier of
slave equipment in the same network branch, and Length is the byte length sum of Unit ID, Function
Code, and Data in PDU. Here, Function Code is the function identifier for a control instruction, and
Data is the data information related to the control instruction.
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The Modbus TCP itself has a set of abnormality judgment rules. Most of the abnormal data
packets can be detected, and when an abnormal data packet is sent to the ICS, it returns an abnormal
code [11], which indicates the cause of the error. The Modbus TCP abnormal codes and abnormal
descriptions are shown in Table 1.

Table 1. Abnormal codes and abnormal descriptions.

Abnormal Code Abnormal Description

01 Non-standard Function Code
02 Illegal Data address
03 Illegal Data value

The basic idea of vulnerability mining is to find security vulnerabilities before system
implementation by quickly and reliably generating effective test cases, checking the security to
prevent the system from being attacked. Therefore, how to construct a large number of effective test
cases quickly has become one of the hot issues in implementing vulnerability mining technology.

The structure of the paper is as follows. Section 1 introduces the research background of ICS and
the structure of the Modbus TCP. Section 2 details the related work. In Section 3, the vulnerability
method of the Modbus TCP is discussed. Section 4 describes the test case generation model of the
industrial control network protocol. Section 5 completes the experiment and analyzes the results.
Finally, the conclusion and future research perspective are given in Section 6.

2. Related Work

At present, the commonly used network protocol vulnerability mining technology includes
manual code audit, fuzzing test, static analysis testing, dynamic analysis testing, and bindiff testing [12].
Among them, fuzzing [13,14] is widely used in the vulnerability mining of the industrial control
network protocol, which finds the vulnerability by providing unexpected test cases to the target system
and monitoring abnormal results.

The origins of fuzzing can be traced back to 1989. Professor Barton Miller input random characters
into seven types of UNIX variant applications to observe whether the physical program hangs or
crashes. As a result, 25–33% of the physical program is abnormal [15]. Gradually, fuzzing test
frameworks have been proposed, such as Spike, Peach, and Sulley [16,17]. In recent years, artificial
intelligence has gradually entered the field of the industrial Internet. Hu [18] used a generative
adversarial network to train real protocol messages, learn protocol semantics, and then generate false,
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but trusted messages. Finally, he found some errors in the Modbus TCP simulator. Li [19] introduced a
vulnerability mining method using Wasserstein generative adversarial networks to generate fuzzing
test data, which utilized the Modbus TCP and Ethernet as test targets. The model can be trained within
a short time, which is computationally light and practical.

However, the existing vulnerability mining methods generally have some problems of low
reception rate and poor vulnerability mining ability. In this case, some vulnerabilities in the ICS may
not be discovered. Thus, the security of ICS will have significant hidden dangers, and the safety of
factories and countries will also face huge threats. Therefore, it is necessary to improve the reception
rate of vulnerability mining methods and enhance their vulnerability mining abilities.

In order to improve the performance of the test case generation method, we propose an anti-sample
algorithm to generate test cases automatically for vulnerability mining of the Modbus TCP. In this
paper, our idea is that frequently used test cases have been tested many times, and the probability
of finding a new vulnerability is very low; however, rarely used test cases have better vulnerability
mining capabilities. According to these ideas, we propose an anti-sample algorithm. A recurrent
neural network (RNN) [20,21] is trained to learn the meaning of the Modbus TCP and then outputs the
probability matrix of the protocol field value. The field value with the maximum probability in the
matrix is the value most frequently used, while the data value with the minimum probability is the
value that is least frequently used. Finally, an anti-sample is given, which is composed of protocol field
values that are rarely used. In the experimental part of this paper, the effectiveness of our anti-sample
algorithm is verified.

3. Vulnerability Mining Method for Modbus TCP

In Modbus TCP, the MBAP message header is only the header identification of the protocol, while
the Data field contains register fields of operation objects in the industrial control equipment. The
operation objects of Modbus TCP include the switch input register, switch output register, analog input
register, and analog output register. Each register has its own specific value. For example, the register
at address 0x002B stores the humidity value of the industrial control equipment, while the register at
address 0x002C stores the dew point value.

3.1. Probability Distribution Based on RNN

RNN is a type of deep learning model for sequence data, which can thoroughly understand
the dependencies on the regular pattern of the register value in the ICS. For instance, Modbus TCP
determines that the Protocol ID is constant 0x00, and the sum of byte length of Unit ID, Function Code,
and Data determines the specific value of Length.

The process of generating a test case by RNN is divided into two parts: learning stage and
generation stage. It is assumed that there are n messages in the training dataset, and the length of each
protocol message is d. The ith message is represented as Xi = {x1, . . . , xi, . . . , xd}, and xi represents the
ith field in the Modbus TCP message. The process of the learning message is shown in Figure 2a, and
the input of RNN is {X1, X2, . . . , Xi, . . . , Xn}. To ensure that the RNN model can learn the semantics in
Modbus TCPs, each input value of RNN corresponds to an output value, and the output of RNN is
{O1, O2, . . . , Oi, . . . , On}.
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The process of the generation stage is shown in Figure 2b. The RNN model is trained, and the
model weight parameters remain unchanged. The input value is x1, and each step has an output value.
Ôt represents the output value at time t, based on the generated message sequence

{
Ô1, . . . , Ôt−1

}
and

the current input message data
{
Ôt−1

}
, which is also taken as the input value at time t + 1. That is, the

RNN generates the conditional probability distribution P(Ôt|x1, Ô1, . . . , Ôi, . . . , Ôt−1
}

[22] of the output

value Ôt at the current time t by learning a protocol message sequence
{
Ô1, . . . , Ôt−1

}
.

The softmax function [23–25] not only expresses the probability distribution of discrete random
variables, but also preserves the gradient information of a neural network. The parameter τ adjusts the
smoothness of the probability distribution to change the diversity of the random variable. Therefore,
we use a softmax function as the activation function of the last layer of the RNN. Each hexadecimal
data value is converted into a decimal integer, and the data value 256 is used as the end flag of a
message. As shown in Figure 3, for input data

{
Ôt−1

}
at time t, the RNN outputs the 257-dimensional

vector V, given by Equation (1).

V = (v0, v1, · · · , vi, · · · , v255, v256) (1)
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When the softmax function is used to calculate the probability of vi, the parameter τ is added (as
expressed in Equation (2)) to adjust the probability interval, where the value interval of τ is in [0,∞) [26].
As τ approaches positive infinity, the probability difference is small and tends to be evenly distributed.
However, as τ approaches zero, the probability distribution is close to the one-hot encoding form, and
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the problem of gradient disappearance becomes more serious. The so-called one-hot encoding [27]
treats each value of discrete characteristics as a state, and only one state is active at any time.

σ(vi) = Pv j =
exp(vi/τ)

n∑
j=0

exp(v j/τ)
(2)

The output probability Pvi (given by Equation (3)) of the RNN for each data value vi in vector V
is calculated using Equation (2). The higher the probability, the more accurate the semantic learning
and the higher the probability of the output value for the target. All probabilities form the output
probability distribution matrix O at time t, which describes the probability distribution rule of data
values, as expressed as Equation (4).

0 ≤ Pvi = P(Ôt = vi) = Pvi(Ôt|
{
x1, Ô1, . . . , Ôt−1

}
) ≤ 1 (3)

O = (P0, P1, · · ·P255, p256) (4)

3.2. Test Case Generation Strategy of Modbus TCP Based on the Anti-sample

Suppose that all possible output results of output value Ôt at time t constitute sample space Ωt

(as given by Equation (5)), where ωt
i is a basic event [28]. When the basic event ωt

i occurs, the output
data value is Ôt,i, as shown in Equation (6). P(Ôt = f (ωt

i)) represents the probability that Ôt is equal
to the data value Ôt,i.

Ωt =
{
ωt

0, · · · ,ωt
i , · · · ,ωt

256

}
(5)

Ôt,i = f (ωt
i) = i (6)

The output result of the softmax layer is the probability that the predicted value belongs to 257
data values. Usually, the maximum probability is used to express the highest accuracy of neural
network learning message semantics, and the data value corresponding to the maximum probability is
used as the predicted data value of the input message.

The anti-sample algorithm in this paper uses the probability distribution to represent the rules of
data values in registers of the industrial control equipment and uses the data value with the lowest
probability as the output value to generate test cases, thereby mining the vulnerability of the protocol.
As shown in Figure 4, the process of generating a test case based on time series is as follows: Firstly,
according to the current input data and the hidden information of the learned message, RNN uses a
softmax layer to output the probability distribution of the current time. The softmax layer expresses
the accuracy of the semantics of the learned message with the probability. Then, for each probability
matrix generated by RNN, the algorithm generates a random variable threshold, which is not fixed at
each time. Finally, the maximum probability is compared with the variable threshold. According to the
comparative result, we decide whether the data value is generated at the current time in accordance
with the normal message semantics, thus increasing the possibility of an abnormal occurrence in the
industrial control system.

Because the probability values in the probability distribution are between zero and one, the
random variable threshold is also between zero and one. This paper abbreviates the strategy of
generating test cases by the anti-sample algorithm as the generation strategy. The Modbus TCP
vulnerability mining fuzzer, constructed using the anti-sample algorithm, is called the anti-sample
fuzzer (A-s fuzzer).
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In Equations (7)–(9), P j and Pi are the maximum probability and the minimum probability of the
probability matrix, respectively; ζ is the RNN model; O is the probability distribution matrix of the
output ζ; and P f uzz is the random variable threshold.

P j = P(Ôt = f (ωt
j)) = max

ξ
(O) (7)

Pi = P(Ôt = f (ωt
i)) = min

ξ
(O) (8)

P f uzz = random(0, 1) (9)

In the anti-sample generation strategy, when P j is greater than or equal to P f uzz (as shown in
Figure 4a,b), it indicates that the data values accessed by the register have definite regularity and often
appear in a certain position. Therefore, we act in a diametrically opposite way; at the current time, the
data value of the minimum probability is used to replace the data value of the maximum probability
to generate a message. Such test cases are typically rarely used in the communication between the
industrial control tester and the industrial control equipment, but they may cause serious protocol
vulnerabilities. For example, in industrial control equipment, access the register of address 0x002B
to read the humidity value, which is often the data value S+

t (as shown in Equation (10)). If S−t (as
shown in Equation (11)) is selected as the humidity value at this time, such test cases are rarely used in
vulnerability mining, but may cause the vulnerability of the protocol.

When P j is less than P f uzz (as shown in Figure 4c), it indicates that there is no definite regularity
in the data value accessed by the register, and it is not necessary to change the access mode of the
register. For example, in industrial control equipment, access the register of address 0x002C to read the
dew point value. In rare cases, the dew point value is the data value S+

t , and selecting the data value
S+

t as the dew point value for vulnerability mining may cause abnormal or no response of industrial
control equipment.

S+
t = f (ωt

j) = arg max
ξ

(O) (10)

S−t = f (ωt
i) = arg min

ξ
(O) (11)

The fields in the protocol message are closely related such that a complete test case depends on
both MBAP and PDU. Therefore, it is necessary to add the message header part of MBAP based on the
message generated by the generation strategy and then construct a normal test case to monitor the state
of the tested object. The PDU component of the Modbus TCP message is generated according to the
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generation strategy of the model, while the MBAP message header needs to be randomly generated
according to the Modbus TCP. In this way, the MBAP header and PDU are spliced together to form a
complete test case for the industrial control protocol vulnerability mining system.

4. Test Case Generation Model of the Industrial Control Network Protocol

In this section, we first present an overview of the generation model and then elaborate on the
stages. The overall architecture is illustrated in Figure 5.
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4.1. Overview

The structure of the model for test case generation in this paper consists of two parts: learning
stage and case generation stage. The learning stage is used to learn the message of the training dataset
and determine the weight parameters of RNN. The case generation stage is divided into protocol
analysis and generation strategy. In protocol analysis, when a new field is input, RNN can determine
the probability distribution relationship of the next generated field based on the learning of Modbus
TCP message rules. The generation strategy is responsible for changing the information attached to
its probabilistic relationship to generate the next protocol field. The changed field will be the input
information for the RNN at the next time.

4.2. Learning Stage

For each Modbus TCP message, the Function Code and Data of each protocol are selected. The
two byte message fields are divided into high byte and low byte according to the high byte data and
the low byte data, and the hexadecimal data values in each byte are converted to decimal data values.
As shown in Figure 6, D represents a function that converts hex to decimal. Because the hexadecimal
data range of a byte is 0x00–0xFF, after it is converted to decimal, the value range of each data value is
0–255, and all are integers.
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Suppose that there are num Modbus TCP messages; the sum of all message lengths is n. First, the
message is extracted according to the format of Figure 6, and the end flag’s data value 256 is added
at the end of each message. That is, the value range of each data value is an integer in the range of
0–256. Thus, the sum of the learned message length is n− num · 7 + num · 1, where 7 is the length of the
header byte of the MBAP message and 1 is the length of the increased end flag data value. Because
the input data matrix of the RNN model is the same size, we concatenate all the messages to form a
large matrix S during training, and the order of the fields in the messages remains unchanged. Finally,
starting from the first data value of S, each interval of m data values constitutes a message input during
model learning, and starting from the second data value, each interval of m data values constitutes a
message output during model training. Therefore, the ith input message of the model is

{
Si, . . . , Si+m

}
,

and the ith output message is
{
Si+1, . . . , Si+m+1

}
, where the length of each message is m, and there are⌊

(n− num · 7 + num · 1− 1)/m
⌋

messages in total. The subscript i represents the ith message.
Assume that the matrix composed of input messages in the Modbus TCP training dataset is X, as

shown in Equations (12) and (13), where Xi represents the ith input message. The matrix composed of
the expected output message is Y, as shown in Equations (14) and (15). Yi represents the ith expected
output message.

X =
[
X0, X1, . . . , Xi, . . . , Xbnum−1/mc

]
(12)

Xi =
{
Si, Si+1, . . . , Si+m−1

}
(13)

Y =
[
Y0, Y1, . . . , Yi, . . . , Ybnum−1/mc

]
(14)

Yi =
{
Si+1, Si+2, . . . , Si+1+m−1

}
(15)

In the learning phase, the two-layer RNN is adopted to design the distribution rule for learning
the protocol data value. Based on the time series expansion, the input message is X, the expected
output message is Y, and the input message at each time is Xi.

In the learning stage of this paper, the probability distribution θ of the real output Ŷi is denoted as
Ŷ[i], and the expected output Yi is converted to the polynomial distribution vector of one-hot encoding
as Y[i]. Next, a value describing the distance between them is given, and the distance sum of all
messages is accumulated as the loss function learned [29], which is given by:

loss(Y, Ŷ) = −

b(n−num·7+num·1−1)/mc∑
i=0

Y[i] × log Ŷ[i]⌊
(n− num · 7 + num · 1− 1)/m

⌋ (16)

4.3. Case Generation Stage

The case generation stage includes the protocol analysis and case generation strategy, which is the
main part of the generation model.

4.3.1. Protocol Analysis

After the learning stage, the internal weight network parameters of the RNN model are determined.
When generating the ith test case, the superscript (t) represents the data value of the ith test case at time
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t. In the protocol analysis, the softmax function outputs the probability distribution relation matrix of
each time. The RNN model input and output data values change as shown in Figure 7. The initial
input to the model is X(0)

i , and at each time, the model outputs a data value; this data value is then
used as the input for the next time.Sensors 2020, 20, x FOR PEER REVIEW 9 of 20 

 

 
Figure 7. Input-output of the protocol semantic analysis part in the generation phase. 

Each time has a probability output matrix. There are 257 data values stored in the matrix, and 
their probability jθ  is the output value; the sum of the total probabilities is equal to one. These 
probabilities are expressed by Equations (17) - (19), where ξ  represents a two-layer RNN model. 
The actual output probability matrix θ  of ξ  satisfies Equation (17); the data value corresponding 

to the maximum probability in the matrix is ( )ˆ t
iY

+ , which satisfies Equation (18); and the data value 

corresponding to the minimum probability in the matrix is ( )ˆ t
iY

− , which satisfies Equation (19). 

T( ) (0) (0) (1) ( 1)

( ) (0) (0) (1) ( 1)

0 1 256

( ) (0) (0) (1) ( 1)

ˆ ˆ ˆ ˆ( 0 |{ ,  ,  , ..., })

ˆ ˆ ˆ ˆ( 1 |{ ,  ,  , ..., }))
=( , , , )=

ˆ ˆ ˆ ˆ( 256 |{ ,  ,  , ..., }))

t t
i i i i i

t t
i i i i i

t t
i i i i i

P Y X Y Y Y

P Y X Y Y Y

P Y X Y Y Y

θ θ θ

−

−

−

 =
 
 =
 
 
 
 = 

L
M

θ  (17) 

( )ˆ arg max( )t
iY

ξ

+ = θ  (18) 

( )ˆ arg min( )t
iY

ξ

− = θ  (19) 

4.3.2. Generation Strategy  

When the data value ( )ˆ ( [0, 1])j
iY j t∈ −  of each time is generated based on the anti-sample 

generation strategy, the specific steps are as follows: 

(1) The probability distribution relation matrix θ  of the protocol analysis part is output according 
to the learned semantics and the current input (0) ( 1)ˆ(  )j

i iX Y −or . 
(2) There is a random variable threshold fuzzP  when each probability matrix is generated. The 

generated strategy model outputs the maximum probability jθ  in the matrix (given by 

Equation (20)). If jθ  is greater than or equal to fuzzP , ( )ˆ t
iY

−  is selected as the output value. 

Otherwise, ( )ˆ t
iY

+  continues to be selected as the output value. 

max( )j =
ξ

θ θ  (20) 

(3) The data value output by the current time is checked against the end flag data value of 256. If it is 
not the end flag data value, we repeat Steps (1) and (2); otherwise, end the algorithm. 

Figure 7. Input-output of the protocol semantic analysis part in the generation phase.

Each time has a probability output matrix. There are 257 data values stored in the matrix, and their
probability θ j is the output value; the sum of the total probabilities is equal to one. These probabilities
are expressed by Equations (17)–(19), where ξ represents a two-layer RNN model. The actual output
probability matrix θ of ξ satisfies Equation (17); the data value corresponding to the maximum

probability in the matrix is Ŷ(t)+

i , which satisfies Equation (18); and the data value corresponding to

the minimum probability in the matrix is Ŷ(t)−

i , which satisfies Equation (19).

θ= (θ0,θ1, · · · ,θ256) =



P(Ŷ(t)
i = 0|

{
X(0)

i , Ŷ(0)
i , Ŷ(1)

i , . . . , Ŷ(t−1)
i })

P(Ŷ(t)
i = 1|

{
X(0)

i , Ŷ(0)
i , Ŷ(1)

i , . . . , Ŷ(t−1)
i }))

...

P(Ŷ(t)
i = 256|

{
X(0)

i , Ŷ(0)
i , Ŷ(1)

i , . . . , Ŷ(t−1)
i }))



T

(17)

Ŷ(t)+

i = arg max
ξ

(θ) (18)

Ŷ(t)−

i = arg min
ξ

(θ) (19)

4.3.2. Generation Strategy

When the data value Ŷi
( j)( j ∈ [0, t − 1]) of each time is generated based on the anti-sample

generation strategy, the specific steps are as follows:

(1) The probability distribution relation matrix θ of the protocol analysis part is output according to

the learned semantics and the current input (X(0)
i orŶ( j−1)

i ).

(2) There is a random variable threshold P f uzz when each probability matrix is generated. The
generated strategy model outputs the maximum probability θ j in the matrix (given by Equation

(20)). If θ j is greater than or equal to P f uzz, Ŷ(t)−

i is selected as the output value. Otherwise, Ŷ(t)+

i
continues to be selected as the output value.

θ j = max
ξ

(θ) (20)
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(3) The data value output by the current time is checked against the end flag data value of 256. If it is
not the end flag data value, we repeat Steps (1) and (2); otherwise, end the algorithm.

As shown in Algorithm 1, the input of the anti-sample algorithm is the generated message
[Ŷ(0)

i , Ŷ(1)
i , . . . , Ŷ(t−1)

i ], the double-layer RNN model ξ, and the output is the generated PDU message Ŷi.

Algorithm 1: Anti-Sample Algorithm

input: ζ←the double-layer RNN model;

[Ŷ(0)
i , Ŷ(1)

i , . . . , Ŷ(t−1)
i ]←generated message;

output: Ŷi←the generated PDU message

5based on the generated message [Ŷ(0)
i , Ŷ(1)

i , . . . , Ŷ(t−1)
i ], model ζ outputs its probability distribution matrix θ.

(1) do P f uzz ← random(0, 1) , θ j ← max
ξ

(θ)

(2) Ŷ(t)+

i ← arg max
ξ

(θ) , Ŷ(t)−

i ← arg min
ξ

(θ)

(3) if θ j ≥ P f uzz

(4) then Ŷ(t)
i ← Ŷ(t)−

i

(5) else Ŷ(t)
i ← Ŷ(t)+

i

(6) Ŷi ← Ŷi + Ŷ(t)
i

(7) t← t + 1

(8) do while Ŷ(t)
i ! = 256 5The end flag stops the loop

(9) end while

Based on the dependent relationship in Modbus TCP, the Function Code and Data parts of the
test cases are constructed, and then, complete test cases are generated according to Algorithm 2. First,
Transaction ID, Protocol ID (two bytes), and Unit ID (one byte) are randomly generated. Next, Length
is calculated according to the number of bytes of Function Code, Data, and Unit ID, and they are
converted into two bytes of hexadecimal values. Finally, all values are spliced in order according to the
protocol format, as shown in Algorithm 2.

Algorithm 2: Complete Test Case Generation Algorithm

input: Ŷi←generated PDU message
output: Ŷi←complete test case

(1) unit← hex(random.Int(0, 255)) 5 decimal to hex
(2) length← hex(len(Ŷi) + 1)
(3) transaction_ID← hex(random.Int(0, 65535))
(4) protocol_ID← hex(0)
(5) Ŷi ← (transaction_ID, protocol_ID, length, unit, Ŷi)

5. Experiment Results

In this study, the Modbus TCP is used as the test target to detect the vulnerability of the Modbus
TCP in the industrial control equipment.

5.1. Training Dataset Selection

The training dataset selected in this study conformed to the diversity and unique characteristics,
which were all from real and simulated industrial sites, including natural gas, power grids, and water
levels of water towers. Dataset 1 [30] was the industrial control intrusion detection standard dataset
established by the infrastructure protection center of Mississippi State University in 2014. The data
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source was the network layer data of a natural gas pipeline SCADA control system. It included eight
types of attack behaviors. We screened out Modbus TCP packets for normal behavior. Dataset 2 [31]
generated representative markup datasets for SCADA networks and was proposed at the 2016 Cyber
Security Experimentation and Test (CSET) conference. The datasets were generated in a SCADA
sandbox at the network level, where electrical network simulators were used to introduce realism for
the physical components. It included packet captures including both malicious and non-malicious
Modbus traffic and accompanying CSV files. Dataset 3 was the Modbus TCP message supplemented
by intrusion detection system of water tower water level in our laboratory.

At present, there are relatively few datasets in the field of industrial control. We found these three
representative datasets. Dataset 1 included function codes 0x03, 0x08, and 0x10. Dataset 2 included
function codes 0x01, 0x02, 0x03, 0x05, 0x06, and 0x10. Dataset 3 included function codes 0x01-0x06,
0x0f, and 0x10. The datasets were complementary to each other, covering all commonly used Modbus
TCP function codes, ensuring the diversity of Modbus TCP messages. All dataset information came
from real or simulated industrial sites, ensuring data reliability.

5.2. Experimental Environment and Parameters of the Model

In the process of vulnerability mining of the Modbus TCP, the test cases generated by the
industrial control tester were sent to the industrial control equipment, and the equipment returned the
corresponding response message or returned the abnormal status according to the received message.
The industrial control tester received the response message and sent new test cases again. Every time a
test case was sent, we observed the state of the industrial control equipment to determine whether the
test case caused abnormal response of the equipment, so as to find the vulnerability of the protocol.
The industrial control equipment would have two abnormal states: When the equipment responded to
abnormal message, it indicated that this test case caused a protocol vulnerability. When the equipment
did not respond, we sent this test case again and then sent two test cases with a normal response. If the
equipment did not respond to this test case and could respond normally to the latter two test cases, it
meant that the test case was discarded by the equipment. Otherwise, it meant that the test case caused
a protocol vulnerability.

The experimental environment topology of vulnerability mining for Modbus TCP in this paper is
shown in Figure 8. Among these, the industrial control equipment was the Siemens water tower and
water level ICS; the Siemens PLC model was SIMATIC S7-300, Modbus TCP V2.6 server; the switch
was CISCO WS-C2960-24TC-L.The industrial control tester was deployed on a 64 bit Windows 10
system with 8 GB of memory and an Nvidia GTX 1050 Ti GPU. The learning model was based on
TensorFlow-GPU 1.8.0, CUDA 9.0, CUDNN 6.0, and Python 3.6.6.
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First, all the messages in the dataset with normal responses were filtered out, and then, the
repeated messages were removed as the learning data of this study. A total of 40,000 Modbus TCP
messages were selected, and 80 epochs were learned. In learning, the learning rate was 0.0001, the
parameter τ was 0.6, the model dim was 128 and 256, and the generation model saved every 10 epochs.
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5.3. Results

Because the generation model described the probability of generating a complete test case, it
was not possible to evaluate the learning performance by learning the label of each field accurately.
Therefore, this experiment used different epoch learning model parameters to generate test cases, and
then, we compared the reception rate of the industrial control equipment and chose the most suitable
learning epoch to mine vulnerabilities. In the process of test case generation, the initial sequence of
test case generation needed to be changed randomly to ensure that the generated test case met the
characteristics of the high coverage rate and high reception rate of the industrial control equipment.

5.3.1. Test Efficiency Analysis

In this experiment, to select appropriate super parameters to maintain the ability of generating test
case diversity, firstly, for the parameters, τ was 0.4, 0.5, 0.6, and 0.7, respectively, and the experiment
compared the equipment reception rate with learning rates of 0.01, 0.001, 0.003, 0.0001, and 0.0003 and
model dim of 32 and 32, 64 and 64, 128 and 128, 128 and 256, and 256 and 256, as shown in Figure 9.
With an increase of the parameter τ, the reception rate of test cases generated by different model dim
and learning rates for the industrial control equipment was also constantly changing and generally
showed a trend of first increasing, then decreasing. When the parameter τ was 0.6, the model dim was
128 and 256, and the learning rate was 0.0001, with the reception rate reaching its maximum.
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In the experiment, a learning epoch was selected to generate 14400 test cases for 40, 50, 60, 70,
and 80, respectively, and a total of four hours of fuzzing test were carried out, as shown in Figure 10.
In order to verify the effect of our A-s fuzzer, a test case was sent to the industrial control equipment
every second, and the reception rate and vulnerability number of the industrial control equipment were
counted every 20 min. The test cases generated by A-s fuzzer were not subjected to any elimination or
manual intervention.

As the number of learning epochs increased, the model’s ability to learn message semantics
became more accurate. The test cases generated at 40 epochs basically met the requirements of the
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protocol, and the equipment reception rate increased with time; however, there was a significant
difference from the real message. With the continuous increase of the epochs, the reception rate of the
industrial control equipment was gradually improved until 80 epochs; approximately 90% of the test
cases were received by the experimental equipment. In summary, for the A-s fuzzer test framework,
the learning rate was 0.0001 and the model dim was 128 and 256, and it learned 80 epochs to generate
test cases for vulnerability mining.Sensors 2020, 20, x FOR PEER REVIEW 13 of 20 
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5.3.2. Analysis of the Test Results

In the process of vulnerability mining, each test case had its unique number. During the A-s fuzzer
experiment, three types of vulnerability were found, and the case number, abnormal response messages,
and vulnerability types are shown in Table 2. Among them, case number represents the test case
number when this vulnerability type was first discovered. Each vulnerability was analyzed according
to the Modbus TCP document as follows. Vulnerability Numbers 02 and 03 were all emerging Modbus
TCP vulnerabilities. All the vulnerabilities were found by A-s fuzzer and are listed and analyzed in
Appendix A.

Table 2. Request and response detection results of Modbus TCP exception.

Vulnerability Number Vulnerability Types Case Number Abnormal Response Messages

01 Insufficient Verification
of Data Authenticity 3325 request: A1 D3 00 00 00 06 F1 05 00 02 03 0A

response: A1 D3 00 00 00 06 F1 05 00 02 03 00

02 Information Tampering 2359 request: 3B B5 00 00 00 07 02 0F 00 07 00 02 01
response: 3B B5 00 00 00 06 02 0F 00 07 00 02

03 Arbitrary Data Injection 2941 request: 0F 5C 00 00 00 08 FB 10 00 08 00 01 02 0F
response: 0F 5C 00 00 00 06 FB 10 00 08 00 01

It can be known from Table 2. Vulnerability 01 is the insufficient verification of data authenticity
vulnerability. Function code 0x05 was the operation of writing a single coil. In the request Data, the
first two bytes represented the coil address to be accessed, which could only be 0xFF00 or 0x0000, and
the last two bytes represented the write operation of ON/OFF. In the response Data, the first two bytes
were the same as the first two bytes in the request data field, and the last two bytes could only be
0xFF00 or 0x0000, indicating that the write operation was completed. In this test case, the coil with
address 0x009B did not judge the parameters submitted by the last two bytes, causing a vulnerability
of insufficient verification of data authenticity.

Vulnerability 02 is the information tampering vulnerability. Function code 0x0F was the operation
to write multiple coils. In the request Data, the first two bytes represented the starting address of the
coil to be written, the third and fourth bytes represented the number of coils to be written, the fifth byte
represented the byte length of the number of coils, and the sixth byte to the end position represented
forcing each coil to be ON/OFF. In the response Data, the first four bytes in the request Data were
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returned, indicating that the coil write operation was completed. In this test case, Data did not force
any operation of the coil with address 0x0007–0x0009, but returned that the forced operation was
completed, and Modbus TCP was transmitted in clear text. In this way, the attacker could eavesdrop
the transmitted coil address and arbitrarily tamper with the forced operation not carried out on the
coil, resulting in the vulnerability of information tampering.

Vulnerability 03 is the arbitrary data injection vulnerability. Function code 0x10 was the operation
of continuously writing multiple holding registers. In the request Data, the first two bytes represented
the start address of the holding register to be written, the third and fourth bytes represented the number
of writes, the fifth byte represented the length of the number of bytes, and the sixth byte to the end
position represented the value of the data to be written. In the response Data, the first four bytes in
the request Data were returned, indicating that multiple write operations of holding registers were
completed. In this test case, the data written to the holding register of address 0x0008–0x0009 were
not complete, and the low byte data was not written. Therefore, this may lead to the vulnerability of
arbitrary data injection.

5.3.3. Comparison of Test Performance

In order to compare the experimental results, the Kitty fuzzer [32], which was applied to the
network protocol, and the traditional Peach fuzzer [33] were chosen as the comparison group to
generate Modbus TCP test cases. Kitty contains the common functions for each fuzzing process. The
industrial control system exploitation framework (ISF) is an industrial control vulnerability utilization
framework, which includes an industrial control protocol client and an industrial control protocol
module. The fuzzing of the Modbus TCP was carried out by combining the Kitty fuzzing framework
with the industrial control protocol component of the ISF framework. Peach fuzzer is a fuzzing
framework with an XML format that is easy to understand. It not only has a simple configuration
environment, but also can test a variety of data formats. In this study, three types of fuzzers were used
to generate Modbus TCP test cases for vulnerability mining. The reception rate of an industrial control
equipment, test case variation rate, types of triggering vulnerabilities, the number of test cases used to
find the first vulnerability, and vulnerability mining ability were compared and analyzed as follows.

(a) Reception rate (RT): Reception rate refers to the efficiency of test data generation, reflecting the
similarity between the generated test case and the real data, as follows:

RT =
total number of test cases received

total number of test cases sent
× 100% (21)

Figure 11 shows the reception rate of the test cases generated by the three fuzzers every 20 min.
The reception rate of Peach fuzzer was the lowest, and Kitty fuzzer was relatively good. More than
half of the test cases could be received by the experimental equipment. The reception rate of A-s fuzzer
was the highest, and most of the test cases could be received by the experimental equipment.Sensors 2020, 20, x FOR PEER REVIEW 15 of 20 
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(b) Test case variation rate: The second experimental evaluation indicator is the test case variation
rate (TCVR), which is defined as the ratio of abnormal test cases in the total test cases generated, as
follows:

TCVR =
total number of abnormal test cases

total number of test cases sent
× 100% (22)

This experiment evaluated the TCVR of three fuzzers for all the test cases. The specific statistical
results are listed in Table 3. In the comparison of the variation rates of all the test cases, A-s fuzzer was
slightly lower than Kitty fuzzer, and Kitty fuzzer had the highest TCVR, whereas Peach fuzzer had the
lowest TCVR.

Table 3. Statistical table of the variation rate of all the test cases of the three fuzzers. TCVR, test case
variation rate.

Fuzzer Number of Normal Test
Cases

Number of Abnormal
Test Cases TCVR (%)

Kitty Fuzzer 1716 12,684 0.881
Peach Fuzzer 2792 11,608 0.806

A-s Fuzzer 1784 12,616 0.876

(c) Types of triggering vulnerabilities: Based on the types of vulnerabilities triggered by A-s fuzzer,
the number of test cases needed to find the corresponding vulnerabilities by the three methods was
counted. The specific experimental results are displayed in Table 4. If there is no fill in the table, that
means that no such vulnerability was found. Each fuzzer found each vulnerability in a different order,
but the performance of the traditional Peach fuzzer was not good. Although Vulnerability Numbers 01
and 03 could also be found, they were more than the number of test cases required by the other two
fuzzers. Kitty fuzzer was the first fuzzer to find the first vulnerability, but in this experiment, there
was no test case that could find Vulnerability Number 03. However, the number of test cases needed
by A-s fuzzer to find various vulnerabilities was less than the others.

Table 4. Number of test cases required by the three fuzzers corresponding to various vulnerabilities.

Fuzzer Vulnerability Number
01

Vulnerability Number
02

Vulnerability Number
03

Kitty Fuzzer 4238 2267 —-
Peach Fuzzer 4327 —- 5672

A-s Fuzzer 3325 2359 2941

(d) Vulnerability mining ability (VMA): The fourth evaluation indicator was the comparison of
the VMA of the three methods. VMA revealed the average number of test cases required to trigger an
exception and calculated not only the number of vulnerabilities found in the test, but also the number
of test cases needed to identify these vulnerabilities. The calculation is given by:

VMA =
total number of exceptions triggered

total number of test cases sent
× 100% (23)

As shown in Table 5, the first column compared the time it took for each fuzzer to discover the
first vulnerability. The experiment sent one test case per second, which also represented the number of
test cases required when the first vulnerability was found. The second column compares the number
of vulnerabilities found by each fuzzer in four hours. The third column compares the VMA of each
fuzzer. As can be seen from the table, the vulnerability mining ability of A-s fuzzer was higher than
those of the other fuzzers; the time required to find the first vulnerability was relatively small; and the
number of vulnerabilities found within four hours was also the largest.
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Table 5. Comparison of the experimental results of the three fuzzers. VMA, vulnerability mining ability.

Fuzzer Execution Time of the
First Vulnerability (s)

Number of Vulnerabilities
Found in 4 h VMA

Kitty Fuzzer 2267 13 0.09%
Peach Fuzzer 4327 9 0.06%

A-s Fuzzer 2359 25 0.17%

6. Conclusions

In view of the development of fuzzing and the vulnerability characteristics of the industrial
control protocol, this paper designed and implemented a Modbus TCP test case generation model
based on the anti-sample idea.

First, a learning probability distribution based on RNN was proposed to represent the probability
distribution relationship between fields in Modbus TCP messages. Specifically, RNN was used to learn
the semantics of PDU, and the softmax function was used as the activation function to represent the
probability distribution of the field.

Then, in order to construct efficient vulnerability mining test cases, the test case generation
method of anti-sample was proposed. According to the probability distribution of the field and
the generated random variable threshold, the relationship between the random threshold and the
maximum probability in the probability distribution was compared. The result of the comparison
determined whether to replace the current data value with the data value of the minimum probability
to increase the possibility of industrial control exceptions. According to the protocol specification, the
MBAP header was supplemented with random values to form a complete test case.

Finally, a test case generation model based on anti-samples was proposed for the comprehensive
probability distribution and anti-sample algorithm. The generation model was divided into the
learning stage and the generation stage. The task in the learning stage was to represent the message
information of the training dataset through RNN. The task of the generation stage was to use the
learned RNN to output the probability distribution corresponding to the data value generated by
the current time and to change the case generation strategy according to the anti-sample algorithm.
The generated data value was taken as the RNN input field of the next time, so as to generate the
complete test case in a cycle.

We successfully captured three types of Modbus TCP vulnerabilities with this experimental
method, indicating that A-s fuzzer could effectively detect industrial control protocol vulnerabilities.
In the future, the next work is to obtain a more extensive dataset to enhance the persuasion of the
generated model and extend A-s fuzzer to apply it to a private protocol.
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Appendix A

In this experiment, all abnormal response messages that cause the insufficient verification of data
authenticity vulnerability are shown in Table A1. In the function code 0x05, as long as the last two bytes
of the data do not satisfy 0x0000 or 0xFF00, but respond normally, it is considered a vulnerability. The
data of these cases do not conform to the data of function code 0x05. They all lead to the vulnerability
of insufficient data authenticity verification.

Table A1. All the abnormal response messages that cause the insufficient verification of data
authenticity vulnerability.

Vulnerability Types Abnormal Response Messages

Insufficient Verification of Data
Authenticity

request: A1 D3 00 00 00 06 F1 05 00 02 03 0A
response: A1 D3 00 00 00 06 F1 05 00 02 03 00
request: 9C DE 00 00 00 06 FF 05 00 9B A8 00
response: 9C DE 00 00 00 06 FF 05 00 9B A8 00
request: 8A 6C 00 00 00 06 12 05 00 05 02 03
response: 8A 6C 00 00 00 06 12 05 00 05 02 00
request: 04 D2 00 00 00 06 58 05 00 0D 02 0E
response: 04 D2 00 00 00 06 58 05 00 0D 02 00
request: 10 A2 00 00 00 06 3D 05 00 2C 0F 0A
response: 10 A2 00 00 00 06 3D 05 00 2C 0F 00
request: 09 25 00 00 00 06 E2 05 00 4F 00 0C
response: 09 25 00 00 00 06 E2 05 00 4F 00 00
request: 15 64 00 00 00 06 A5 05 01 4C 00 1F
response: 15 64 00 00 00 06 A5 05 01 4C 00 00
request: 32 18 00 00 00 06 FC 05 01 B5 0D 1F
response: 32 18 00 00 00 06 FC 05 01 B5 0D 00
request: 21 D5 00 00 00 06 11 05 00 02 03 1B
response: 21 D5 00 00 00 06 11 05 00 02 03 00

Insufficient Verification of Data
Authenticity

request: 81 45 00 00 00 06 19 05 00 02 05 2B
response: 81 45 00 00 00 06 19 05 00 02 05 00
request: CC 4E 00 00 00 06 3F 05 01 1F 00 0B
response: CC 4E 00 00 00 06 3F 05 01 1F 00 00
request: A4 6C 00 00 00 06 D2 05 01 EF F0 0B
response: A4 6C 00 00 00 06 D2 05 01 EF F0 00
request: 34 D5 00 00 00 06 E8 05 00 FD 02 0C
response: 34 D5 00 00 00 06 E8 05 00 FD 02 00
request: 15 A5 00 00 00 06 AD 05 00 EB 04 1F
response: 15 A5 00 00 00 06 AD 05 00 EB 04 00
request: 89 C5 00 00 00 06 92 05 00 C3 04 33
response: 89 C5 00 00 00 06 92 05 00 C3 04 00
request: 8B 14 00 00 00 06 85 05 01 00 00 01
response: 8B 14 00 00 00 06 85 05 01 00 00 00
request: 3A 28 00 00 00 06 F9 05 00 14 25 FF
response: 3A 28 00 00 00 06 F9 05 00 14 25 00
request: 22 DF 00 00 00 06 10 05 00 03 2F 22
response: 22 DF 00 00 00 06 10 05 00 03 2F 00
request: 87 41 00 00 00 06 79 05 00 02 25 3B
response: 87 41 00 00 00 06 79 05 00 02 25 00

In this experiment, all abnormal response messages that cause the information tampering
vulnerability are shown in Table A2. As for function code 0x03, it is the operation of read holding
registers. In the request Data, the first two bytes represent the address of the holding register to be
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read, and the last two bytes represent the number of addresses to be read. In the response Data, the
first byte represents the number of bytes that have been read. The following bytes represent the value
of each holding register. In this test case, the number of registers to be read is missing, but a normal
response message is returned. This leads to the information tampering vulnerability.

Table A2. All the abnormal response messages that cause the information tampering vulnerability.

Vulnerability Types Abnormal Response Messages

Information Tampering

request: 3B B5 00 00 00 07 02 0F 00 07 00 02 01
response: 3B B5 00 00 00 06 02 0F 00 07 00 02
request: 2D 8E 00 00 00 03 5D 03 01 01
response: 2D 8E 00 00 00 07 5D 03 04 00 00 00 00

In the experiment, all abnormal response messages that cause the arbitrary data injection
vulnerability are shown in Table A3. As for function code 0x06, it is the operation of writing a single
holding register. In the request Data, the first two bytes represent the address of the holding register
to be written, and the last two bytes represent the data to be written. The response Data is the same
as the request Data field, indicating that the write operation to a single holding register has been
completed. In the test cases, in the holding register address 0x03, only the binary value 0x07 is written;
in the holding register address 0x01, only the binary value 0x01 is written; and the low byte data are
lost, but the response is normal. As for function code 0x03, the register address to be read in this
test case is not complete, but returns a normal response. Thus, they have caused the arbitrary data
injection vulnerability.

Table A3. All the abnormal response messages that cause the arbitrary data injection vulnerability.

Vulnerability Types Abnormal Response Messages

Arbitrary Data Injection

request: 0F 5C 00 00 00 08 FB 10 00 08 00 01 02 0F
response: 0F 5C 00 00 00 06 FB 10 00 08 00 01
request: AD 82 00 00 00 05 DE 06 00 03 07
response: AD 82 00 00 00 06 DE 06 00 03 07 00
request: 3B 02 00 00 00 05 3C 06 00 01 01
response: 3B 02 00 00 00 06 3C 06 00 01 01 00
request: 2D 8F 00 00 00 03 5F 03 01
response: 2D 8F 00 00 00 45 5F 03 42 6A FF 00 00 00 00

00 00 00 00 05 05 00 6A 00 00 00 00 00 00 C5
DF 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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